首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The apicoplast is a recently discovered, plastid-like organelle present in most apicomplexa. The methylerythritol phosphate (MEP) pathway involved in isoprenoid biosynthesis is one of the metabolic pathways associated with the apicoplast, and is a new promising therapeutic target in Plasmodium falciparum. Here, we check the presence of isoprenoid genes in four coccidian parasites according to genome database searches. Cryptosporidium parvum and C. hominis, which have no plastid genome, lack the MEP pathway. In contrast, gene expression studies suggest that this metabolic pathway is present in several development stages of Eimeria tenella and in tachyzoites of Toxoplasma gondii. We studied the potential of fosmidomycin, an antimalarial drug blocking the MEP pathway, to inhibit E. tenella and T. gondii growth in vitro. The drug was poorly effective even at high concentrations. Thus, both fosmidomycin sensitivity and isoprenoid metabolism differs substantially between apicomplexan species.  相似文献   

2.
Coccidia provide a rich hunting ground for drug-designers, as there are significant biochemical differences between the parasites and their hosts. Recent years have brought the discovery of the plastid and its possible metabolic machinery, characterisation of acidocalcisomes, reports on the apparent absence from some coccidia of a typical mitochondrion, and the discovery of the mannitol cycle and shikimate pathway in the parasites. Moreover, modern technologies such as genomics and proteomics are bringing new insights into the biochemistry of coccidia and highlighting possible drug targets in abundance. A major issue for would-be drug discoverers is to decide upon the targets to prioritise. This review provides an update on recent findings on how coccidia differ biochemically from vertebrates. It includes discoveries within coccidian parasites themselves but also uses findings in Plasmodium to provide an overview of biochemical features that may be characteristics of many apicomplexan parasites and so potential targets for broad-spectrum drugs.  相似文献   

3.
The Xylella fastidiosa is a bacterium that is the cause of citrus variegated chlorosis (CVC). The shikimate pathway is of pivotal importance for production of a plethora of aromatic compounds in plants, bacteria, and fungi. Putative structural differences in the enzymes from the shikimate pathway, between the proteins of bacterial origin and those of plants, could be used for the development of a drug for the control of CVC. However, inhibitors for shikimate pathway enzymes should have high specificity for X. fastidiosa enzymes, since they are also present in plants. In order to pave the way for structural and functional efforts towards antimicrobial agent development, here we describe the molecular modeling of seven enzymes of the shikimate pathway of X. fastidiosa. The structural models of shikimate pathway enzymes, complexed with inhibitors, strongly indicate that the previously identified inhibitors may also inhibit the X. fastidiosa enzymes.  相似文献   

4.
5.
Different tomato cultivars (Solanum lycopersicum L.) with differences in tolerance to drought were subjected to moderate water stress to test the effects on flavonoids and caffeoyl derivatives and related enzymes. Our results indicate that water stress resulted in decreased shikimate pathway (DAHP synthase, shikimate dehydrogenase, phenylalanine ammonium lyase, cinnamate 4-hydroxylase, 4-coumarate CoA ligase) and phenolic compounds (caffeoylquinic acid derivatives, quercetin and kaempferol) in the cultivars more sensitive to water stress. However, cv. Zarina is more tolerant, and registered a rise in querc-3-rut-pent, kaempferol-3-api-rut, and kaempferol-3-rut under the treatment of water stress. Moreover, this cultivar show increased activities of flavonoid and phenylpropanoid synthesis and decreased in degradation-related enzymes. These results show that moderate water stress can induce shikimate pathway in tolerant cultivar.  相似文献   

6.
The apicomplexan parasite Toxoplasma gondii displays some unusual localisations of carbohydrate converting enzymes, which is due to the presence of a vestigial, non-photosynthetic plastid, referred to as the apicoplast. It was recently demonstrated that the single pyruvate dehydrogenase complex (PDH) in T. gondii is exclusively localised inside the apicoplast but absent in the mitochondrion. This raises the question about expression, localisation and function of enzymes for the tricarboxylic acid (TCA)-cycle, which normally depends on PDH generated acetyl-CoA. Based on the expression and localisation of epitope-tagged fusion proteins, we show that all analysed TCA cycle enzymes are localised in the mitochondrion, including both isoforms of malate dehydrogenase. The absence of a cytosolic malate dehydrogenase suggests that a typical malate-aspartate shuttle for transfer of reduction equivalents is missing in T. gondii. We also localised various enzymes which catalyse the irreversible steps in gluconeogenesis to a cellular compartment and examined mRNA expression levels for gluconeogenesis and TCA cycle genes between tachyzoites and in vitro bradyzoites. In order to get functional information on the TCA cycle for the parasite energy metabolism, we created a conditional knock-out mutant for the succinyl-CoA synthetase. Disruption of the sixth step in the TCA cycle should leave the biosynthetic parts of the cycle intact, but prevent FADH2 production. The succinyl-CoA synthetase depletion mutant displayed a 30% reduction in growth rate, which could be restored by supplementation with 2 microM succinate in the tissue culture medium. The mitochondrial membrane potential in these parasites was found to be unaltered. The lack of a more severe phenotype suggests that a functional TCA cycle is not essential for T. gondii replication and for maintenance of the mitochondrial membrane potential.  相似文献   

7.
The initiation of mucin-type O-glycosylation is catalysed by a family of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (EC 2.4.1.41). These enzymes are responsible for the transfer of N-acetylgalactosamine from the nucleotide sugar donor, UDP-GalNAc, to the hydroxyl group on specific serine or threonine residues in acceptor proteins. By screening a Toxoplasma gondii cDNA library, three distinct isoforms of the ppGalNAc-T gene family were cloned. Two additional isoforms were identified and partially cloned following analysis of the T. gondii genome sequence database. All of the cloned and identified ppGalNAc-T's are type II membrane proteins that share up to 50% amino acid sequence identity within the conserved catalytic domain. They each contain an N-terminal cytoplasmic domain, a hydrophobic transmembrane domain, and a lumenal domain; the latter consists of stem, catalytic, and lectin-like domains. Moreover, each of this ppGalNAc-T's contains important sequence motifs that are typical for this class of glycosyltransferases. These include a glycosyltransferase 1 motif containing the DXH sequence, a Gal/GalNAc-T motif, and the CLD and QXW sequence motifs located in alpha-, beta-, and gamma-repeats present within the lectin-like domain. The coding regions of T. gondii ppGalNAc-T1, -T2, and -T3 reside in multiple exons ranging in number from 6 to 10. Our results demonstrate that mucin-type O-glycosylation in T. gondii is catalysed by a multimember gene family, which is evolutionarily conserved from single-celled eukaryotes through nematodes and insects up to mammals. Taken together, this information creates the basis for future studies of the function of the ppGalNAc-T gene family in the pathobiology of this apicomplexan parasite.  相似文献   

8.
Currently the shikimate pathway is reported as a metabolic feature of prokaryotes, ascomycete fungi, apicomplexans, and plants. The plant shikimate pathway enzymes have similarities to prokaryote homologues and are largely active in chloroplasts, suggesting ancestry from the plastid progenitor genome. Toxoplasma gondii, which also possesses an alga-derived plastid organelle, encodes a shikimate pathway with similarities to ascomycete genes, including a five-enzyme pentafunctional arom. These data suggests that the shikimate pathway and the pentafunctional arom either had an ancient origin in the eukaryotes or was conveyed by eukaryote-to-eukaryote horizontal gene transfer (HGT). We expand sampling and analyses of the shikimate pathway genes to include the oomycetes, ciliates, diatoms, basidiomycetes, zygomycetes, and the green and red algae. Sequencing of cDNA from Tetrahymena thermophila confirmed the presence of a pentafused arom, as in fungi and T. gondii. Phylogenies and taxon distribution suggest that the arom gene fusion event may be an ancient eukaryotic innovation. Conversely, the Plantae lineage (represented here by both Viridaeplantae and the red algae) acquired different prokaryotic genes for all seven steps of the shikimate pathway. Two of the phylogenies suggest a derivation of the Plantae genes from the cyanobacterial plastid progenitor genome, but if the full Plantae pathway was originally of cyanobacterial origin, then the five other shikimate pathway genes were obtained from a minimum of two other eubacterial genomes. Thus, the phylogenies demonstrate both separate HGTs and shared derived HGTs within the Plantae clade either by primary HGT transfer or secondarily via the plastid progenitor genome. The shared derived characters support the holophyly of the Plantae lineage and a single ancestral primary plastid endosymbiosis. Our analyses also pinpoints a minimum of 50 gene/domain loss events, demonstrating that loss and replacement events have been an important process in eukaryote genome evolution.  相似文献   

9.
Tuberculosis (TB) resurged in the late 1980s and now kills approximately 3 million people a year. The reemergence of tuberculosis as a public health threat has created a need to develop new anti-mycobacterial agents. The shikimate pathway is an attractive target for herbicides and anti-microbial agents development because it is essential in algae, higher plants, bacteria, and fungi, but absent from mammals. Homologs to enzymes in the shikimate pathway have been identified in the genome sequence of Mycobacterium tuberculosis. Among them, the shikimate kinase I encoding gene (aroK) was proposed to be present by sequence homology. Accordingly, to pave the way for structural and functional efforts towards anti-mycobacterial agents development, here we describe the molecular modeling of M. tuberculosis shikimate kinase that should provide a structural framework on which the design of specific inhibitors may be based.  相似文献   

10.
The shikimate pathway for aromatic biosynthesis presents a target for antimalarial drug development as this pathway is absent from animals. This study extends previous work on inhibitors of the shikimate pathway, by examining their interaction with the antimalarial drugs pyrimethamine and atovaquone. Combinations of atovaquone with several shikimate analogues exhibited synergistic effects. These findings highlight potential use of shikimate pathway inhibitors in combination therapy.  相似文献   

11.
A search of the genomic sequences of the thermophilic microorganisms Aquifex aeolicus, Archaeoglobus fulgidus, Methanobacterium thermoautotrophicum, and Methanococcus jannaschii for the first seven enzymes (aroG, B, D, E, K, A, and C ) involved in the shikimic acid biosynthetic pathway reveal two key enzymes are missing. The first enzyme in the pathway, 3-deoxy-d-arabino-heptulosonic acid 7-phosphate synthase (aroG) and the second enzyme in the pathway, 5-dehydroquinic acid synthase (aroB) are "missing." The remaining five genes for the shikimate pathway in these organism are present and are similar to the corresponding Escherichia coli genes. The genomic sequences of the thermophiles Pyrococcus abyssi and Thermotoga maritima contain the aroG and aroB genes. Several fungi such as Aspergillus fumigatus, Aspergillus nidulans, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pneumocystis carinii f. sp. carinii, and Neurospora crassa contain the gene aroM, a pentafunctional enzyme whose overall activity is equivalent to the combined catalytic activities of proteins expressed by aroB, D, E, K, and A genes. Two of these fungi also lack an aroG gene. A discussion of potential reasons for these missing enzymes is presented.  相似文献   

12.
The shikimate pathway is an attractive target for herbicides and antimicrobial agent development because it is essential in algae, higher plants, bacteria, and fungi, but absent from mammals. Homologues to enzymes in the shikimate pathway have been identified in the genome sequence of Mycobacterium tuberculosis. Among them, the EPSP synthase was proposed to be present by sequence homology. Accordingly, in order to pave the way for structural and functional efforts towards anti-mycobacterial agent development, here we describe the molecular modeling of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase isolated from M. tuberculosis that should provide a structural framework on which the design of specific inhibitors may be based on. Significant differences in the relative orientation of the domains in the two models result in "open" and "closed" conformations. The possible relevance of this structural transition in the ligand biding is discussed.  相似文献   

13.
Toxoplasma gondii potently stimulates IFN-gamma production by both the innate and adaptive immune system as part of its host adaptation. This response is known to be dependent on an Myeloid Differentiation factor 88 signaling pathway used by Toll-like receptors (TLRs), a family of proteins involved in the recognition of microbial molecular patterns. In the following review, we summarise the evidence for specific TLR function in host resistance to T. gondii focusing on the recent discovery in the parasite of a profilin-like ligand that potently stimulates TLR11 and regulates the production of IL-12, a cytokine necessary for the protective IFN-gamma response. In addition, we discuss the hypothesis that TLR11 may have evolved as a general pattern recognition receptor for apicomplexan protozoa and that as highly conserved proteins associated with actin-based motility, profilins are logical ligand targets for this form of pathogen detection. Finally, we review the evidence for involvement of other TLR and TLR ligands in host resistance to T. gondii and discuss how such receptors might synergise with TLR11 in the innate response to the parasite.  相似文献   

14.
The microneme proteins of Toxoplasma gondii belong to a large family of adhesins of apicomplexan parasites involved in motility and host cell invasion. During secretory transport, soluble micronemes associate with membrane-bound carriers/escorters and become exposed on the parasite surface as complexes with an array of adhesive domains. Previously, we have exploited the intestinal protozoan Giardia lamblia as an expression system to produce correctly folded and unglycosylated monomeric surface proteins of T. gondii. Here, we report assembly and export of a trimeric microneme (MIC1/4/6) adhesin complex from Toxoplasma. Co-expressed, recombinant microneme proteins were used to investigate structural requirements for microneme complex formation. In addition, export of a microneme subunit induced development of novel Golgi-like compartments demonstrating the existence of post endoplasmic reticulum structures involved in constitutive secretion in this 'Golgi-less' cell. Recreation of the trimeric microneme escorter-cargo system in Giardia is a versatile tool to analyse universal requirements for complex assembly, receptor-ligand interactions and Golgi neogenesis in the basal Giardia secretory system.  相似文献   

15.
It was generally believed that Toxoplasma gondii had a clonal population structure with three predominant lineages, namely types I, II and III. This was largely based on genotyping of more than 100 T. gondii isolates originating from a variety of human and animal sources in North America and Europe. Recent genotyping studies on T. gondii strains from wild animals or human patients from different geographical regions revealed the high frequency of non-archetypal genotypes, suggesting the overall diversity of the T. gondii population might be much higher than we thought. However, as most genotyping studies had relied on a few biallelic markers, the resolution and discriminative power of identifying parasite isolates were quite low. To date, there is no commonly used set of markers to genotype T. gondii strains and it is not feasible to compare results from different laboratories. Here, we developed nine PCR-restriction fragment length polymorphism markers with each of them capable of distinguishing the three archetypal T. gondii alleles in one restriction-enzyme reaction by agarose gel electrophoresis. Genotyping 46 T. gondii isolates from different sources using these markers showed that they could readily distinguish the archetypal from atypical types and reveal the genetic diversity of the parasites. In addition, mixed strains in samples could be easily detected by these markers. Use of these markers will facilitate the identification of T. gondii isolates in epidemiological and population genetic studies.  相似文献   

16.
17.
Toxoplasma gondii: the model apicomplexan   总被引:6,自引:0,他引:6  
Toxoplasma gondii is an obligate intracellular protozoan parasite which is a significant human and veterinary pathogen. Other members of the phylum Apicomplexa are also important pathogens including Plasmodium species (i.e. malaria), Eimeria species, Neospora, Babesia, Theileria and Cryptosporidium. Unlike most of these organisms, T. gondii is readily amenable to genetic manipulation in the laboratory. Cell biology studies are more readily performed in T. gondii due to the high efficiency of transient and stable transfection, the availability of many cell markers, and the relative ease with which the parasite can be studied using advanced microscopic techniques. Thus, for many experimental questions, T. gondii remains the best model system to study the biology of the Apicomplexa. Our understanding of the mechanisms of drug resistance, the biology of the apicoplast, and the process of host cell invasion has been advanced by studies in T. gondii. Heterologous expression of apicomplexan proteins in T. gondii has frequently facilitated further characterisation of proteins that could not be easily studied. Recent studies of Apicomplexa have been complemented by genome sequencing projects that have facilitated discovery of surprising differences in cell biology and metabolism between Apicomplexa. While results in T. gondii will not always be applicable to other Apicomplexa, T. gondii remains an important model system for understanding the biology of apicomplexan parasites.  相似文献   

18.
The observation that Plasmodium falciparum possesses cyanide insensitive respiration that can be inhibited by salicylhydroxamic acid (SHAM) and propyl gallate is consistent with the presence of an alternative oxidase (AOX). However, the completion and annotation of the P. falciparum genome project did not identify any protein with convincing similarity to the previously described AOXs from plants, fungi or protozoa. We undertook a survey of the available apicomplexan genome projects in an attempt to address this anomaly. Putative AOX sequences were identified and sequenced from both type 1 and 2 strains of Cryptosporidium parvum. The gene encodes a polypeptide of 336 amino acids and has a predicted N-terminal transit sequence similar to that found in proteins targeted to the mitochondria of other species. The potential of AOX as a target for new anti-microbial agents for C. parvum is evident by the ability of SHAM and 8-hydroxyquinoline to inhibit in vitro growth of C. parvum. In spite of the lack of a good candidate for AOX in either the P. falciparum or Toxoplasma gondii genome projects, SHAM and 8-hydroxyquinoline were found to inhibit the growth of these parasites. Phylogenetic analysis suggests that AOX and the related protein immutans are derived from gene transfers from the mitochondrial endosymbiont and the chloroplast endosymbiont, respectively. These data are consistent with the functional localisation studies conducted thus far, which demonstrate mitochondrial localisation for some AOX and chloroplastidic localization for immutans. The presence of a mitochondrial compartment is further supported by the prediction of a mitochondrial targeting sequence at the N-terminus of the protein and MitoTracker staining of a subcellular compartment in trophozoite and meront stages. These results give insight into the evolution of AOX and demonstrate the potential of targeting the alternative pathway of respiration in apicomplexans.  相似文献   

19.
Previous studies on Toxoplasma gondii population structure, based essentially on multilocus restriction fragment length polymorphism analysis or on multilocus enzyme electrophoresis, indicated that T. gondii comprises three clonal lineages. These studies showed a weak polymorphism of the markers (2-4 alleles by locus). In this study, we used eight microsatellite markers to type 84 independent isolates from humans and animals. Two microsatellite markers were present in the introns of two genes, one coding for beta-tubulin and the other for myosin A, and six were found in expressed sequence tags. With 3-16 alleles detected, these markers can be considered as the most discriminating multilocus single-copy markers available for typing T. gondii isolates. This high discriminatory power of microsatellites made it possible to detect mixed infections and epidemiologically related isolates. Evolutionary genetic analyses of diversity show that the T. gondii population structure consists of only two clonal lineages that can be equated to discrete typing units, but there is some evidence of occasional genetic exchange that could explain why one of these discrete typing units is less clearly individualised than the other.  相似文献   

20.
The majority of Toxoplasma gondii strains from a variety of human and animal sources have been grouped into three highly clonal but closely related lineages. The low occurrence of nucleotide differences among the three predominant lineages and their unusual dimorphic allelic composition suggest that they have arisen from a recent common ancestry. Less than 1% of the previously studied strains contain unique genotypes and high divergence of DNA sequence, and therefore are considered 'exotic' or 'atypical' strains. The seemingly low genetic diversity in T. gondii may have been underestimated because most parasite strains in previous studies were collected from human patients and domestic animals in North America and Europe. To investigate the genetic diversity of T. gondii, we analysed parasite strains isolated from remote geographical regions by multilocus microsatellite sequencing and phylogenetic analysis. The genetic diversity indices, the molecular analysis of microsatellite genotypes and the constructed phylogram considered together suggest that the global T. gondii population is highly diversified and not characteristic of a clonal organism. The most parsimonious hypothesis is that T. gondii presents a complex population structure with a mix of clonal and sexual propagation as a function of the environmental conditions. The comparison between domestic strains data on one hand and wild strains data on the other hand is in favour of more frequent sexual recombinations in wild environment even though Toxoplasma subpopulation in human and domestic animals is largely clonal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号