首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Central-Western Spain, forests and woodlands composed of Quercus sp. support outstanding levels of biodiversity, but there is increasing concern about their long-term persistence due to a lack of regeneration. We hypothesize that this regenerative lack is operating on a large geographic scale; that there are differences in the abundance of regeneration between three oak species; that oak regeneration is governed mainly by forest management and structure; and that shrubs act as important physical protectors of seedlings and saplings. We analyzed whether densities of oak seedlings and saplings in several size classes were related to stand-structure, understory, and physiographic variables potentially affecting regeneration. Data collected at a regional level (1 km × 1 km grid) by the Spanish Forest Inventory were evaluated from 2,816 plots. Results revealed that regeneration failure was common for all size categories, from small seedlings to large saplings, and for the three oak species studied, especially the evergreens. Of the Quercus ilex, Q. suber, and Q. pyrenaica plots studied, 49%, 62%, and 20% were lacking any small seedlings, and 82%, 96%, and 56% did not have any large saplings, respectively. Regeneration was positively correlated with tree cover and density, especially of small and medium-sized trees, and negatively correlated with the presence of large trees, indicating that regeneration failure is mostly associated with more open, uniform, and/or aged woodlands. Regeneration densities of Q. ilex and Q. suber were positively correlated with all understory variables, suggesting that the presence of pioneer shrubs represent a major safe site for early tree recruitment, independent from specific shrub species.  相似文献   

2.
Oak woodlands of Mediterranean ecosystems, a major component of biodiversity hotspots in Europe and North America, have undergone significant land-use change in recent centuries, including an increase in grazing intensity due to the widespread presence of cattle. Simultaneously, a decrease in oak regeneration has been observed, suggesting a link between cattle grazing intensity and limited oak regeneration. In this study we examined the effect of cattle grazing on coast live oak (Quercus agrifolia Née) regeneration in San Francisco Bay Area, California. We studied seedling, sapling and adult density of coast live oak as well as vertebrate herbivory at 8 independent sites under two grazing conditions: with cattle and wildlife presence (n = 4) and only with wildlife (n = 4). The specific questions we addressed are: i) to what extent cattle management practices affect oak density, and ii) what is the effect of rangeland management on herbivory and size of young oak plants. In areas with cattle present, we found a 50% reduction in young oak density, and plant size was smaller, suggesting that survival and growth young plants in those areas are significantly limited. In addition, the presence of cattle raised the probability and intensity of herbivory (a 1.5 and 1.8-fold difference, respectively). These results strongly suggest that the presence of cattle significantly reduced the success of young Q. agrifolia through elevated herbivory. Given the potential impact of reduced recruitment on adult populations, modifying rangeland management practices to reduce cattle grazing pressure seems to be an important intervention to maintain Mediterranean oak woodlands.  相似文献   

3.
Summary The perennial foliage of the California coast live oak (Quercus agrifolia Nee) permits herbivores to feed on this oak species throughout the year. Patterns of herbivory for a two-year period on Q. agrifolia were observed in relation to seasonal and age-related changes in the nutritional and defensive characteristics of leaves. Nitrogen and phosphorus contents were higher in new leaves compared to mature foliage. Structural compounds (e.g., cellulose) in leaves rapidly increased with age. Concentrations of tatal phenolics (Folin-Denis) and astringency were higher in new foliage, and concentrations of condensed tannins gradually increased as the leaves matured. Peaks of herbivore damage were observed in June and in September–October, and were caused by outbreaks of the California oak moth (Phryganidia californica). P. californica, a bivoltine oak specialist, exhibited feeding preferences in June for old leaves over emerging leaves, and showed no preferences for leaf classes in September. These results suggest that P. californica is adapted to survive on nutritionally poor foliage and to circumvent quantitative defenses such as condensed tannins.  相似文献   

4.
Abstract. Many perennial plants strongly enhance the survival of seedlings of other species. We studied patterns of long-term recruitment of Quercus agrifolia (Coastal live oak) associated with shrub-dominated communities by counting Q. agrifolia recruits on a time sequence of historical aerial photographs and comparing recruitment among mapped patches of coastal sage scrub, chaparral, and grassland in an 1120-ha landscape. Because we could not identify new recruits in existing woodlands with aerial photographs, we studied the recruitment of Q. agrifolia in this vegetation type indirectly by comparing population size structures and the spatial relationships between shrubs and recruits among woodlands that varied in understory community type. At the landscape scale, recruitment was higher in coastal sage scrub vegetation than predicted by the extent of its coverage, commensurate with the spatial coverage of chaparral, and very low in grassland. Recruitment within woodland communities also varied considerably. In woodland communities on sheltered, north-oriented topography with understories dominated by shrubs, there were large numbers of small Q. agrifolia, and recruits were not significantly spatially associated with shrubs within plots. In woodlands with herbaceous understories there were few individuals in the small size classes, and recruits were strongly spatially associated with shrubs within plots. Woodlands with shrub-dominated understories have population structures that appear to be stable, but woodlands with herbaceous understories exhibit size structures associated with declining populations. Quercus recruitment into shrub-dominated patches corresponds with previous documentation of facilitative relationships between shrubs and oak seedlings, and suggests the occurrence of an unusual form of patch dynamics in these landscapes.  相似文献   

5.
Aim To analyse the role of the Balearic Islands as a refuge area for evergreen Quercus (cork oak: Quercus suber L., holm oak: Q. ilex L., kermes oak: Q. coccifera L.), by using molecular, historical and palaeobotanical data. Location The Western Mediterranean Basin (Balearic Islands, eastern Iberia, Provence, Sardinia, Corsica, Sicily, Malta, Italy, Northern Africa). Methods We sampled 108 populations and used the PCR‐RFLP technique with five universal cpDNA primers to define haplotypes in the sampled populations. Diversity, differentiation parameters and spatial analysis of the populations, using a spatial version of amova , were linked to the geological history of the Western Mediterranean Basin in order to explain the present spatial pattern of the evergreen Quercus populations in the Balearics. Results Evergreen Quercus cpDNA shows a complex structure, with remnants of ancient diversity in the Balearics. Balearic populations of holm oak are related to Iberian populations, while for cork and kermes oaks, we found both Tyrrhenian and Iberian haplotypes. Main conclusions The complex spatial patterns of cpDNA in Balearic evergreen Quercus appears explicable in terms of a combination of physical (vicariance and long distance dispersal) and biological (introgressive hybridization) factors. The Balearics constitute a glacial refuge area and a reservoir of genetic variation with traces of ancient diversity from Messinian–Pliocene stages.  相似文献   

6.
Mediterranean oak woodlands serve as working landscapes and biodiversity hotspots. These landscapes have undergone dramatic land conversion, which continues to threaten their conservation. Shifting focus from traditional management practices to a balance of conservation and production goals is a key challenge on working landscapes, and evaluating potential tradeoffs and synergies among goals will be a critical first step. California’s oak woodlands have undergone marked transformations via removal of Quercus douglasii and other woody plants to enhance forage production. Within the annual grass-dominated matrix, Q. douglasii likely functions as a foundation species—providing potential habitat for native plants, such as Nassella pulchra. Via a cross-sectional survey, we examined spatial occurrence of N. pulchra relative to Q. douglasii trees across three cattle-grazed fields, which had previously undergone vegetation manipulation. We hypothesized that Q. douglasii trees provide spatial niches for N. pulchra, with bunchgrass densities declining with greater distances from Q. douglasii stems. Plots (n?=?712) were located along northern/southern transects of 89 trees. N. pulchra densities and site characteristics were surveyed in 2002 and 2005. Generalized linear mixed model regression analysis revealed a significant plot position by community type interaction: N. pulchra densities significantly declined with increasing distance from target trees at grassland sites; this trend was apparent at savanna sites and no trend was observed at woodland sites, which were likely under the influence of neighboring trees. Information on native species relationships can be utilized by managers to balance agricultural production and native species conservation goals across working landscapes.  相似文献   

7.
Seed dispersal and predation play important roles in plant life history by contributing to recruitment patterns in the landscape. Mast-seeding – extensive synchronized inter-annual variability in seed production – is known to influence the activity of acorn consumers at source trees, but little is known about its effect on post-dispersal predation. We conducted a planting experiment over three years to investigate the relationship between habitat-level post-dispersal predation and landscape-wide acorn production of three sympatric oak species (Quercus spp.). We measured post-dispersal predation in three oak-dominated habitats – savanna (under Q. lobata), forest edge (under Q. agrifolia), and woodland (under Q. douglasii) – as well as in chaparral and open fields. Overall, landscape-level predation was similarly high among study years, averaging 61.4%. Neither species nor mass of planted acorns affected predation. Habitat had a significant effect on post-dispersal predation risk with acorns disappearing most rapidly in chaparral and least rapidly in woodlands. However, a significant interaction between year and habitat (Z = −4.5, P < 0.001) showed that the hierarchy of predation risk among habitats was inconsistent among years. Using annual acorn census data from local populations of each oak species, we found that predation risk in oak-dominated habitats was significantly and positively related to acorn production of the overstory species (Z = −9.53, P = 0.009). Our findings add to growing evidence that seed dispersal, predation, and regeneration are context-dependent on annual variation in community-level seed production, and we discuss the potential consequences of these dynamics on oak recruitment and animal behavior.  相似文献   

8.
Adults of the invasive goldspotted oak borer, Agrilus auroguttatus Schaeffer (Coleoptera: Buprestidae), consumed foliar weight in no‐choice feeding tests of, in descending order, California black oak Quercus kelloggii Newb., Engelmann oak, Quercus engelmannii Greene, coast live oak, Quercus agrifolia Née, and canyon live oak, Quercus chrysolepis Liebm. (Fagaceae). Furthermore, significantly more foliar area was consumed of Q. kelloggii than of Q. chrysolepis. In dual‐choice feeding tests with isolated leaf disks, A. auroguttatus consumed significantly more foliar weight and area of Q. kelloggii relative to the other three oak species, and more foliar weight of Q. agrifolia than of Q. chrysolepis. In dual‐choice feeding tests with leaves on small branches, A. auroguttatus consumed more foliar weight of Q. kelloggii than of Q. engelmannii and Q. agrifolia. Thus, multiple experiments suggested that adults of A. auroguttatus preferred the foliage of Q. kelloggii over that of the other three oak species, and among the other three species they did not appear to have a strong feeding preference. Factor analysis reduced the quantities of 13 foliar nutrients into two new variables (factor 1 and factor 2). Factor 1 was weighted heavily on the quantities of nitrogen, sulfur, phosphorus, potassium, zinc, and copper, whereas factor 2 was weighted heavily on the quantities of zinc, iron, and aluminum. Factor 1 varied by oak species, with Q. kelloggii having a higher factor 1 nutrient content than the other three species. Factor 2 response was higher in Q. kelloggii, Q. agrifolia, and Q. engelmannii than in Q. chrysolepis. The collective effects of four macronutrients (nitrogen, sulfur, phosphorus, and potassium) and two micronutrients (zinc and copper) suggest that these might be the nutrients directing preferential feeding of A. auroguttatus adults on the foliage of Q. kelloggii. Leaf toughness might also play an important role in feeding preference. Female A. auroguttatus did not show an ovipositional preference among the four oak species.  相似文献   

9.
We review published studies on the demography and recruitment of California oak trees and focus on the widespread dominant species of the foothill woodlands, Quercus douglasii, Q. lobata, and Q. agrifolia, to ascertain the nature and strength of evidence for a decline in populations of these species. The vast majority of studies have been of short duration (less than three years), focused on the acorn and seedling life stages, and conducted at few locations within each species geographic range. We summarize the extensive body of research that has been conducted on the biological and physical factors that limit natural seedling recruitment of oaks. The oak "regeneration problem" has largely been inferred from current stand structure rather than by demographic analyses, which in part reflects the short-term nature of most oak research. When viewed over longer periods of time usingfield surveys or historical photos, the evidence for a regeneration problem in foothill oaks is mixed. Q. douglasii shows very limited seedling or sapling recruitment at present, but longer term studies do not suggest a decline in tree density, presumably because rare recruitment is sufficient to offset low rates of mortality of overstory individuals. Q. agrifolia appears to be stable or increasing in some areas, but decreasing in areas recently impacted by the disease Phytophthora ramorum. Evidence from the few available studies is more consistent in suggesting long-term declines in foothill populations of Q. lobata. Long-term monitoring, age structure analysis, and population models are needed to resolve the current uncertainty over the sustainability of oak woodlands in California.  相似文献   

10.
1. Recently, a mutualistic relationship has been described between some dung beetles (Thorectes lusitanicus and Mycotrupes lethroides) and oak species (Quercus suber, Q. canariensis, and Q. rubra), which could be crucial for ensuring seedling recruitment and sustaining the equilibrium of oak populations. For T. lusitanicus, a diet based on acorns during the reproductive period improved resistance to low‐temperature conditions and improved ovarian development. 2. In this paper, we conducted field and laboratory experiments to investigate the interaction between two potential acorn‐eating beetles, Thorectes baraudi and Jekelius nitidus, with Quercus suber. We determined the feeding preferences of both beetle species and estimated the rates of acorn manipulation by beetles according to habitat structure and several characteristics of the acorn, such as seed size and acorn infestation by weevils. 3. Results demonstrated the positive interaction between the dung beetle Thorectes baraudi and Quercus trees. Thorectes baraudi was clearly more attracted to volatiles of acorns than to dung. Jekelius nitidus, on the contrary, was either not or anecdotally attracted to acorns. On the contrary, in the case of Jekelius nitidus, the acorn attraction could be considered anecdotal or even accidental. Our field results demonstrated the acorn burying behaviour of T. baraudi in the oak forests of the Cabañeros National Park (Spain), suggesting a potential role of this beetle species as an active secondary acorn disperser. 4. This unexpected behaviour could be particularly important in Mediterranean oak forests and savannahs, where most Quercus species are strongly recruitment limited because of serious overgrazing problems.  相似文献   

11.
《Mycological Research》2006,110(5):575-582
Gymnomyces xerophilus sp. nov., a sequestrate species in the Russulaceae, is characterized and described morphologically as a new species from Quercus-dominated woodlands in California. ITS sequences recovered from healthy, ectomycorrhizal roots of Quercus douglasii and Q. wislizeni matched those of G. xerophilus basidiomata, confirming the ectomycorrhizal status of this fungus. Phylogenetic analysis of the ITS region places G. xerophilus in a clade with both agaricoid (Russula in the section Polychromae) and sequestrate (Gymnomyces, Cystangium) relatives. We include a dichotomous key to the species of Gymnomyces associated with Quercus.  相似文献   

12.
Oak woodlands and savannas are key defining landscapes in the California Floristic Province, making up almost a quarter of the region's forests and woodlands. Two endemic Californian oak species, valley oak (Quercus lobata Neé) and blue oak (Quercus douglasii Hook. & Arn.), are widely considered at risk of decline from persistent recruitment failures in the last century. However, decades of research have produced no definitive conclusion about the existence, extent, or causes of this ‘regeneration problem’. Underlying causes of perceived recruitment failure are unclear and could include drivers at distribution‐wide to local scales including climate and atmospheric changes, habitat fragmentation, altered herbivore populations, changing fire regimes, exotic plant and animal invasions, livestock grazing, and soil conditions altered by past land uses. We performed meta‐analyses of existing stand‐scale data from the published and grey literatures on seedling and sapling recruitment in blue and valley oaks throughout each of their distributions. We sought to evaluate whether distribution‐wide regeneration ‘problems’ exist for either species and to assess what factors correlate with distribution‐wide recruitment patterns. Nearly 80% of sites surveyed for blue oaks but fewer than 50% of sites surveyed for valley oaks contained some evidence of seedling or sapling recruitment. A majority of sites surveyed for both species appear to have insufficient recruitment to replace adult populations, though further demographic work would be required to quantify minimum replacement recruitment rates. Reserve sites were seven times more likely than non‐reserve sites to contain valley oak populations with evidence of recruitment. Blue oak recruitment patterns were weakly related to climate and geographical factors and strongly variable at subregional scales. We suggest several lines of additional research that could fill gaps in the existing literature and clarify the patterns emerging from this analysis.  相似文献   

13.
The goldspotted oak borer (GSOB), Agrilus auroguttatus Schaeffer (Coleoptera: Buprestidae), is an introduced and aggressive phloem/wood borer infesting native oaks in southern California. Elevated levels of oak mortality have occurred continually for the last nine years on three oak species in San Diego Co., California, USA. Biological control is being assessed as an option for long-term and widespread management of the invasive population of GSOB. Foreign exploration in the native ranges of GSOB and a related sibling species (Agrilus coxalis Waterhouse) was conducted to determine life history information, to assess the natural enemy complex, and to collect specimens for molecular analyses that could help to identify the area of origin of California’s introduced population. Two species of parasitoids, Calosota elongata Gibson (Eupelmidae) and Atanycolus simplex Cresson (Braconidae), were discovered with GSOB populations in Arizona and California. No insect natural enemies were found with populations of A. coxalis in southern Mexico. However, Quercus conzatti Trel. and Quercus peduncularis Nee in Oaxaca and Chiapas, respectively, were recorded as the first known hosts of A. coxalis. A comparative analysis of our understanding of the natural enemy complexes for other pestiferous Agrilus with that of GSOB suggests that more effort should be directed at uncovering potential egg parasitoids and microbial pathogens of GSOB. Analyses of mitochondrial and nuclear ribosomal DNA (rDNA) revealed that the California population of GSOB was more similar to the Arizona population. Specimens of A. coxalis from southern Mexico were confirmed as a separate species. Additional surveys and sampling are needed across the complete native range of the GSOB species complex to develop a comprehensive inventory of parasitoid species that could be considered for use in a classical biological control program in California and to delineate the area of origin of California’s population.  相似文献   

14.
Oaks (Quercus spp.) represent the most important broadleaf genus with respect to forest-shaping tree species in the Mediterranean. Considering future climate scenarios (increased drought conditions), the identification of drought tolerant oak species is of great importance for future forest management in this region. The objective of the study was the comparison of physiological status of three economically and ecologically valuable oak species (Quercus ilex, Quercus frainetto and Quercus pubescens) co-existing in natural coppice stands in NE Greece, in response to seasonal drought stress. Measurements were conducted between June and September 2016, every 15–20 days until leaf falling. The parameters studied were predawn leaf water potential and fast chlorophyll fluorescence induction curves (OJIP test), chlorophyll content, and relative water content. Meteorological data from the area were also collected. Photosynthetic parameters such as performance indices (PIabs and PItot) reacted to summer drought conditions, with Q. frainetto showing the lowest values. The discrepancy between species increased with duration of drought period. Q. frainetto revealed the lowest predawn water potential values. The results indicate that Q. frainetto is less suitable for future forestry applications in the studied climate/elevation zone than Q. pubescens and Q. ilex.  相似文献   

15.
Summary We examined patterns of density and species diversity for leaf-mining Lepidopterans and gall-forming Hymenopterans in two oak (Quercus spp.) hybrid zones: Quercus depressipes x Q. rugosa and Q. emoryi x Q. coccolobifolia. In both species complexes, hybrid hosts typically supported significantly lower densities and species diversity of parasites than did parental types. This contradicts the findings of Whitham (1989) that suggested that hybrid hosts may act as parasite sinks both in ecological and evolutionary time. We discuss features of hybrid zones that are likely to influence patterns of herbivory.  相似文献   

16.
Abstract. European Mediterranean landscapes have undergone changes in structure in recent years as a result of widespread agricultural land abandonment and cessation of silvicultural regimes. Studies concerning the regeneration dynamics of dominant forest species have become critical to the prediction of future landscape trends in these changing forest stands. Quercus ilex (holm oak) and Q. pubescens (downy oak) are considered to be the terminal point of secondary succession in extensive areas of the Mediterranean region. Recent studies, however, have suggested the existence of recruitment bottlenecks in oak genet populations as a result of current management regimes. In this study, we present evidence of the successful establishment of Q. ilex and Q. pubescens in Pinus halepensis (Aleppo pine) woodlands. We investigate the distribution patterns and spatial relationships among oak recruits and resident pines. Established P. halepensis is randomly distributed throughout the study area. Oak seedlings are positively associated with pine trees, suggesting that P. halepensis individuals provide safe sites for oak genet recruitment. We show that spatial patterns of recruitment are in agreement with the general model of spatial segregation described for other Mediterranean plant communities, with seeder species colonizing large openings after disturbance, followed by a more aggregated recruitment of resprouter species.  相似文献   

17.

Background  

Few studies address the issue of hybridization in a more than two-species context. The species-rich Quercus complex is one of the systems which can offer such an opportunity. To investigate the contemporary pattern of hybridization we sampled and genotyped 320 offspring from a natural mixed forest comprising four species of the European white oak complex: Quercus robur, Q. petraea, Q. pubescens, and Q. frainetto.  相似文献   

18.
Interspecific introgression is a well-known phenomenon in oaks whose ecological and evolutionary consequences, although relevant, are still unclear. We investigated molecular variation and any evidence for hybridisation in nine natural populations of kermes oak (Quercus coccifera L.) from the Iberian Peninsula. Additive patterns in 59 nrDNA ITS sequences revealed that hybrid individuals showing intermediate genotypes between kermes and holm (Q. ilex L.) oaks are very frequent, although intermediate morphotypes are uncommon. Bayesian analysis of ISSR fingerprinting patterns indicated extensive gene-flow among Q. coccifera populations and neighbouring Quercus taxa. Introgression appeared to be an active mechanism in the pair Q. cocciferaQ. ilex, but no conclusive evidence supporting hybridisation between Q. coccifera and other co-occurring Quercus species was found. The role of canalisation in the maintenance of stable morphological characters in the face of extensive introgression is discussed.  相似文献   

19.
A strong selection for acorn characteristics is expected to have evolved in the mutualistic relationship between the European jay (Garrulus glandarius) and the oak (Quercus spp.). Bossema's pioneer work suggested that jays do not select acorns randomly, but rather they preferentially select some size and species. Preference for some seeds over others may have implications on plant community dynamics by conferring advantages (or disadvantages) on the selected (avoided) seed characteristics. In this paper we test to what extent jays select acorns by species and/or by size and the relation between these two traits in Mediterranean oak species. The experiments consist of a set of field tests in which acorns from four different coexisting Mediterranean oak species (Quercus ilex, Quercus faginea, Quercus suber, and Quercus coccifera) were placed in artificial feeders accessible to wild jays. The acorns were previously measured to control individual acorn characteristics. Using video-recording techniques, we followed jay activity and the fate of each acorn (sequence of acorn selection and method of transport). Q. ilex acorns were preferred over other acorns, and Q. coccifera acorns were avoided when other acorns were available. Preference for Q. faginea and Q. suber acorns was intermediate, that is, they were preferred over Q. coccifera acorns but not over Q. ilex acorns. Large acorns were also preferred although acorn species selection was stronger than size selection. Jays selected species and size both by visual means and by using acorn area as an indicator of size. Acorns wider than 17–19 mm were carried in the bill because of throat limitation. Our results confirm Bossema's study on temperate oaks and extend it to Mediterranean oak species, revealing implications on mixed oak forest dynamics.  相似文献   

20.
The increase in demand for the certification of oak seed lots, as well as control of the geographical origin of oak wood, has led us to develop powerful genetic markers permitting us to discriminate among provenance regions. With the aim of detecting new chloroplast variants, we have identified 17 potential cpSSRs motifs from available oak sequences and tested their variability among French oak populations. Six loci were polymorphic at the intraspecific level in Quercus petraea and Q. robur. Moreover, conservation of the primer pairs was checked on a set of 21 forest tree species and they were all shown to work well on several Quercus species, and even within Fagacaea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号