首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The binding characteristics of human epidermal growth factor (EGF) were compared between highly purified canalicular (CMV) and sinusoidal (basolateral) rat liver plasma membrane (SMV) preparations. The dissociation constants (2-3 nM) for these membranes were comparable, while the binding capacity for CMV was approximately half that for SMV. The binding capacity for CMV was too high to be accounted for only by the contamination with sinusoidal membranes, since the measurements of specific activities of various enzymes (Na+,K+-ATPase, alkaline phosphatase, and leucine aminopeptidase) indicated that the extents of the cross contamination with other membrane fractions were at most 10%. Although the physiological function of specific binding of EGF to bile canalicular membrane domain remains to be determined, it may have a role in biliary excretion of EGF. The specific binding of EGF to bile canalicular membranes from rat liver was identified for the first time.  相似文献   

2.
The driving forces for L-glutamate transport were determined in purified canalicular (cLPM) and basolateral (i.e. sinusoidal and lateral; blLPM) rat liver plasma membrane vesicles. Initial rates of L-glutamate uptake in cLPM vesicles were stimulated by a Na+ gradient (Na+o greater than Na+i), but not by a K+ gradient. Stimulation of L-glutamate uptake was specific for Na+, temperature sensitive, and independent of nonspecific binding. Sodium-dependent L-glutamate uptake into cLPM vesicles exhibited saturation kinetics with an apparent Km of 24 microM, and a Vmax of 21 pmol/mg X min at an extravesicular sodium concentration of 100 mM. Specific anionic amino acids inhibited L-[3H]glutamate uptake and accelerated the exchange diffusion of L-[3H]glutamate. An outwardly directed K+ gradient (K+i greater than K+o) further increased the Na+ gradient (Na+o greater than Na+i)-dependent uptake of L-glutamate in cLPM vesicles, resulting in a transient accumulation of L-glutamate above equilibrium values (overshoot). The K+ effect had an absolute requirement for Na+. In contrast, in blLPM the initial rates of L-glutamate uptake were only minimally stimulated by a Na+ gradient, an effect that could be accounted for by contamination of the blLPM vesicles with cLPM vesicles. These results indicate that hepatic Na+ gradient-dependent transport of L-glutamate occurs at the canalicular domain of the plasma membrane, whereas transport of L-glutamate across sinusoidal membranes results mainly from passive diffusion. These findings provide an explanation for the apparent discrepancy between the ability of various in vitro liver preparations to transport glutamate and suggest that a canalicular glutamate transport system may serve to reabsorb this amino acid from bile.  相似文献   

3.
Summary Studies were performed to characterize the binding1 of bile acids to intestinal brush border membranes. Total14C-taurodeoxycholate binding was: 1) similar for brush borders prepared from jejunum and ileum, 2) linear with respect to monomer concentration, 3) uninhibited by a structural analog, and 4) not depressed by boiling or trypsin. A linear relationship existed between binding and the number of hydrogen bonds formed by a bile acid and the slope of the line corresponded to F of 300 cal/mol. The binding of bile acids to the 105,000×g supernatant fraction of sonicated brush borders was similar to the binding of phospholipid liposomes using gel chromatography. These data suggest that: 1) the kinetics and characteristics of binding of bile acid to ileal brush borders do not reflect the kinetics and characteristics of active ileal transport previously obtained in whole tissue preparations, but instead reflect the kinetics and characteristics of passive jejunal transport; 2) a determinant of binding is hydrogen bonding with water; 3) isolated intact brush borders are relatively polar membranes; and 4) binding to solubilized brush borders may represent partitioning between the aqueous phase and membrane lipid.Part of this work was presented at the National Meeting of the American Federation for Clinical Research, May 2, 1976, Atlantic City, New Jersey.  相似文献   

4.
The preservation of the functional polarity of hepatocytes in liver snips (1 x 2 x 4 mm) was demonstrated by fluorescent microscopic studies using the sodium salt of (N-[7-(4-nitrobenzo-2-oxa-1,3-diazol)]-3 beta-amino-7 alpha,12 alpha- dihydroxy-5 beta-cholan-24-oyl)-2-aminoethanesulfonic acid. This fluorescent bile salt derivative is not only taken up by hepatocytes of several cell layers at the surface of the snips but also secreted into bile canaliculi. The intact hepatobiliary transport of bile salts by hepatocytes of liver snips demonstrates that they are a useful system for the investigation of those transcellular transport processes which require the integrity of hepatic structure. Photoaffinity labelling of liver snips with the sodium salt of (7,7-azo-3 alpha,12 alpha-dihydroxy-5 beta-[3 beta-3H]cholan- 24-oyl)-2-aminoethanesulfonic acid revealed that the bile-salt-binding membrane polypeptides with apparent Mr values of 54,000 and 48,000 are exclusively located in the sinusoidal membrane, whereas a single bile-salt-binding polypeptide with an apparent Mr of 100,000 is located in the bile-canalicular membrane. Photoaffinity labelling of liver snips at 4 degrees C, when transcellular bile-salt transport is insignificant, resulted in the labelling of the two sinusoidal membrane polypeptides and practically no labelling of the polypeptide with an apparent Mr of 100,000. This latter polypeptide was also not labelled when Ca2 deprivation abolished bile secretion completely. These results indicate that the directed hepatobiliary transport of bile salts in hepatocytes is accomplished by transport systems which are different for sinusoidal uptake and canalicular secretion.  相似文献   

5.
Studies were performed to characterize the binding1 of bile acids to intestinal brush border membranes. Total 14C-taurodeoxycholate binding was: 1) similar for brush borders prepared from jejunum and ileum, 2) linear with respect to monomer concentration, 3) uninhibited by a structural analog, and 4) not depressed by boiling or trypsin. A linear relationship existed between binding and the number of hydrogen bonds formed by a bile acid and the slope of the line corresponded to delta deltaF of 300 cal/mol. The binding of bile acids to the 105,000 x g supernatant fraction of sonicated brush borders was similar to the binding of phospholipid liposomes using gel chromatography. These data suggest that: 1) the kinetics and characteristics of binding of bile acid to ileal brush borders do not reflect the kinetics and characteristics of active ileal transport previously obtained in whole tissue preparations, but instead reflect the kinetics and characteristics of passive jejunal transport; 2) a determinant of binding is hydrogen bonding with water; 3) isolated intact brush borders are relatively polar membranes; and 4) binding to solubilized brush borders may represent partitioning between the aqueous phase and membrane lipid.  相似文献   

6.
Membrane secretory component (mSC) mediates the transcellular movement of polymeric IgA from the sinusoidal to the bile canalicular surface of rat hepatocytes. Prior to or concomitant with arrival at the bile canalicular membrane, mSC is cleaved, producing a soluble proteolytic fragment (fSC) which is released into the bile. Conversion of mSC to fSC occurs at the cell surface of cultured rat hepatocytes (Musil, L. S., and Baenziger, J. U. (1987) J. Cell Biol. 104, 1725-1733), suggesting that vectorial release of fSC into bile in vivo may reflect localization of a mSC-specific protease to bile canalicular membranes. We have established a reconstituted system to examine the process of specific cleavage of mSC to yield fSC and to characterize the protease activity responsible. A membrane fraction highly enriched for endocytic vesicles was found to contain approximately 90% of the [35S]Cys-mSC from metabolically labeled rat liver slices but only 5% of the cellular protein. No cleavage activity was present in these vesicles. Highly enriched bile canalicular membranes were able to mediate cleavage of metabolically labeled mSC to a fragment indistinguishable from authentic fSC. In the absence of nonionic detergent, cleavage was dependent on the presence of polyethylene glycol, presumably to mediate fusion of mSC-enriched membranes with bile canalicular membranes. Following solubilization with nonionic detergent, cleavage was no longer dependent on the addition of polyethylene glycol. Cleavage of mSC was not observed with either intact or detergent-solubilized sinusoidal, microsomal, or lysosomal membranes. We have thus identified a proteolytic activity associated with bile canalicular membranes which has the properties of a membrane protein and is likely to be responsible for production of fSC in vivo. Its highly restricted localization to the bile canalicular membrane would account for the vectorial release of fSC into the bile.  相似文献   

7.
Bile acid secretion induced by cAMP and taurocholate is associated with recruitment of several ATP binding cassette (ABC) transporters to the canalicular membrane. Taurocholate-mediated bile acid secretion and recruitment of ABC transporters are phosphatidylinositol 3-kinase (PI3K) dependent and require an intact microtubular apparatus. We examined mechanisms involved in cAMP-mediated bile acid secretion. Bile acid secretion induced by perfusion of rat liver with dibutyryl cAMP was blocked by colchicine and wortmannin, a PI3K inhibitor. Canalicular membrane vesicles isolated from cAMP-treated rats manifested increased ATP-dependent transport of taurocholate and PI3K activity that were reduced by prior in vivo administration of colchicine or wortmannin. Addition of a PI3K lipid product, phosphoinositide 3,4-bisphosphate, but not its isomer, phosphoinositide 4,5-bisphosphate, restored ATP-dependent taurocholate in these vesicles. Addition of a decapeptide that activates PI3K to canalicular membrane vesicles increased ATP-dependent transport above baseline activity. In contrast to effects induced by taurocholate, cAMP-stimulated intracellular trafficking of the canalicular ABC transporters was unaffected by wortmannin, and recruitment of multidrug resistance protein 2, but not bile salt excretory protein (bsep), was partially decreased by colchicine. These studies indicate that trafficking of bsep and other canalicular ABC transporters to the canalicular membrane in response to cAMP is independent of PI3K activity. In addition, PI3K lipid products are required for activation of bsep in the canalicular membrane. These observations prompt revision of current concepts regarding the role of cAMP and PI3K in intracellular trafficking, regulation of canalicular bsep, and bile acid secretion.  相似文献   

8.
The taurocholic acid transport system from hepatocyte sinusoidal plasma membranes has been studied using proteoliposome reconstitution procedures. Membrane proteins were initially solubilized in Triton X-100. Following detergent removal, the resultant proteins were incorporated into lipid vesicles prepared from soybean phospholipids (asolectin) using sonication and freeze-thaw procedures. The resultant proteoliposomes demonstrated Na+-dependent transport of taurocholic acid which could be inhibited by bile acids. Greatly reduced amounts of taurocholic acid were associated with the phospholipid or membrane proteins alone prior to proteoliposome formation. Membrane proteins were fractionated on an anionic glycocholate-Sepharose 4B affinity column which was prepared by coupling (3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholan-24-oyl)-N alpha-lysine to activated CH-Sepharose 4B via the epsilon-amino group of lysine resulting in the retention of a free carboxyl group. The adsorbed proteins enriched in components in the 54 kDa zone, which were originally identified by photoaffinity labeling to be components of the bile acid transport system, were also incorporated into liposomes. This vesicle system showed almost a 4-fold increase in Na+-dependent taurocholic acid uptake when compared to proteoliposomes formed from total membrane protein, as well as sensitivity to inhibition by bile acids. These results demonstrate that the bile acid carrier system can be reconstituted in proteoliposomes and that utilizing proteins in the 54 kDa zone leads to a significant enhancement in the transport capacity of the reconstituted system, consistent with the role of 54 kDa protein(s) as component(s) of the bile acid carrier system.  相似文献   

9.
In isolated perfused rat liver, addition of adrenaline induced a complex response of bile flow including rapid, reversible stimulation (1/2-2 min), reversible inhibition (2-10 min), and prolonged stimulation. Both the reversible stimulation and the inhibition were mimicked by the alpha-sympathomimetic agonist phenylephrine but not by the beta-agonist isoproterenol. The reversible stimulation was a very early effect being terminated prior to all other alpha-adrenergic responses of liver. External ATP considerably lowered bile flow while inducing release of glucose and lactate, inhibition of respiration, and a reversible efflux of Ca2+. Variations of mannitol clearance parallel to those of bile flow indicate a canalicular origin of all changes.  相似文献   

10.
Leucine aminopeptidase (LAP) is an integral membrane glycoprotein localized to the apical membrane domain of intestinal and kidney epithelial cells. By indirect immunofluorescence, we have shown that antibodies raised against rat intestinal LAP recognized a similar protein concentrated in the bile canalicular (BC) domain of the hepatocyte in situ (Roman, L.M., and A.L. Hubbard, 1983, J. Cell Biol., 96:1548-1558). We have extended this localization to the ultrastructural level. When a saponin-permeabilized, agarose-embedded plasma membrane (PM) fraction was incubated with affinity-purified anti-LAP, 85% of the protein A-gold particles associated with the three recognizable PM domains were present in the BC. The levels of labeling on the other two domains (sinusoidal and lateral) did not exceed that observed with nonimmune controls. The concentration of LAP in the BC domain in isolated PM sheets prompted us to use this antigen for the affinity isolation of BC membrane (Roman, L.M., and A.L. Hubbard, 1984, J. Cell Biol., 98:1497-1504, companion paper).  相似文献   

11.
12.
Histone binding to isolated rat liver nuclei   总被引:1,自引:0,他引:1  
Calf thymus histone H3 bound irreversibly to the isolated rat liver nuclei. The rate and extent of binding was a function of the incubation period and the concentration of both H3 and nuclei, but independent of the temperature. The binding was saturable and was inhibited by simultaneous presence of various histones. Approximately 94% of the bound H3 was associated with nuclear membrane fraction.  相似文献   

13.
Binding of fibronectins to gangliosides was tested directly using several different in vitro models. Using an enzyme-linked immunoabsorbent assay (ELISA), gangliosides were immobilized on polystyrene tubes and relative binding of fibronectin was estimated by alkaline phosphatase activity of conjugated second antibody. Above a critical ganglioside concentration, the gangliosides bound the fibronectin (GT1b congruent to GD1b congruent to GD1a greater than GM1 much greater than GM2 congruent to GD3 congruent to GM3) in approximately the same order of efficiency as they competed for the cellular sites of fibronectin binding in cell attachment assays (Kleinman et al., Proc natl acad sci US 76 (1979) 3367). Alternatively, these same gangliosides bound to immobilized fibronectin. Rat erythrocytes coated with gangliosides GM1, GD1a or GT1b bound more fibronectin than erythrocytes not supplemented with gangliosides. Using fibronectin in which lysine residues were radioiodinated, an apparent Kd for binding to mixed rat liver gangliosides of 7.8 X 10(-9) M was determined. This value compared favorably with the apparent Kd for attachment of fibronectin to isolated plasma membranes from rat liver of 3.7 X 10(-9) M for fibronectin modified on the tyrosine residue, or 6.4 X 10(-9) M for fibronectin modified on lysine residues. As shown previously by Grinnell & Minter (Biochem biophys acta 550 (1979) 92), fibronectin modified on tyrosine residues did not promote spreading and attachment of CHO cells. It did, however, bind to cells. In contrast, lysine-modified fibronectin both bound to cells and promoted cell attachment. Plasma membranes isolated from hepatic tumors in which the higher gangliosides that bind fibronectin were depleted bound 43-75% less [125I]fibronectin than did plasma membranes from control livers. The findings were consistent with binding of fibronectins to gangliosides, including the same gangliosides depleted from cell surfaces during tumorigenesis in the rat.  相似文献   

14.
To elucidate the mechanism of taurine transport across the hepatic plasma membranes, rat liver sinusoidal plasma membrane vesicles were isolated and the transport process was analyzed. In the presence of a sodium gradient across the membranes (vesicle inside less than vesicle outside), an overshooting uptake of taurine occurred. In the presence of other ion gradients (K+, Li+, and choline+), taurine uptake was very small and no such overshoot was observed. Sodium-dependent uptake of taurine occurred into an osmotically active intravesicular space. Taurine uptake was stimulated by preloading vesicles with unlabeled taurine (transstimulation) in the presence of NaCl, but not in the presence of KCl. Sodium-dependent transport followed saturation kinetics with respect to taurine concentration; double-reciprocal plots of uptake versus taurine concentration gave a straight line from which an apparent Km value of 0.38 mM and Vmax of 0.27 nmol/20 s x mg of protein were obtained. Valinomycin-induced K+-diffusion potential failed to enhance the rate of taurine uptake, suggesting that taurine transport does not depend on membrane potential. Taurine transport was inhibited by structurally related omega-amino acids, such as beta-alanine and gamma-aminobutyric acid, but not by glycine, epsilon-aminocaproic acid, or other alpha-amino acids, such as L-alanine. These results suggest that Na+-dependent uptake of taurine might occur across the hepatic sinusoidal plasma membranes via a transport system that is specific for omega-amino acids having 2-3 carbon chain length.  相似文献   

15.
The correlation between protein motions and function is a central problem in protein science. Several studies have demonstrated that ligand binding and protein dynamics are strongly correlated in intracellular lipid binding proteins (iLBPs), in which the high degree of flexibility, principally occurring at the level of helix-II, CD, and EF loops (the so-called portal area), is significantly reduced upon ligand binding. We have recently investigated by NMR the dynamic properties of a member of the iLBP family, chicken liver bile acid binding protein (cL-BABP), in its apo and holo form, as a complex with two bile salts molecules. Binding was found to be regulated by a dynamic process and a conformational rearrangement was associated with this event. We report here the results of molecular dynamics (MD) simulations performed on apo and holo cL-BABP with the aim of further characterizing the protein regions involved in motion propagation and of evaluating the main molecular interactions stabilizing bound ligands. Upon binding, the root mean square fluctuation values substantially decrease for CD and EF loops while increase for the helix-loop-helix region, thus indicating that the portal area is the region mostly affected by complex formation. These results nicely correlate with backbone dynamics data derived from NMR experiments. Essential dynamics analysis of the MD trajectories indicates that the major concerted motions involve the three contiguous structural elements of the portal area, which however are dynamically coupled in different ways whether in the presence or in the absence of the ligands. Motions of the EF loop and of the helical region are part of the essential space of both apo and holo-BABP and sample a much wider conformational space in the apo form. Together with NMR results, these data support the view that, in the apo protein, the flexible EF loop visits many conformational states including those typical of the holo state and that the ligand acts stabilizing one of these pre-existing conformations. The present results, in agreement with data reported for other iLBPs, sharpen our knowledge on the binding mechanism for this protein family.  相似文献   

16.
Controversy has recently developed over the surface distribution of Na+,K+-ATPase in hepatic parenchymal cells. We have reexamined this issue using several independent techniques. A monoclonal antibody specific for the endodomain of alpha-subunit was used to examine Na+,K+-ATPase distribution at the light and electron microscope levels. When cryostat sections of rat liver were incubated with the monoclonal antibody, followed by either rhodamine or horseradish peroxidase-conjugated goat anti-mouse secondary, fluorescent staining or horseradish peroxidase reaction product was observed at the basolateral surfaces of hepatocytes from the space of Disse to the tight junctions bordering bile canaliculi. No labeling of the canalicular plasma membrane was detected. In contrast, when hepatocytes were dissociated by collagenase digestion, Na+,K+-ATPase alpha-subunit was localized to the entire plasma membrane. Na+,K+-ATPase was quantitated in isolated rat liver plasma membrane fractions by Western blots using a polyclonal antibody against Na+,K+-ATPase alpha-subunit. Plasma membranes from the basolateral domain of hepatocytes possessed essentially all of the cell's estimated Na+,K+-ATPase catalytic activity and contained a 96-kD alpha-subunit band. Canalicular plasma membrane fractions, defined by their enrichment in alkaline phosphatase, 5' nucleotidase, gamma-glutamyl transferase, and leucine aminopeptidase had no detectable Na+,K+-ATPase activity and no alpha-subunit band could be detected in Western blots of these fractions. We conclude that Na+,K+-ATPase is limited to the sinusoidal and lateral domains of hepatocyte plasma membrane in intact liver. This basolateral distribution is consistent with its topology in other ion-transporting epithelia.  相似文献   

17.
Impairment of the hepatic transport of bile acids and other organic anions will result in the clinically important syndrome of cholestasis. Cloning of a number of specific hepatic organic anion transporters has enabled studies of their molecular regulation during cholestasis. The best characterized transport system is a 50-51 kDa sodium-dependent taurocholate cotransporting polypeptide (ntcp), which mediates the sodium-dependent uptake of conjugated bile acids at the sinusoidal plasma membrane of hepatocytes. Under physiologic conditions and after depletion of biliary constituents, ntcp remains constitutively expressed throughout the liver acinus. However, both function and expression of ntcp are rapidly down-regulated in rat liver in various models of experimental cholestasis, such as cholestasis induced by common bile duct ligation, estrogen, endotoxin or cytokine treatment. In addition to ntcp, the sinusoidal organic anion transporting polypeptide oatp-1 is also down-regulated at the protein and steady-state mRNA levels in estrogen-cholestasis, but does not affect sodium-independent uptake of taurocholate. The regulation of a recently cloned member of the organic anion transporter family (oatp-2), which is highly expressed in liver, remains to be studied under cholestatic conditions.  相似文献   

18.
Liver fatty acid-binding protein (LFABP) is distinctive among fatty acid-binding proteins because it binds more than one molecule of long-chain fatty acid and a variety of diverse ligands. Also, the transfer of fluorescent fatty acid analogues to model membranes under physiological ionic strength follows a different mechanism compared to most of the members of this family of intracellular lipid binding proteins. Tryptophan insertion mutants sensitive to ligand binding have allowed us to directly measure the binding affinity, ligand partitioning and transfer to model membranes of natural ligands. Binding of fatty acids shows a cooperative mechanism, while acyl-CoAs binding presents a hyperbolic behavior. Saturated fatty acids seem to have a stronger partition to protein vs. membranes, compared to unsaturated fatty acids. Natural ligand transfer rates are more than 200-fold higher compared to fluorescently-labeled analogues. Interestingly, oleoyl-CoA presents a markedly different transfer behavior compared to the rest of the ligands tested, probably indicating the possibility of specific targeting of ligands to different metabolic fates.  相似文献   

19.
Through labeling with the sodium salt of the photolabile bile salt derivative (7,7-azo-3 alpha,12 alpha-dihydroxy-5 beta-[3 beta-3H]cholan-24-oyl)- 2-aminoethanesulfonic acid, a bile salt-binding polypeptide with an apparent molecular weight of 100,000 was identified in isolated canalicular but not basolateral (sinusoidal) rat liver plasma membranes. This labeled polypeptide was isolated from octyl glucoside-solubilized canalicular membranes by DEAE-cellulose and subsequent wheat germ lectin Sepharose chromatography. The purified protein still contained covalently incorporated radioactive bile salt derivative and exhibited a single band with an apparent molecular weight of 100,000 on sodium dodecyl sulfate-gels. Antibodies were raised in rabbits and their monospecificity toward this canalicular polypeptide demonstrated by immunoblot analysis. No cross-reactivity was found with basolateral membrane proteins. The antibodies inhibited taurocholate uptake into isolated canalicular but not basolateral membrane vesicles. In addition, the antibodies also decreased efflux of taurocholate from canalicular vesicles. If the canalicular bile salt-binding polypeptide was immunoprecipitated from Triton X-100-solubilized canalicular membranes and subsequently deglycosylated with trifluoromethanesulfonic acid, the apparent molecular weight was decreased from 100,000 to 48,000 (sodium dodecyl sulfate-polyacrylamide gel electrophoresis). These studies confirm previous results in intact liver tissue and strongly indicate that a canalicular specific glycoprotein with an apparent molecular weight of 100,000 is directly involved in canalicular excretion of bile salts.  相似文献   

20.
A bile canalicular membrane fraction was isolated from 24-hour regenerating rat livers, and its properties were compared to those of homologous fractions prepared from the livers of sham-operated and unoperated controls. These canalicular membrane fractions were found to be closely related in terms of their morphology, their purity, their yield, and their qualitative protein banding profiles on sodium dodecyl sulfate-polyacrylamide gels. However, when a rigorous examination of plasma membrane enzyme marker activities was made, the regenerating liver membranes were shown to possess an increased specific activity of alkaline phosphatase and lower levels of Mg2+ ATPase and 5'-nucleotidase in comparison with control specific activity values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号