首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Trg protein mediates chemotactic response of Escherichia coli to the attractants ribose and galactose. Like other transducers, Trg is a transmembrane protein that undergoes post-translational covalent modification. The modifications are hydrolysis (deamidation) of certain glutamine side chains to create glutamate residues and methylation of specific glutamates to form carboxyl methyl esters. Analysis of radiolabeled, tryptic peptides by high performance liquid chromatography and gas-phase sequencing allowed direct identification of the modified residues of Trg. The protein has 5 methyl-accepting residues. Four, at positions 304, 310, 311, and 318, are contained in a 23-residue tryptic peptide ending in lysine. The fifth, at position 500, is within a 25-residue tryptic peptide ending in arginine. At two sites, 311 and 318, glutamines are deamidated to create methyl-accepting glutamates. There is not a required order of modification among the sites. However, there is a substantial preference for methylation on the arginine peptide and, among sites on the lysine peptide, for the middle pair. Comparison of sequences surrounding modified residues identified in this work for Trg and previously for Tsr and Tar suggests a consensus sequence for methyl-accepting sites of Ala/Ser-Xaa-Xaa-Glu-Glu*-Xaa-Ala/OH-Ala-OH/Ala, where OH signifies Ser or Thr and the asterick marks the site of modification.  相似文献   

2.
The sensory transducers of Escherichia coli are integral membrane proteins that mediate the tactic response of cells to chemical stimuli. Adaptation to environmental stimuli is correlated with methylation of the transducer proteins. Two transducer genes, tsr and tar, exhibit extensive homologies while no homology has been detected between a third transducer, trg, and those genes. The Tsr and Tar proteins have been shown to contain multiple sites for methylation as well as two sites for another modification that requires an active cheB gene product and is designated the CheB-dependent modification. In this study, covalent modifications of the Trg protein were characterized by analysis of tryptic peptides. We found that methylation occurred at several sites on the Trg protein and that the protein contained at least three sites for CheB-dependent modification, two of which were located on a tryptic peptide that contains both methionine and lysine. This tryptic peptide is analogous to the methionine- and lysine-containing methyl-accepting peptides isolated from the Tsr and Tar proteins and like those peptides may contain several methyl-accepting sites. We estimated the pKa of the group created by the CheB-dependent modification on the methionine- and lysine-containing peptide of Trg to be between pH 2.2 and 5.8. This result supports the idea that the CheB-dependent modification is an enzymatic deamidation of glutamine to glutamic acid.  相似文献   

3.
The serine chemoreceptor of Escherichia coli contains four canonical methylation sites for sensory adaptation that lie near intersubunit helix interfaces of the Tsr homodimer. An unexplored fifth methylation site, E502, lies at an intrasubunit helix interface closest to the HAMP domain that controls input-output signaling in methyl-accepting chemotaxis proteins. We analyzed, with in vivo Förster resonance energy transfer (FRET) kinase assays, the serine thresholds and response cooperativities of Tsr receptors with different mutationally imposed modifications at sites 1 to 4 and/or at site 5. Tsr variants carrying E or Q at residue 502, in combination with unmodifiable D and N replacements at adaptation sites 1 to 4, underwent both methylation and demethylation/deamidation, although detection of the latter modifications required elevated intracellular levels of CheB. These Tsr variants could not mediate a chemotactic response to serine spatial gradients, demonstrating that adaptational modifications at E502 alone are not sufficient for Tsr function. Moreover, E502 is not critical for Tsr function, because only two amino acid replacements at this residue abrogated serine chemotaxis: Tsr-E502P had extreme kinase-off output and Tsr-E502I had extreme kinase-on output. These large threshold shifts are probably due to the unique HAMP-proximal location of methylation site 5. However, a methylation-mimicking glutamine at any Tsr modification site raised the serine response threshold, suggesting that all sites influence signaling by the same general mechanism, presumably through changes in packing stability of the methylation helix bundle. These findings are consistent with control of input-output signaling in Tsr through dynamic interplay of the structural stabilities of the HAMP and methylation bundles.  相似文献   

4.
M R Kehry  F W Dahlquist 《Cell》1982,29(3):761-772
Sensory transduction in E. coli consists of two phases, excitation and adaptation, both of which involve the methyl-accepting chemotaxis proteins (MCPs). These molecules relay transmembrane signals and are reversibly methylated during adaptation of E. coli to environmental stimuli. Each MCP contains multiple sites of methylation, and we identified six of these sites in MCPI. Recently, a second covalent modification of MCPs has been identified, which is not methylation. This modification, designated CheB-dependent modification, is stimulated by repellents and causes a net increase in the negative charge of MCPI and MCPII by one or two charges. We demonstrate that one CheB modification occurs on the methyl-accepting methionine-and lysine-containing tryptic peptide in MCPI and MCPII, and the second CheB modification is on an arginine-containing tryptic peptide. The CheB modification allows three additional methyl groups to be incorporated into the methyl-accepting methionine-lysine peptide, while not actually creating all of these methylation sites. The two CheB modifications occur sequentially. A possible mechanism by which CheB modification permits additional methylations and the role of CheB modification in bacterial chemotaxis are discussed.  相似文献   

5.
The tsr gene specifies a methyl-accepting membrane protein involved in chemotaxis to serine and several repellent compounds. We have characterized a special class of tsr mutations designated cheD which alter the signaling properties of the Tsr transducer. Unlike tsr null mutants, cheD strains are generally nonchemotactic, dominant in complementation tests, and exhibit a pronounced counterclockwise bias in flagellar rotation. Several lines of evidence showed that cheD mutations were alleles of the tsr gene. First, cheD mutations were mapped into the same deletion segments as conventional tsr mutations. Second, restriction site analysis of the transducing phage deletions used to construct the genetic map demonstrated that the endpoints of the deletion segments fell within the tsr coding sequence. Third, a number of the cheD mutants synthesized Tsr proteins with slight changes in electrophoretic mobility, consistent with alterations in Tsr primary structure. These mutant proteins were able to undergo posttranslational deamidation and methylation reactions in the same manner as wild-type Tsr protein; however, the steady-state level of Tsr methylation in cheD strains was very high. The methylation state of the Tar protein, another species of methyl-accepting protein in Escherichia coli, was also higher than normal in cheD strains, suggesting that the aberrant Tsr transducer in cheD mutants has a generalized effect on the sensory adaptation system of the cell. These properties are consistent with the notion that the Tsr protein of cheD mutants is locked in an excitatory signaling mode that both activates the sensory adaptation system and drowns out chemotactic signals generated by other transducer species. Further study of cheD mutations thus promises to reveal valuable information about the functional architecture of the Tsr protein and how this transducer controls flagellar behavior.  相似文献   

6.
In Halobacterium salinarum, up to 18 sensory transducers (Htrs) relay environmental stimuli to an intracellular signaling system to induce tactic responses. As known from the extensively studied enterobacterial system, sensory adaptation to persisting stimulus intensities involves reversible methylation of certain transducer glutamate residues, some of which originate from glutamine residues by deamidation. This study analyzes the in vivo deamidation and methylation of membrane-bound Htrs under physiological conditions. Electrospray ionization tandem mass spectrometry of chromatographically separated proteolytic peptides identified 19 methylation sites in 10 of the 12 predicted membrane-spanning Htrs. Matrix-assisted laser desorption/ionization mass spectrometry additionally detected three sites in two soluble Htrs. Sensory transducers contain a cytoplasmic coiled-coil region, composed of hydrophobic heptads, seven-residue repeats in which the first and the fourth residues are mostly hydrophobic. All identified Htr methylations occurred at glutamate residues at the second and/or third position of such heptads. In addition to singly methylated pairs of glutamate and/or glutamine residues, we identified singly methylated aspartate-glutamate and alanine-glutamate pairs and doubly methylated glutamate pairs. The largest methylatable regions detected in Htrs comprise six heptads along the coiled coil. One methylated glutamate residue was detected outside of such a region, in the signaling region of Htr14. Our analysis produced evidence supporting the predicted methyltransferase and methylesterase activities of halobacterial CheR and CheB, respectively. It furthermore demonstrated that CheB is required for Htr deamidations, at least at a specific glutamine-glutamate pair in Htr2 and a specific aspartate-glutamine pair in Htr4. Compared to previously reported methods, the described approach significantly facilitates the identification of physiological transducer modification sites.  相似文献   

7.
Chemotactic transducer proteins of Escherichia coli contain four or five methyl-accepting glutamates that are crucial for sensory adaptation and gradient sensing. Two residues arise from posttranslational deamidation of glutamines to yield methyl-accepting glutamates. We addressed the significance of this arrangement by creating two mutated trg genes: trg(5E), coding for a transducer in which all five modification sites were synthesized as glutamates, and trg(5Q), in which all five were glutamines. We found that the normal (3E,2Q) configuration was not an absolute requirement for synthesis, assembly, or stable maintenance of transducers. Both mutant proteins were methylated, although Trg(5Q) had a reduced number of methyl-accepting sites because two glutamines at adjacent residues were blocked for deamidation and thus could not become methyl-accepting glutamates. The glutamine-glutamate balance had striking effects on signaling state. Trg(5E) was in a strong counterclockwise signaling configuration, and Trg(5Q) was in a strong clockwise signaling induced by ligand binding, and alanines substituted at modification sites had an intermediate effect. Chemotactic migration by growing cells containing trg(5E) or trg(5Q) exhibited reduced effectiveness, probably reflecting perturbations of the counterclockwise/clockwise ratio caused by newly synthesized transducers not modified rapidly enough to produce a balanced signaling state during growth. These defects were evident for cells in which other transducers were not available to contribute to balanced signaling or were present at lower levels than the mutant proteins.  相似文献   

8.
The serine chemoreceptor Tsr and other methyl-accepting chemotaxis proteins (MCPs) control the swimming behaviour of Escherichia coli by generating signals that influence the direction of flagellar rotation. MCPs produce clockwise (CW) signals by stimulating the autophosphorylation activity of CheA, a cytoplasmic histidine kinase, and counter-clockwise signals by inhibiting CheA. CheW couples CheA to chemoreceptor control by promoting formation of MCP/CheW/CheA ternary complexes. To identify MCP structural determinants essential for CheA stimulation, we inserted fragments of the tsr coding region into an inducible expression vector and used a swimming contest called 'pseudotaxis' to select for transformant cells carrying CW-signalling plasmids. The shortest active fragment we found, Tsr (350–470), stimulated CheA in a CheW-dependent manner, as full-length Tsr molecules do. It spans a highly conserved 'core' (370–420) that probably specifies the CheA and CheW contact sites and other determinants needed for stimulatory control of CheA. Tsr (350–470) also carries portions of the left and right arms flanking the core, which probably play roles in regulating MCP signalling state. However, this Tsr fragment lacks all of the methylation sites characteristic of MCP molecules, indicating that methylation segments are not essential for generating receptor output signals.  相似文献   

9.

Background  

Specific glutamates in the methyl-accepting chemotaxis proteins (MCPs) of Escherichia coli are modified during sensory adaptation. Attractants that bind to MCPs are known to increase the rate of receptor modification, as with serine and the serine receptor (Tsr), which contributes to an increase in the steady-state (adapted) methylation level. However, MCPs form ternary complexes with two cytoplasmic signaling proteins, the kinase (CheA) and an adaptor protein (CheW), but their influences on receptor methylation are unknown. Here, the influence of CheW on the rate of Tsr methylation has been studied to identify contributions to the process of adaptation.  相似文献   

10.
The methyl-accepting chemotaxis proteins (MCPs) are integral membrane proteins that undergo reversible methylation during adaptation of bacterial cells to environmental attractants and repellents. The numerous methylated forms of each MCP are seen as a pattern of multiple bands on polyacrylamide gels. We have characterized the methylation sites in MCPI by analyzing methyl-accepting tryptic peptides. At least two different tryptic peptides accept methyl esters; one methyl-accepting peptide contains methionine and lysine and may be methylated a maximum of four times. The second methyl-accepting tryptic peptide contains arginine and may be methylated twice. Base-catalyzed demethylations of tryptic peptides and analysis of the charge differences between the different methylated forms of MCPI show that MCPI molecules may be methylated a total of six times. The two methyl esters on the methyl-accepting arginine peptide appear to be preferentially methylated in most of the forms of MCPI in attractant-stimulated cells. The ability to acquire six methylations on MCPI allows the bacterial cells to adapt to a broad range of attractant and repellent concentrations.  相似文献   

11.
Sensory adaptation in bacterial chemotaxis is mediated by covalent modifications of specific glutamate and glutamine residues within the cytoplasmic domains of methyl-accepting chemotaxis proteins (MCPs). In Escherichia coli and Salmonella enterica, efficient methylation of MCPs depends on the localization of methyltransferase CheR to MCP clusters through an interaction between the CheR beta-subdomain and a pentapeptide sequence (NWETF or NWESF) at the C-terminus of the MCP. In vitro methylation analyses utilizing S. enterica and Thermotoga maritima CheR proteins and MCPs indicate that MCP methylation in T. maritima occurs independently of a pentapeptide-binding motif. Kinetic and binding measurements demonstrate that despite efficient methylation, the interaction between T. maritima CheR and T. maritima MCPs is of relatively low affinity. Comparative protein sequence analyses of CheR beta-subdomains from organisms having MCPs that contain and/or lack pentapeptide-binding motifs identified key similarities and differences in residue conservation, suggesting the existence of two distinct classes of CheR proteins: pentapeptide-dependent and pentapeptide-independent methyltransferases. Analysis of MCP C-terminal ends showed that only approximately 10% of MCPs contain a putative C-terminal binding motif, the majority of which are restricted to the different proteobacteria classes (alpha, beta, gamma, delta). These findings suggest that tethering of CheR to MCPs is a relatively recent event in evolution and that the pentapeptide-independent methylation system is more common than the well-characterized pentapeptide-dependent methylation system.  相似文献   

12.
The tsr and tar genetic loci of Escherichia coli determine the presence in sodium dodecyl sulfate-polyacrylamide gel electrophoresis of methyl-accepting chemotaxis proteins (MCPs) I and II, respectively, each of which consists of a distinct group of multiple bands. Synthesis of the tsr and tar products was directed in ultraviolet-irradiated bacteria by lambda transducing phages. The addition of appropriate chemotactic stimuli to these cells resulted in the appearance of additional, faster migrating electrophoretic forms of the Tsr and Tar polypeptides which disappeared upon removal of the stimulus. The stimulus-elicited forms comigrated with component bands of the corresponding MCPs. These results indicate that methylation itself caused shifts in electrophoretic mobility and hence led to the observed MCP band patterns. The number of Tsr species suggested that there were at least three methylated sites on the Tsr polypeptide. The conclusion that methylation generates multiplicity was supported by the results of experiments in which the tsr product was synthesized in mutant bacteria defective in specific chemotaxis functions concerned with methylation or demethylation of MCPs. Thus, the presence of a cheX defect blocked the stimulus-elicited appearance of faster migrating forms of the tsr product; conversely, the presence of a cheB defect resulted in a pronounced shift toward these forms in the absence of a chemotactic stimulus.  相似文献   

13.
Adaptation in bacterial chemotaxis involves reversible methylation of specific glutamate residues within the cytoplasmic domains of methyl-accepting chemotaxis proteins. The specific sites of methylation in Salmonella enterica and Escherichia coli chemoreceptors, identified 2 decades ago, established a consensus sequence for methylation by methyltransferase CheR. Here we report the in vitro methylation of chemoreceptors from Thermotoga maritima, a hyperthermophile that has served as a useful source of chemotaxis proteins for structural analysis. Sites of methylation have been identified by liquid chromatography-mass spectrometry/mass spectrometry. Fifteen sites of methylation were identified within the cytoplasmic domains of four different T. maritima chemoreceptors. The results establish a consensus sequence for chemoreceptor methylation sites in T. maritima that is distinct from the previously identified consensus sequence for E. coli and S. enterica. These findings suggest that consensus sequences for posttranslational modifications in one organism may not be directly extrapolated to analogous modifications in other bacteria.  相似文献   

14.
Aer is a membrane-associated protein that mediates aerotactic responses in Escherichia coli. Its C-terminal half closely resembles the signaling domains of methyl-accepting chemotaxis proteins (MCPs), which undergo reversible methylation at specific glutamic acid residues to adapt their signaling outputs to homogeneous chemical environments. MCP-mediated behaviors are dependent on two specific enzymes, CheR (methyltransferase) and CheB (methylesterase). The Aer signaling domain contains unorthodox methylation sites that do not conform to the consensus motif for CheR or CheB substrates, suggesting that Aer, unlike conventional MCPs, might be a methylation-independent transducer. Several lines of evidence supported this possibility. (i) The Aer protein was not detectably modified by either CheR or CheB. (ii) Amino acid replacements at the putative Aer methylation sites generally had no deleterious effect on Aer function. (iii) Aer promoted aerotactic migrations on semisolid media in strains that lacked all four of the E. coli MCPs. CheR and CheB function had no influence on the rate of aerotactic movements in those strains. Thus, Aer senses and signals efficiently in the absence of deamidation or methylation, methylation changes, methylation enzymes, and methyl-accepting chemotaxis proteins. We also found that chimeric transducers containing the PAS-HAMP sensing domain of Aer joined to the signaling domain and methylation sites of Tar, an orthodox MCP, exhibited both methylation-dependent and methylation-independent aerotactic behavior. The hybrid Aear transducers demonstrate that methylation independence does not emanate from the Aer signaling domain but rather may be due to transience of the cellular redox changes that are thought to trigger Aer-mediated behavioral responses.  相似文献   

15.
Adaptation in the chemosensory pathways of bacteria like Escherichia coli is mediated by the enzyme-catalyzed methylation (and demethylation) of glutamate residues in the signaling domains of methyl-accepting chemotaxis proteins (MCPs). MCPs can be methylated in trans, where the methyltransferase (CheR) molecule catalyzing methyl group transfer is tethered to the C terminus of a neighboring receptor. Here, it was shown that E. coli cells exhibited adaptation to attractant stimuli mediated through either engineered or naturally occurring MCPs that were unable to tether CheR as long as another MCP capable of tethering CheR was also present, e.g., either the full-length aspartate or serine receptor (Tar or Tsr). Methylation of isolated membrane samples in which engineered tethering and substrate receptors were coexpressed demonstrated that the truncated substrate receptors (trTsr) were efficiently methylated in the presence of tethering receptors (Tar with methylation sites blocked) relative to samples in which none of the MCPs had tethering sites. The effects of ligand binding on methylation were investigated, and an increase in rate was produced only with serine (the ligand specific for the substrate receptor trTsr); no significant change in rate was produced by aspartate (the ligand specific for the tethering receptor Tar). Although the overall efficiency of methylation was lower, receptor-specific effects were also observed in trTar- and trTsr-containing samples, where neither Tar nor Tsr possessed the CheR binding site at the C terminus. Altogether, the results are consistent with a ligand-induced conformational change that is limited to the methylated receptor dimer and does not spread to adjacent receptor dimers.  相似文献   

16.
Conditional inversion of the thermoresponse in Escherichia coli.   总被引:8,自引:7,他引:1       下载免费PDF全文
Mutants in Escherichia coli having defects in one of the methyl-accepting chemotaxis proteins, Tsr protein, which is the chemoreceptor and transducer for L-serine, showed a reduced but similar type of thermoresponse compared with wild-type strains; the cells showed smooth swimming upon temperature increase and tumbling upon temperature decrease. However, when the mutant cells were adapted to attractants such as L-aspartate and maltose, which are specific to another methyl-accepting chemotaxis protein, Tar protein, the direction of the thermoresponse was found to be inverted; a temperature increase induced tumbling and a temperature decrease induced smooth swimming. Consistent with this, the mutant cells showed inverted changes in the methylation level of Tar protein upon temperature changes. Wild-type strains but not Tar protein-deficient mutants exhibited the inverted thermoresponse when the cells were simultaneously adapted to L-aspartate and L-serine, indicating that Tar protein has a key role in the inversion of the thermoresponse. Thus, besides Tsr protein, Tar protein has a certain role in thermoreception. A simple model for thermoreception and inversion of the thermoresponse is also discussed.  相似文献   

17.
In vitro aging at pH 7.4, 37 degrees C causes natural sequence recombinant human growth hormone (rhGH), methionyl rhGH, and human pituitary growth hormone to become substrates for bovine brain protein carboxyl methyltransferase, an enzyme that modifies the "side chain" alpha-carboxyl group present at atypical isoaspartyl linkages. The substrate capacity of rhGH increased at a rate of 1.8 methyl-accepting sites/day/100 molecules of hormone. Reversed-phase high performance liquid chromatography (HPLC) of trypsin digests of aged rhGH revealed two altered peptides not present in digests of control rhGH. These two fragments, which had the amino acid compositions of residues 128-134 (Leu-Glu-Asp-Gly-Ser-Pro-Arg) and 146-158 (Phe-Asp-Thr-Asn-Ser-His-Asn-Asp-Asp-Ala-Leu-Leu-Lys), contained the majority of the induced methylation sites, 22 and 58%, respectively. Isoaspartate can result from deamidation of asparagine or isomerization of aspartate. Isomerization of Asp-130, the only candidate site in 128-134, was corroborated by coelution of the altered fragment with the synthetic isoaspartyl peptide upon reversed-phase HPLC. Evidence is presented that the altered 146-158 fragment is a mixture of two peptides resulting from deamidation of Asn-149 to form 70-80% isoaspartate and 20-30% aspartate at this position. The position of isoaspartate in the altered 146-158 fragment was deduced from mass spectrometry, which indicated a single deamidated asparagine; from methylation stoichiometry, which indicated only one methylation site; and from automated Edman degradation, which showed an absence of asparagine and a low yield of aspartate at position 149. These results show that isoaspartate formation from both aspartate and asparagine is a significant, and possibly the major, source of spontaneous covalent alteration of rhGH and that enzymatic carboxyl methylation provides a powerful tool for assessing this type of modification.  相似文献   

18.
The aspartate chemoreceptor Tar has a thermosensing function that is modulated by covalent modification of its four methylation sites (Gln295, Glu302, Gln309, and Glu491). Without posttranslational deamidation, Tar has no thermosensing ability. When Gln295 and Gln309 are deamidated to Glu, the unmethylated and heavily methylated forms function as warm and cold sensors, respectively. In this study, we carried out alanine-scanning mutagenesis of the methylation sites. Although alanine substitutions influenced the signaling bias and the methylation level, all of the mutants retained aspartate-sensing function. Those with single substitutions had almost normal thermosensing properties, indicating that substitutions at any particular methylation site do not seriously impair thermosensing function. In the posttranslational modification-defective background, some of the alanine substitutions restored thermosensing ability. Warm sensors were found among mutants retaining two glutamate residues, and cold sensors were found among those with one or no glutamate residue. This result suggests that the negative charge at the methylation sites is one factor that determines thermosensor phenotypes, although the size and shape of the side chain may also be important. The warm, cold, and null thermosensor phenotypes were clearly differentiated, and no intermediate phenotypes were found. Thus, the different thermosensing phenotypes that result from covalent modification of the methylation sites may reflect distinct structural states. Broader implications for the thermosensing mechanism are also discussed.  相似文献   

19.
The adaptation process in several cheD chemotaxis mutants, which carry defects in tsr, the serine transducer gene, was examined. cheD mutants are smooth swimming and generally nonchemotactic; the defect is dominant to the wild-type tsr gene (J. S. Parkinson, J. Bacteriol. 142:953-961, 1980). All classes of methyl-accepting chemotaxis proteins synthesized in unstimulated cheD strains are overmethylated relative to the wild type. We found that the steady-state rate of demethylation in cheD mutants was low; this may explain their overmethylated phenotype. In addition, all cheD mutants showed diminished responsiveness of methylesterase activity to attractant and repellent stimuli transduced by either the Tsr or Tar protein, and they did not adapt. These results suggest that the dominant nature of the cheD mutations is manifested as a general defect in the regulation of demethylation. Some of these altered properties of methylesterase activity in cheD mutants were exhibited in wild-type cells that were treated with saturating concentrations of serine. The mutant Tsr protein thus seems to be locked into a signaling mode that suppresses tumbling and inhibits methylesterase activity in a global fashion. We found that the Tar and mutant Tsr proteins synthesized in cheD strains were methylated and deamidated at the correct sites and that the mutations were not located in the methylated peptides. Thus, the signaling properties of the transducers may be controlled at sites distinct from the methyl-accepting sites.  相似文献   

20.
In Escherichia coli, high-abundance chemoreceptors are present in cellular amounts approximately 10-fold higher than those of low-abundance receptors. These two classes exhibit inherent differences in functional activity. As sole cellular chemoreceptors, high-abundance receptors are effective in methyl-accepting activity, in establishing a functional balance between the two directions of flagellar rotation, in timely adaptation, and in mediating efficient chemotaxis. Low-abundance receptors are not, even when their cellular content is increased. We found that the low-abundance receptor Trg acquired essential functional features of a high-abundance receptor by the addition of the final 19 residues of the high-abundance receptor Tsr. The carboxy terminus of this addition carried a methyltransferase-binding pentapeptide, NWETF, present in high-abundance receptors but absent in the low-abundance class. Provision of this docking site not only enhanced steady-state and adaptational methylation but also shifted the abnormal, counterclockwise bias of flagellar rotation toward a more normal rotational balance and vastly improved chemotaxis in spatial gradients. These improvements can be understood as the result of both enhanced kinase activation by the more methylated receptor and timely adaptation by more efficient methyl-accepting activity. We conclude that the crucial functional difference between the low-abundance receptor Trg and its high-abundance counterparts is the level of methyl-accepting activity conferred by the methyltransferase-docking site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号