首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Corynebacterium glutamicum used gentisate and 3-hydroxybenzoate as its sole carbon and energy source for growth. By genome-wide data mining, a gene cluster designated ncg12918-ncg12923 was proposed to encode putative proteins involved in gentisate/3-hydroxybenzoate pathway. Genes encoding gentisate 1,2-dioxygenase (ncg12920) and fumarylpyruvate hydrolase (ncg12919) were identified by cloning and expression of each gene in Escherichia coli. The gene of ncg12918 encoding a hypothetical protein (Ncg12918) was proved to be essential for gentisate-3-hydroxybenzoate assimilation. Mutant strain RES167Deltancg12918 lost the ability to grow on gentisate or 3-hydroxybenzoate, but this ability could be restored in C. glutamicum upon the complementation with pXMJ19-ncg12918. Cloning and expression of this ncg12918 gene in E. coli showed that Ncg12918 is a glutathione-independent maleylpyruvate isomerase. Upstream of ncg12920, the genes ncg12921-ncg12923 were located, which were essential for gentisate and/or 3-hydroxybenzoate catabolism. The Ncg12921 was able to up-regulate gentisate 1,2-dioxygenase, maleylpyruvate isomerase, and fumarylpyruvate hydrolase activities. The genes ncg12922 and ncg12923 were deduced to encode a gentisate transporter protein and a 3-hydroxybenzoate hydroxylase, respectively, and were essential for gentisate or 3-hydroxybenzoate assimilation. Based on the results obtained in this study, a GSH-independent gentisate pathway was proposed, and genes involved in this pathway were identified.  相似文献   

2.
Rhodococcus sp. strain NCIMB 12038 utilizes naphthalene as a sole source of carbon and energy, and degrades naphthalene via salicylate and gentisate. To identify the genes involved in this pathway, we cloned and sequenced a 12-kb DNA fragment containing a gentisate catabolic gene cluster. Among the 13 complete open reading frames deduced from this fragment, three (narIKL) have been shown to encode the enzymes involved in the reactions of gentisate catabolism. NarI is gentisate 1,2-dioxygenase which converts gentisate to maleylpyruvate, NarL is a mycothiol-dependent maleylpyruvate isomerase which catalyzes the isomerization of maleylpyruvate to fumarylpyruvate, and NarK is a fumarylpyruvate hydrolase which hydrolyzes fumarylpyruvate to fumarate and pyruvate. The narX gene, which is divergently transcribed with narIKL, has been shown to encode a functional 3-hydroxybenzoate 6-monooxygenase. This led us to discover that this strain is also capable of utilizing 3-hydroxybenzoate as its sole source of carbon and energy. Both NarL and NarX were purified to homogeneity as His-tagged proteins, and they were determined by gel filtration to exist as a trimer and a monomer, respectively. Our study suggested that the gentisate degradation pathway was shared by both naphthalene and 3-hydroxybenzoate catabolism in this strain.  相似文献   

3.
Corynebacterium glutamicum used gentisate and 3-hydroxybenzoate as its sole carbon and energy source for growth. By genome-wide data mining, a gene cluster designated ncg12918-ncg12923 was proposed to encode putative proteins involved in gentisate/3-hydroxybenzoate pathway. Genes encoding gentisate 1,2-dioxygenase (ncg12920) and fumarylpyruvate hydrolase (ncg12919) were identified by cloning and expression of each gene in Escherichia coli. The gene of ncg12918 encoding a hypothetical protein (Ncg12918) was proved to be essential for gentisate-3-hydroxybenzoate assimilation. Mutant strain RES167Δncg12918 lost the ability to grow on gentisate or 3-hydroxybenzoate, but this ability could be restored in C. glutamicum upon the complementation with pXMJ19-ncg12918. Cloning and expression of this ncg12918 gene in E. coli showed that Ncg12918 is a glutathione-independent maleylpyruvate isomerase. Upstream of ncg12920, the genes ncg12921-ncg12923 were located, which were essential for gentisate and/or 3-hydroxybenzoate catabolism. The Ncg12921 was able to up-regulate gentisate 1,2-dioxygenase, maleylpyruvate isomerase, and fumarylpyruvate hydrolase activities. The genes ncg12922 and ncg12923 were deduced to encode a gentisate transporter protein and a 3-hydroxybenzoate hydroxylase, respectively, and were essential for gentisate or 3-hydroxybenzoate assimilation. Based on the results obtained in this study, a GSH-independent gentisate pathway was proposed, and genes involved in this pathway were identified.  相似文献   

4.
Liu TT  Zhou NY 《Journal of bacteriology》2012,194(15):3987-3994
Glutathione- and mycothiol-dependent maleylpyruvate isomerases are known to be involved, respectively, in gentisate catabolism in Gram-negative and high G+C Gram-positive strains. In the present study, a low-G+C Gram-positive Paenibacillus sp. strain, NyZ101, was isolated and shown to degrade 3-hydroxybenzoate via gentisate. A 6.5-kb fragment containing a conserved region of gentisate 1,2-dioxygenase genes was cloned and sequenced, and four genes (bagKLIX) were shown to encode the enzymes involved in the catabolism to central metabolites of 3-hydroxybenzoate via gentisate. The Bag proteins share moderate identities with the reported enzymes in the 3-hydroxybenzoate catabolism, except BagL that had no obvious homology with any functionally characterized proteins. Recombinant BagL was purified to homogeneity as a His-tagged protein and likely a dimer by gel filtration. BagL was demonstrated to be a novel thiol-dependent maleylpyruvate isomerase catalyzing the isomerization of maleylpyruvate to fumarylpyruvate with L-cysteine, cysteinylglycine, or glutathione, as its cofactor. The K(m) values of these three thiols for BagL were 15.5, 8.4, and 552 μM, respectively. Since cysteine and coenzyme A were reported to be abundant in low-G+C Gram-positive strains, BagL should utilize L-cysteine as its physiological cofactor in vivo. The addition of Ni(2+) increased BagL activity, and site-directed mutagenesis experiments indicated that three conserved histidines in BagL were associated with binding to Ni(2+) ion and were necessary for its enzyme activity. BagL is the first characterized L-cysteine-dependent catabolic enzyme in microbial metabolism and is likely a new and distinct member of DinB family, with a four-helix-bundle topology, as deduced by sequence analysis and homology modeling.  相似文献   

5.
The ability of strain Rhodococcus opacus 1CP to utilize 3-hydroxybenzoate (3-HBA) and gentisate in concentrations up to 600 and 700 mg/L, respectively, as sole carbon and energy sources in liquid mineral media was demonstrated. Using high-performance liquid chromatography (HPLC) and thin-layer chromatography, 2,5-dihydroxybenzoate (gentisate) was identified as the key intermediate of 3-hydroxybenzoate transformation. In the cell-free extracts of the strain grown on 3-HBA or gentisate, the activities of 3-hydroxybenzoate 6-hydroxylase, gentisate 1,2-dioxygenase, and maleylpyruvate isomerase were detected. During growth on 3-HBA, low activity of catechol 1,2-dioxygenase was detected. Based on the data obtained, the pathway of 3-HBA metabolism by strain R. opacus 1CP was proposed.  相似文献   

6.
The superfamily of glutathione S-transferases has been the subject of extensive study; however, Actinobacteria produce mycothiol (MSH) in place of glutathione, and no mycothiol S-transferase (MST) has been identified. Using mycothiol and monochlorobimane as substrates, an MST activity was detected in extracts of Mycobacterium smegmatis and purified sufficiently to allow identification of MSMEG_0887, a member the DUF664 family of the DinB superfamily, as the MST. The identity of the M. smegmatis and homologous Mycobacterium tuberculosis (Rv0443) enzymes was confirmed by cloning, and the expressed proteins were found to be active with MSH but not bacillithiol (BSH) or glutathione (GSH). Bacillus subtilis YfiT is another member of the DinB superfamily, but this bacterium produces BSH. The YfiT protein was shown to have S-transferase activity with monochlorobimane when assayed with BSH but not with MSH or GSH. Enterococcus faecalis EF_3021 shares some homology with MSMEG_0887, but En. faecalis produces GSH but not MSH or BSH. Cloned and expressed EF_0321 was active with monochlorobimane and GSH but not with MSH or BSH. MDMPI_2 is another member of the DinB superfamily and has been previously shown to have mycothiol-dependent maleylpyruvate isomerase activity. Three of the eight families of the DinB superfamily include proteins shown to catalyze thiol-dependent metabolic or detoxification activities. Because more than two-thirds of the sequences assigned to the DinB superfamily are members of these families, it seems likely that such activity is dominant in the DinB superfamily.  相似文献   

7.
The pathways used by three bacterial strains of the genus Bacillus to degrade 4-hydroxybenzoate are delineated. When B. brevis strain PHB-2 is grown on 4-hydroxybenzoate, enzymes of the protocatechuate branch of the beta-ketoadipate pathway are induced. In contrast, B. circulans strain 3 contains high levels of the enzymes of the protocatechuate 2,3-dioxygenase pathway after growth on 4-hydroxybenzoate. B. laterosporus strain PHB-7a degrades 4-hydroxybenzoate by a novel reaction sequence. After growth on 4-hydroxybenzoate, strain PHB-7a contains high levels of gentisate oxygenase (EC 1.13.11.4) and maleylpyruvate hydrolase. Whole cells of strain PHB-7a (grown on 4-hydroxylbenzoate) accumulate 2,5-dihydroxybenzoate (gentisate) from 4-hydroxybenzoate when incubated in the presence of 1mM alpha,alpha'-dipyridyl. Thus, strain PHB-7a appears to convert 4-hydroxybenzoate to gentisate, which is further degraded by the glutathione-independent gentisic acid pathway. These pathway delineations provide evidence that Bacillus species are derived from a diverse evolutionary background.  相似文献   

8.
A strain of Bacillus brevis isolated from a polluted section of the Mississippi River was shown to utilize 5-chloro-2-hydroxybenzoate (5-chlorosalicylate) as a sale source of carbon and energy. Enzymic analyses of cell-free extracts prepared from 5-chlorosalicylate-grown cells demonstrated that the initial step in the pathway involved cleavage of the aromatic ring between C1 and C2 by a specific 5-chlorosalicylate 1,2-dioxygenase. Loss of chloride from the growth substrate occurred after ring fission and was probably enzyme mediated. An intermediate chlorolactone apparently lost chloride by enzymatic hydrolysis with formation of maleylpyruvate. Maleylpyruvate was further degraded by both glutathione-dependent and glutathione-independent mechanisms, with these reactions being identical to the terminal reactions of the gentisate pathway. It was suggested that this novel 5-chlorosalicylate pathway may have evolved by recruitment of enzymes from an ancestral gentisate pathway.  相似文献   

9.
The role of mycothiol in mycobacteria was examined by comparative analysis of mutants disrupted in the four known genes encoding the protein machinery needed for mycothiol biosynthesis. These mutants were sensitive to acid stress, antibiotic stress, alkylating stress, and oxidative stress indicating that mycothiol and mycothiol-dependent enzymes protect the mycobacterial cell against attack from various different types of stresses and toxic agents.  相似文献   

10.
A strain of Bacillus brevis isolated from a polluted section of the Mississippi River was shown to utilize 5-chloro-2-hydroxybenzoate (5-chlorosalicylate) as a sale source of carbon and energy. Enzymic analyses of cell-free extracts prepared from 5-chlorosalicylate-grown cells demonstrated that the initial step in the pathway involved cleavage of the aromatic ring between C1 and C2 by a specific 5-chlorosalicylate 1,2-dioxygenase. Loss of chloride from the growth substrate occurred after ring fission and was probably enzyme mediated. An intermediate chlorolactone apparently lost chloride by enzymatic hydrolysis with formation of maleylpyruvate. Maleylpyruvate was further degraded by both glutathione-dependent and glutathione-independent mechanisms, with these reactions being identical to the terminal reactions of the gentisate pathway. It was suggested that this novel 5-chlorosalicylate pathway may have evolved by recruitment of enzymes from an ancestral gentisate pathway.  相似文献   

11.
Abstract Salmonella typhimurium was shown to use the gentisate pathway to metabolize m -hydroxybenzoate and gentisate. m -Hydroxybenzoate hydroxylase and gentisate 1,2-dioxygenase were induced by growth on either gentisate or m -hydroxybenzoate. These enzymes were not detected when the bacteria were grown with glucose or glucose and either m -hydroxybenzoate or gentisate. However, both enzymes were induced when the bacteria were grown on succinate with either substrate. The maleylpyruvate isomerase required reduced glutathione and was irreversibly inhibited by N -ethylmaleimide.  相似文献   

12.
Growth of Klebsiella pneumoniae M5a1 on 3-hydroxybenzoate leads to the induction of 3-hydroxybenzoate monooxygenase, 2,5-dihydroxybenzoate dioxygenase, maleylpyruvate isomerase and fumarylpyruvate hydrolase. Growth in the presence of 2,5-dihydroxybenzoate also induces all of these enzymes including the 3-hydroxybenzoate monooxygenase which is not required for 2,5-dihydroxybenzoate catabolism. Mutants defective in 3-hydroxybenzoate monooxygenase fail to grow on 3-hydroxybenzoate but grow normally on 2,5-dihydroxybenzoate. Mutants lacking maleylpyruvate isomerase fail to grow on 3-hydroxybenzoate and 2,5-dihydroxybenzoate. Both kinds of mutants grow normally on 3,4-dihydroxybenzoate. Mutants defective in maleylpyruvate isomerase accumulate maleylpyruvate when exposed to 3-hydroxybenzoate and growth is inhibited. Secondary mutants that have additionally lost 3-hydroxybenzoate monooxygenase are no longer inhibited by the presence of 3-hydroxybenzoate. The 3-hydroxybenzoate monooxygenase gene (mhbM) and the maleylpyruvate isomerase gene (mhbI) are 100% co-transducible by P1 phage.  相似文献   

13.
Maleylpyruvate, the ring fission product of gentisic acid, was found to be isomerized to fumarylpyruvate without a requirement for glutathione by an enzyme activity found in cell extracts of m-hydroxybenzoate-grown Bacillus megaterium 410. The isomerization reaction was detected as a shift in the absorbance maximum from 330 nm, the maximum for maleylpyruvate, to 345 nm, the maximum for fumarylpyruvate, when assayed at pH 8.0. Ammonium sulfate precipitation and dialysis of B. megaterium cell extracts resolved the isomerase activity from low-molecular-weight compounds such as glutathione but did not eliminate the isomerase activity. Iodoacetate and p-chloromercuribenzoate were potent inhibitors of the isomerase from B. megaterium. However, N-ethylmaleimide and iodoacetamide did not significantly inhibit this activity. In addition, fumaric acid was demonstrated as a product of gentisate oxidation by dialyzed cell extracts of B. megaterium. Glutathione-independent maleylpyruvate isomerases with properties similar to the isomerase found in B. megaterium were also found in other genera of gram-positive organisms. Eleven different organisms representing the genera Bacillus, Arthrobacter, Corynebacterium, Nocardia, and Rhodococcus were all found to possess this novel type of glutathione-independent maleylpyruvate isomerase.  相似文献   

14.
The regulation of the inducible set of gentisate pathway enzymes used by Pseudomonas alcaligenes (P25X1) has been studied in strains derived from mutant strains of P25X1 that had lost the constitutive enzymes that degrade m –cresol, 2,5–xylenol and 3,5–xylenol. The enzyme, 3-hydroxybenzoate 6-hydroxylase II, that catalyzes the oxidation of 3-hydroxybenzoate to gentisate is substrate- and product-induced while gentisate dioxygenase II is substrate induced. Neither 3-hydroxybenzoate nor gentisate could induce the synthesis of maleylpyruvate hydrolase II and fumarylpyruvate hydrolase II. The results suggest that the structural genes encoding these four inducible enzymes and maleylpyruvate hydrolase I (a constitutive enzyme) exist in at least four operons. There is strict induction specificity of expression of this inducible set of gentisate pathway enzymes. 3-Hydroxy-4-methyl-benzoate failed to induce whilst 3-hydroxybenzoate and 3-hydroxy-5-methylbenzoate served as inducers of 6-hydroxylase II. Degradation of 2,5-xylenol is mediated by constitutive enzymes whereas the inducible set of enzymes are responsible for the metabolism of m -cresol and 3,5-xylenol.  相似文献   

15.
Study of the reaction sequence by which Pseudomonas alcaligenes (P25X1) and derived mutants degrade m-cresol, 2,5-xylenol, and their catabolites has provided indirect evidence for the existence of two or more isofunctional enzymes at three different steps. Maleylpyruvate hydrolase activity appears to reside in two different proteins with different specificity ranges, one of which (MPH1) is expressed constitutively; the other (MPH11) is strictly inducible. Two gentisate 1,2-dioxygenase activities were found, one of which is constitutively expressed and possesses a broader specificity range than the other, which is inducible. From oxidation studies with intact cells, there appear to be two activities responsible for the 6-hydroxylation of 3-hydroxybenzoate, and again a broadly specific activity is present regardless of growth conditions; the other is inducible by 3-hydroxybenzoate. Three other enzyme activities are also detected in uninduced cells, viz., xylenol methylhydroxylase, benzylalcohol dehydrogenase, and benzaldehyde dehydrogenase. All apparently possess broad specificity. Fumarylpyruvate hydrolase was also detected but only in cells grown with m-cresol, 3-hydroxybenzoate, or gentisate. Mutants, derived either spontaneously or after treatment with mitomycin C, are described, certain of which have lost the ability to grow with m-cresol and 2,5-xylenol and some of which have also lost the ability to form the constitutive xylenol methylhydroxylase, benzylalcohol dehydrogenase, benzaldehyde dehydrogenase, 3-hydroxybenzoate 6-hydroxylase, and gentisate 1,2-dioxygenase. Such mutants, however, retain ability to synthesize inducibly a second 3-hydroxybenzoate 6-hydroxylase and gentisate 1,2-dioxygenase, as well as maleylpyruvate hydrolase (MPH11) and fumarylpyruvate hydrolase; MPH1 was still synthesized. These findings suggest the presence of a plasmid for 2,5-xylenol degradation which codes for synthesis of early degradative enzymes. Other enzymes, such as the second 3-hydroxybenzoate 6-hydroxylase, gentisate 1,2-dioxygenase, maleylpyruvate hydrolase (MPH1 and MPH11), and fumarylpyruvate hydrolase, appear to be chromosomally encoded and, with the exception of MPH1, strictly inducible.  相似文献   

16.
Mycothiol (MSH) is the major thiol in Actinobacteria and plays a role analogous to that of glutathione. The biosynthetic pathway has been established in mycobacteria and is initiated by the glycosyltransferase MshA. A key mycothiol-dependent detoxification pathway utilizes the amidase (Mca) to cleave mycothiol S-conjugates to produce GlcN-Ins and a mercapturic acid excreted from the cell. How expression of mycothiol genes is regulated in mycobacteria has been unclear so the report in this issue by Park and Roe showing that in Streptomyces coelicolor the redox controlled anti-sigma factor RsrA that binds the regulator sigma(R) controls key elements of mycothiol metabolism is a major advance. Conditions that deplete thiols are shown to induce directly expression of sigR, rsrA, mshA and mca, as well as the thioredoxin reductase-thioredoxin system, generating an autoregulatory cycle that persists until the thiol-depleting condition is alleviated. Evidence for indirect induction of mshB-D to support mycothiol biosynthesis is also presented. It was shown in vitro that mycothiol, like reduced thioredoxin and dithiothreitol, can reduce oxidized RsrA to activate its binding to sigma(R). These studies establish for the first time how mycothiol metabolism is regulated to cope with stress from thiol reactive toxins.  相似文献   

17.
18.
Newton GL  Av-Gay Y  Fahey RC 《Biochemistry》2000,39(35):10739-10746
Mycothiol, 1-D-myo-inosityl-2-(N-acetylcysteinyl)amido-2-deoxy-alpha-D-glucopyranoside (MSH), is composed of N-acetylcysteine (AcCys) amide linked to 1-D-myo-inosityl-2-amino-2-deoxy-alpha-D-glucopyranoside (GlcN-Ins) and is the major thiol produced by most actinomycetes. When Mycobacterium smegmatis was treated with the alkylating agent monobromobimane (mBBr), the cellular mycothiol was converted to its bimane derivative (MSmB). The latter was rapidly cleaved to produce GlcN-Ins and the bimane derivative of N-acetylcysteine (AcCySmB), a mercapturic acid that was rapidly exported from the cells into the medium. The other product of cleavage, GlcN-Ins, was retained in the cell and utilized in the resynthesis of mycothiol. The mycothiol S-conjugate amidase (amidase) responsible for cleaving MSmB was purified to homogeneity from M. smegmatis. A value of K(m) = 95 +/- 8 microM and a value of k(cat) = 8 s(-)(1) was determined for the amidase with MSmB as substrate. Activity with 100 microM mycothiol or with the monobromobimane derivative of 1-D-myo-inosityl-2-(L-cysteinyl)amido-2-deoxy-alpha-D-glucopyra nos ide (CySmB-GlcN-Ins) or of 2-(N-acetyl-L-cysteinyl)amido-2-deoxy-(alpha, beta)-D-glucopyranoside (AcCySmB-GlcN) was at least 10(3) lower than with 100 microM MSmB, demonstrating that the amidase is highly specific for S-conjugates of mycothiol. Conjugates of mycothiol with the antibiotic cerulenin, N-ethylmaleimide, 3-(N-maleimidopropionyl)-biocytin, and 7-diethylamino-3-(4'-maleimidylphenyl)-4-methylcoumarin also exhibited significant activity. The sequence of the amino-terminal 20 residues was determined, and an open reading frame (Rv1082) coding for 288 residues having an identical predicted amino-terminal amino acid sequence was identified in the Mycobacterium tuberculosis genome. The Rv1082 gene (mca) from M. tuberculosis was cloned and expressed in Escherichia coli, and the expressed protein was shown to have substrate specificity similar to the amidase from M. smegmatis. These results indicate that mycothiol and mycothiol S-conjugate amidase play an important role in the detoxification of alkylating agents and antibiotics.  相似文献   

19.
Ralstonia sp. strain U2 metabolizes naphthalene via gentisate to central metabolites. We have cloned and sequenced a 21.6-kb region spanning the nag genes. Upstream of the pathway genes are nagY, homologous to chemotaxis proteins, and nagR, a regulatory gene of the LysR family. Divergently transcribed from nagR are the genes for conversion of naphthalene to gentisate (nagAaGHAbAcAdBFCQED) (S. L. Fuenmayor, M. Wild, A. L. Boyes, and P. A. Williams, J. Bacteriol. 180:2522-2530, 1998), which except for the insertion of nagGH, encoding the salicylate 5-hydroxylase, are homologous to and in the same order as the genes in the classical upper pathway operon described for conversion of naphthalene to salicylate found in the NAH7 plasmid of Pseudomonas putida PpG7. Downstream of nahD is a cluster of genes (nagJIKLMN) which are probably cotranscribed with nagAaGHAbAcAdBFCQED as a single large operon. By cloning into expression vectors and by biochemical assays, three of these genes (nagIKL) have been shown to encode the enzymes involved in the further catabolism of gentisate to fumarate and pyruvate. NagI is a gentisate 1,2-dioxygenase which converts gentisate to maleylpyruvate and is also able to catalyze the oxidation of some substituted gentisates. NagL is a reduced glutathione-dependent maleylpyruvate isomerase catalyzing the isomerization of maleylpyruvate to fumarylpyruvate. NagK is a fumarylpyruvate hydrolase which hydrolyzes fumarylpyruvate to fumarate and pyruvate. The three other genes (nagJMN) have also been cloned and overexpressed, but no biochemical activities have been attributed to them. NagJ is homologous to a glutathione S-transferase, and NagM and NagN are proteins homologous to each other and to other proteins of unknown function. Downstream of the operon is a partial sequence with homology to a transposase.  相似文献   

20.
Mycothiol is a novel thiol produced only by actinomycetes and is the major low-molecular-weight thiol in mycobacteria. Mycothiol was previously shown to be synthesized from 1-D-myo-inosityl-2-amino-2-deoxy-alpha-D-glucopyranoside by ligation with cysteine followed by acetylation. A novel mycothiol-dependent detoxification enzyme, mycothiol conjugate amidase, was recently identified in Mycobacterium smegmatis and shown to have a homolog, Rv1082, in Mycobacterium tuberculosis. In the present study we found that a protein encoded by the M. tuberculosis open reading frame Rv1170, a homolog of Rv1082, possesses weak mycothiol conjugate amidase activity but shows substantial deacetylation activity with 1-D-myo-inosityl-2-acetamido-2-deoxy-alpha-D-glucopyranoside (GlcNAc-Ins), a hypothetical mycothiol biosynthetic precursor. The availability of this protein enabled us to develop an assay for GlcNAc-Ins, which was used to demonstrate that GlcNAc-Ins is present in M. smegmatis at a level about twice that of mycothiol. It was shown that GlcNAc-Ins is absent in mycothiol-deficient mutant strain 49 of M. smegmatis and that this strain can concentrate GlcNAc-Ins from the medium and convert it to mycothiol. This demonstrates that GlcNAc-Ins is a key intermediate in the pathway of mycothiol biosynthesis. Assignment of Rv1170 as the gene coding the deacetylase in the M. tuberculosis genome represents the first identification of a gene of the mycothiol biosynthesis pathway. The presence of a large cellular pool of substrate for this enzyme suggests that it may be important in regulating mycothiol biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号