首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Relative importance of short-term environmental interaction and preconditioning to CO2 exchange response was examined in Fragaria ananasa (strawberry, cv. Quinault). Tests included an orthogonal comparison of 15 to 60-min and 6 to 7-h exposures to different levels of temperature (16 to 32°C), photosynthetically active radiation (PAR, 200 to 800 E m2 s-1), and CO2 (300 to 600 l/l) on successive days of study. Plants were otherwise maintained at 21°C, 300 E m2 s-1 PAR and 300–360 l/l CO2 as standard conditions. Treatment was restricted to the mean interval of 14 h daily illumination and the first 3–4 days of each test week over a 12-week cultivation period. CO2 exchange rates were followed with each step-change in environmental level including ascending/descending temperature/PAR within a test period, initial response at standard conditions on successive days of testing, and measurement at reduced O2. Response generally supported prior concepts of leaf biochemical modeling in identifying CO2 fixation as the major site of environmental influence, while overall patterns of whole plant CO2 exchange suggested additional effects for combined environmental factors and preconditioning. These included a positive interaction between temperature and CO2 concentration on photosynthesis at high irradiance and a greater contribution by dark respiration at lower PAR than previously indicated. The further importance of estimating whole plant CO2 exchange from repetitive tests and measurements was evidenced by a high correlation of response to prior treatment both during the daily test period and on consecutive days of testing.Abbreviations C3 plant a plant in which the product of CO2 fixation is a 3-carbon acid (3-phosphoglyceric acid) - IRGA intra-red gas analyzer - PAR photosynthetically active radiation - RH relative humidity - RuBisCO ribulose-1,5-bisphosphate carboxylase/oxygenase Reference to a company and/or product named by the Department is only for purposes of information and does not imply approval or recommendation of the product to the exclusion of others which may also be suitable.  相似文献   

2.
Summary The photosynthetic capacity and carbon metabolism of the fruits of Isomeris arborea (Capparidaceae), an evergreen shrub endemic to the desert and coastal habitats of Southern California and Baja California, are described. The inflated structure of the pods of I. arborea provides a model system for experimental studies of fruit photosynthesis in native plants since the gas concentration of the internal space can be manipulated and monitored separately from the external pod environment. CO2 released by seed respiration is partially contained in the inner gas space of the pods, resulting in an elevated CO2 environment inside the fruit (500 to 4000 mol mol–1 depending on the stage of fruit development). A portion of this CO2 is assimilated by the inner layers of the pericarp, but a larger fraction leaks out. The photosynthetic layers of the pericarp use two different sources of CO2: the exocarp fixes exogenous CO2 while the endocarp fixes CO2 released by seed respiration into the pod cavity. Even though the total weight of the fruit increases during development, the combined rates of fixation of externally and internally supplied CO2 remained constant (10–11 mol CO2 pod–1 h–1). After the pods attain maximum volume, the major change in gas exchange that takes place during fruit growth is a gradual increase in the amount of respiratory CO2 released by the seeds. This shifts the CO2 balance of the fruit from positive, in young fruits, to negative in mature fruits. Pericarp photosynthesis helped support not only the cost of fruit maintenance, but also the cost of fruit growth, particularly during the first stages of fruit development. During later fruiting stages insufficient carbon is fixed to fully supply either respiration or growth.  相似文献   

3.
Dry weight and Relative Growth Rate of Lemna gibba were significantly increased by CO2 enrichment up to 6000 l CO2 l–1. This high CO2 optimum for growth is probably due to the presence of nonfunctional stomata. The response to high CO2 was less or absent following four days growth in 2% O2. The Leaf Area Ratio decreased in response to CO2 enrichment as a result of an increase in dry weight per frond. Photosynthetic rate was increased by CO2 enrichment up to 1500 l CO2 l–1 during measurement, showing only small increases with further CO2 enrichment up to 5000 l CO2 l–1 at a photon flux density of 210 mol m–2 s–1 and small decreases at 2000 mol m–1 s–1. The actual rate of photosynthesis of those plants cultivated at high CO2 levels, however, was less than the air grown plants. The response of photosynthesis to O2 indicated that the enhancement of growth and photosynthesis by CO2 enrichment was a result of decreased photorespiration. Plants cultivated in low O2 produced abnormal morphological features and after a short time showed a reduction in growth.  相似文献   

4.
Photoautotrophic micropropagation of Russet Burbank Potato   总被引:2,自引:0,他引:2  
The photoautotrophic micropropagation of potato cv. Russet Burbank was investigated. Single node microcuttings were grown for four weeks on Murashige and Skoog (MS) medium with or without sucrose (30 g l–1) in the growth room at 21/19 °C day/night temperature, with 16-h photoperiod at 150 mol m–2 s–1, with or without supplemental CO2 at 1500 l l–1. A 20% increase in the number of nodes per stem (from 7.5 to 9.4) and a 50% increase in stem dry weight were observed in cultures grown on media with sucrose and in CO2 enriched atmosphere comparing to the conventionally micropropagated cultures or the cultures grown photoautotrophically on media without sucrose but in air supplemented with 1500 l l–1CO2. Stems of these cultures (from media with sucrose in CO2 enriched air) almost doubled in length the stems of cultures from the other two treatments. No significant differences were observed between Control (MS medium supplemented with sucrose, 30 g l–1) and photoautotrophic cultures coming from MS medium with no sucrose grown under 1500 l l–1 of CO2. Photoautotrophic cultures produced stems averaging 43.3 mm, with 7 nodes and weighing 9.2 mg (dry weight), similar to conventionally grown in vitro cultures (47.9 mm with 7.5 nodes, 9.7 mg dry weight). Growers may consider photoautotrophic culturing of potato in areas where the high sterility levels are difficult to maintain. Supplementing air in the growth room with 1500 l l–1 of CO2 could be beneficial for potato plantlet production even on media containing sucrose since it significantly improved quality, size and biomass of produced plantlets, speeding up the multiplication.  相似文献   

5.
We examined the in situ CO2 gas-exchange of fruits of a tropical tree, Durio zibethinus Murray, growing in an experimental field station of the Universiti Pertanian Malaysia. Day and night dark respiration rates were exponentially related to air temperature. The temperature dependent dark respiration rate showed a clockwise loop as time progressed from morning to night, and the rate was higher in the daytime than at night. The gross photosynthetic rate was estimated by summing the rates of daytime dark respiration and net photosynthesis. Photosynthetic CO2 refixation, which is defined as the ratio of gross photosynthetic rate to dark respiration rate in the daytime, ranged between 15 and 45%. The photosynthetic CO2 refixation increased rapidly as the temperature increased in the lower range of air temperature T c (T c <28.5 °C), while it decreased gradually as the temperature increased in the higher range (T c 28.5 °C). Light dependence of photosynthetic CO2 refixation was approximated by a hyperbolic formula, where light saturation was achieved at 100 mol m–2 s–1 and the asymptotic CO2 refixation was determined to be 37.4%. The estimated gross photosynthesis and dark respiration per day were 1.15 and 4.90 g CO2 fruit–1, respectively. Thus the CO2 refixation reduced the respiration loss per day by 23%. The effect of fruit size on night respiration rate satisfied a power function, where the exponent was larger than unity.  相似文献   

6.
Kellomäki  S.  Wang  Kai-Yun  Lemettinen  M. 《Photosynthetica》2000,38(1):69-81
A closed CO2 and temperature-controlled, long-term chamber system has been developed and set up in a typical boreal forest of Scots pine (Pinus sylvestris L.) near the Mekrijärvi Research Station (62°47N, 30°58E, 145 m above sea level) belonging to the University of Joensuu, Finland. The main objectives of the experiment were to provide a means of assessing the medium to long-term effects of elevated atmospheric CO2 concentration (EC) and temperature (ET) on photosynthesis, respiration, growth, and biomass at the whole-tree level and to measure instantaneous whole-system CO2 exchange. The system consists of 16 chambers with individual facilities for controlling CO2 concentration, temperature, and the combination of the two. The chambers can provide a wide variety of climatic conditions that are similar to natural regimes. In this experiment the target CO2 concentration in the EC chambers was set at a fixed constant of 700 µmol mol–1 and the target air temperature in the ET chambers to track the ambient temperature but with a specified addition. Chamber performance was assessed on the base of recordings covering three consecutive years. The CO2 and temperature control in these closed chambers was in general accurate and reliable. CO2 concentration in the EC chambers was within 600–725 µmol mol–1 for 90 % of the exposure time during the "growing-season" (15 April – 15 September) and 625–725 µmol mol–1 for 88 % of the time in the "off-season" (16 September – 14 April), while temperatures in the chambers were within ±2.0 °C of the ambient or target temperature in the "growing season" and within ±3.0 °C in the "off season". There were still some significant chamber effects. Solar radiation in the chambers was reduced by 50–60 % for 82 % of the time in the "growing season" and 55–65 % for 78 % of the time in the "off season", and the relative humidity of the air was increased by 5–10 % for 72 % of the time in the "growing season" and 2–12 % for 91 % of the time in the "off season". The crown architecture and main phenophase of the trees were not modified significantly by enclosure in the chambers, but some physiological parameters changed significantly, e.g., the radiant energy-saturated photosynthesis rate, transpiration rate, maximum photochemical efficiency of photosystem 2, and chlorophyll content.  相似文献   

7.
Photosynthetic gas exchange characteristics of two common boreal forest mosses, Sphagnum (section acutifolia) and Pleurozium schreberi, were measured continuously during the time required for the moss to dry out from full hydration. Similar patterns of change in CO2 assimilation with variation in water content occurred for both species. The maximum rates of CO2 assimilation for Sphagnum (approx. 7 mol m–2 s–1) occurred at a water content of approximately 7 (fresh weight/dry weight) while for Pleurozium the maximum rate (approx. 2 mol m–2 s–1) occurred at a water content of approximately 6 (fresh weight/dry weight). Above and below these water contents CO2 assimilation declined. In both species total conductance to water vapour (expressed as a percentage of the maximum rates) remained nearly constant at a water content above 9 (fresh weight/dry weight), but below this level declined in a strong linear manner. Short-term, on-line 13CO2 and C18O16O discrimination varied substantially with changes in moss water content and associated changes in the ratio of chloroplast CO2 to ambient CO2 partial pressure. At full hydration (maximum water content) both Sphagnum and Pleurozium had similar values of 13CO2 discrimination (approx. 15). Discrimination against 13CO2 increased continuously with reductions in water content to a maximum of 27 in Sphagnum and 22 in Pleurozium. In a similar manner C18C16O discrimination increased from approximately 30 at full hydration in both species to a maximum of 150 in Sphagnum and 90 in Pleurozium, at low water content. The observed changes in C18O16O were strongly correlated to predictions of a mechanistic model of discrimination processes. Field measurements of moss water content suggested that photosynthetic gas exchange by moss in the understory of a black spruce forest was regularly limited by low water content.  相似文献   

8.
Ray  D.  Dey  S.K.  Das  G. 《Photosynthetica》2004,42(1):93-97
Adjustment in leaf area : mass ratio called leaf area ratio (LAR) is one of the strategies to optimize photon harvesting. LAR was recorded for 10 genotypes of Hevea brasiliensis under high irradiance and low temperature and the genotypes were categorized into two groups, i.e. high LAR and low LAR types. Simultaneously, the growth during summer as well as winter periods, photosynthetic characteristics, and in-vitro oxidative damage were studied. Low LAR (19.86±0.52 m2 kg–1) types, recorded an average of 18.0 % chlorophyll (Chl) degradation under high irradiance and 7.1 % Chl degradation under low temperature. These genotypes maintained significantly higher net photosynthetic rate (P N) of 10.4 mol(CO2) m–2 s–1 during winter season. On the contrary, the high LAR (24.33±0.27 m2 kg–1) types recorded significantly lower P N of 4 mol(CO2) m–2 s–1 and greater Chl degradation of 37.7 and 13.9 % under high irradiance and low temperature stress, respectively. Thus LAR may be one of the physiological traits, which are possibly involved in plant acclimation process under both stresses studied.  相似文献   

9.
Onion (Allium cepa L.) plants were examined to determine the photosynthetic role of CO2 that accumulates within their leaf cavities. Leaf cavity CO2 concentrations ranged from 2250 L L–1 near the leaf base to below atmospheric (<350 L L–1) near the leaf tip at midday. There was a daily fluctuation in the leaf cavity CO2 concentrations with minimum values near midday and maximum values at night. Conductance to CO2 from the leaf cavity ranged from 24 to 202 mol m–2 s–1 and was even lower for membranes of bulb scales. The capacity for onion leaves to recycle leaf cavity CO2 was poor, only 0.2 to 2.2% of leaf photosynthesis based either on measured CO2 concentrations and conductance values or as measured directly by 14CO2 labeling experiments. The photosynthetic responses to CO2 and O2 were measured to determine whether onion leaves exhibited a typical C3-type response. A linear increase in CO2 uptake was observed in intact leaves up to 315 L L–1 of external CO2 and, at this external CO2 concentration, uptake was inhibited 35.4±0.9% by 210 mL L–1 O2 compared to 20 mL L–1 O2. Scanning electron micrographs of the leaf cavity wall revealed degenerated tissue covered by a membrane. Onion leaf cavity membranes apparently are highly impermeable to CO2 and greatly restrict the refixation of leaf cavity CO2 by photosynthetic tissue.Abbreviations Ca external CO2 concentration - Ci intercellular CO2 concentration - CO2 compensation concentration - PPFR photosynthetic photon fluence rate  相似文献   

10.
Hu H  Gao K 《Biotechnology letters》2003,25(5):421-425
A unicellular marine picoplankton, Nannochloropsis sp., was grown under CO2-enriched photoautotrophic or/and acetate-added mixotrophic conditions. Photoautotrophic conditions with enriched CO2 of 2800 l CO2 l–1 and aeration gave the highest biomass yield (634 mg dry wt l–1), the highest total lipid content (9% of dry wt), total fatty acids (64 mg g–1 dry wt), polyunsaturated fatty acids (35% total fatty acids) and eicosapentaenoic acid (EPA, 20:53) (16 mg g–1 dry wt or 25% of total fatty acids). Mixotrophic cultures gave a greater protein content but less carbohydrates. Adding sodium acetate (2 mM) decreased the amounts of the total fatty acids and EPA. Elevation of CO2 in photoautotrophic culture thus enhances growth and raises the production of EPA in Nannochloropsis sp.  相似文献   

11.
One and a half year-old Ginkgo saplings were grown for 2 years in 7 litre pots with medium fertile soil at ambient air CO2 concentration and at 700 μmol mol−1 CO2 in temperature and humidity-controlled cabinets standing in the field. In the middle of the 2nd season of CO2 enrichment, CO2 exchange and transpiration in response to CO2 concentration was measured with a mini-cuvette system. In addition, the same measurements were conducted in the crown of one 60-year-old tree in the field. Number of leaves/tree was enhanced by elevated CO2 and specific leaf area decreased significantly.CO2 compensation points were reached at 75–84 μmol mol−1 CO2. Gas exchange of Ginkgo saplings reacted more intensively upon CO2 than those of the adult Ginkgo. On an average, stomatal conductance decreased by 30% as CO2 concentration increased from 30 to 1000 μmol mol−1 CO2. Water use efficiency of net photosynthesis was positively correlated with CO2 concentration levels. Saturation of net photosynthesis and lowest level of stomatal conductance was reached by the leaves of Ginkgo saplings at >1000 μmol mol−1 CO2. Acclimation of leaf net CO2 assimilation to the elevated CO2 concentration at growth occurred after 2 years of exposure. Maximum of net CO2 assimilation was 56% higher at ambient air CO2 concentration than at 700 μmol mol−1 CO2.  相似文献   

12.
Soil CO2 evolution rates, soil temperatures and moisture were measured during the dry season in two forest-to-pasture chronosequences in Rondônia, Brazil. The study included pastures ranging from 3 to 80 years-old. Mean dry-season CO2 evolution from the forest in chronosequence 1, 88.8 mg CO2-C m–2h–1 was lower than from the pastures which ranged from 111 to 158 mg CO2-C m–2h–1. We found that temperature was not a good predictor of CO2 emissions from pasture but that there was a significant relationship (r = 0.72,p < 0.05) between soil moisture and pasture emissions. The 13C of the soil CO2 emissions also was measured on chronosequence I; 13C of the CO2 emitted from the C3 forest was –29.43%. Pasture13CO2 values increased from –17.91%. in the 3 year-old pasture to –12.86% in the 80 year-old, reflecting the increasing C4 inputs with pasture age. Even in the youngest (3 year-old) pasture, 70 percent of the CO2 evolved originated from C4 pasture-derived carbon.  相似文献   

13.
The interaction of extreme temperature events with future atmospheric CO2 concentrations may have strong impacts on physiological performance of desert shrub seedlings, which during the critical establishment phase often endure temperature extremes in conjunction with pronounced drought. To evaluate the interaction of drought and CO2 on photosynthesis during heat stress, one-year-old Larrea tridentata[DC] Cov. seedlings were exposed to nine days of heat with midday air temperature maxima reaching 53 °C under three atmospheric CO2 concentrations (360, 550 and 700 mol mol–1) and two water regimes (well-watered and droughted). Photosynthetic gas exchange, chlorophyll fluorescence and water potential responses were measured prior to, during and one week following the high temperature stress event. Heat stress markedly decreased net photosynthetic rate (A net), stomatal conductance (g s), and the photochemical efficiency of photosystem II (F v/F m) in all plants except for well-watered L. tridentata grown in 700 mol mol–1 CO2. A net and g s remained similar to pre-stress levels in these plants. In droughted L. tridentata, A net was ca. 2× (in 550 mol mol–1 CO2) to 3× (in 700 mol mol–1 CO2) higher than in ambient-CO2-grown plants, while g s and F v/F m were similar and low in all CO2 treatments. Following heat stress, g s in all well-watered plants rose dramatically, exceeding pre-stress levels by up to 100%. In droughted plants, g s and A net rose only in plants grown at elevated CO2 following release from heat. This recovery response was strongest at 700 mol mol–1 CO2, which returned to A net and g s values similar to pre-heat following several days of recovery. Extreme heat diminished the photosynthetic down-regulation response to growth at elevated CO2 under well-watered conditions, similar to the action of drought. Ambient-CO2-grown L. tridentata did not show significant recovery of photosynthetic capacity (A \max and CE) after alleviation of temperature stress, especially when exposed to drought, while plants exposed to elevated CO2 appeared to be unaffected. These findings suggest that elevated CO2 could promote photosynthetic activity during critical periods of seedling establishment, and enhance the potential for L. tridentata to survive extreme high temperature events.  相似文献   

14.
The regulation of Crassulacean acid metabolism (CAM) in the fern Pyrrosia piloselloides (L.) Price was investigated in Singapore on two epiphytic populations acclimated to sun and shade conditions. The shade fronds were less succulent and had a higher chlorophyll content although the chlorophyll a:b ratio was lower and light compensation points and dark-respiration rates were reduced. Dawn-dusk variations in titratable acidity and carbohydrate pools were two to three times greater in fronds acclimated to high photosynthetically active radiation (PAR), although water deficits were also higher than in shade fronds. External and internal CO2 supply to attached fronds of the fern was varied so as to regulate the magnitude of CAM activity. A significant proportion of titratable acidity was derived from the refixation of respiratory CO2 (27% and 35% recycling for sun and shade populations, respectively), as measured directly under CO2-free conditions. Starch was shown to be the storage carbodydrate for CAM in Pyrrosia, with a stoichiometric reduction of C3-skeleton units in proportion to malic-acid accumulation. Measurements of photosynthetic O2 evolution under saturating CO2 were used to compare the light responses of sun and shade fronds for each CO2 supply regime, and also following the imposition of a photoinhibitory PAR treatment (1600 mol·m-2·s-1 for 3 h). Apparent quantum yield declined following the high-PAR treatment for sun- and shade-adapted plants, although for sun fronds CAM activity derived from respiratory CO2 prevented any further reduction in photosynthetic efficiency. Recycling of respiratory CO2 by shade plants could only partly prevent photoinhibitory damage. These observations provide experimental evidence that respiratory CO2 recycling, ubiquitous in CAM plants, may have developed so as to alleviate photoinhibition.Abbreviations and symbols CAM Crassulacean acid metabolism - FM maximal photosystem II fluorescence - FT terminal steady-state fluorescence - PAR photosynthetically active radiation, 400–700 nm - H+ (dawn-dusk) variation in titratable acidity  相似文献   

15.
Physiological responses to elevated CO2 at the leaf and canopy-level were studied in an intact pine (Pinus taeda) forest ecosystem exposed to elevated CO2 using a free-air CO2 enrichment (FACE) technique. Normalized canopy water-use of trees exposed to elevated CO2 over an 8-day exposure period was similar to that of trees exposed to current ambient CO2 under sunny conditions. During a portion of the exposure period when sky conditions were cloudy, CO2-exposed trees showed minor (7%) but significant reductions in relative sap flux density compared to trees under ambient CO2 conditions. Short-term (minutes) direct stomatal responses to elevated CO2 were also relatively weak (5% reduction in stomatal aperture in response to high CO2 concentrations). We observed no evidence of adjustment in stomatal conductance in foliage grown under elevated CO2 for nearly 80 days compared to foliage grown under current ambient CO2, so intrinsic leaf water-use efficiency at elevated CO2 was enhanced primarily by direct responses of photosynthesis to CO2. We did not detect statistical differences in parameters from photosynthetic responses to intercellular CO2 (A net-C i curves) for Pinus taeda foliage grown under elevated CO2 (550 mol mol–1) for 50–80 days compared to those for foliage grown under current ambient CO2 from similar-sized reference trees nearby. In both cases, leaf net photosynthetic rate at 550 mol mol–1 CO2 was enhanced by approximately 65% compared to the rate at ambient CO2 (350 mol mol–1). A similar level of enhancement under elevated CO2 was observed for daily photosynthesis under field conditions on a sunny day. While enhancement of photosynthesis by elevated CO2 during the study period appears to be primarily attributable to direct photosynthetic responses to CO2 in the pine forest, longer-term CO2 responses and feedbacks remain to be evaluated.  相似文献   

16.
Effect of fruiting on carbon budgets of apple tree canopies   总被引:1,自引:0,他引:1  
Summary Carbon budgets were calculated from net photosynthesis and dark respiration measurements for canopies of field-grown, 3-year-old apple trees (Malus domestica Borkh.) with maximum leaf areas of 5.4 m2 in a temperature-controlled Perspex tree chamber, measured in situ over 2 years (July 1988 to October 1990) by computerized infrared gas analysis using a dedicated interface and software. Net photosynthesis (Pn) and carbon assimilation per leaf area peaked at respectively 8.3 and 7.7 mol CO2 m–2 s–1 in April. Net photosynthesis (Pn) and dark respiration (Rd) per tree peaked at 3.6 g CO2 tree–1 h–1 (Pn) and 1.2 g CO2 tree–1 h–1 (Rd), equivalent to 4.2 mol CO2 (Pn) and 1.4 mol CO2 (Rd) m–2 s–1 with maximum carbon gain per tree in August and maximum dark respiration per tree in October 1988 and 1989. In May 1990, a tree was deblossomed. Pn (per tree) of the fruiting apple tree canopy exceeded that of the non-fruiting tree by 2–2.5 fold from June to August 1990, attributed to reduced photorespiration (RI), and resulting in a 2-fold carbon gain of the fruiting over the non-fruiting tree. Dark respiration of the fruiting tree canopy progressively exceeded, with increasing sink strength of the fruit, by 51% (June–August), 1.4-fold (September) and 2-fold (October) that of the non-fruiting tree due to leaf (i. e. not fruit) respiration to provide energy (a) to produce and maintain the fruit on the tree and (b) thereafter to facilitate the later carbohydrate translocation into the woody perennial parts of the tree. The fruiting tree reached its optium carbon budget 2–4 weeks earlier (August) then the non-fruiting tree (September 1990). In the winter, the trunk respired 2–100 g CO2 month–1 tree–1. These data represent the first long-term examination of the effect of fruiting without fruit removal which shows increased dark respiration and with the increase progressing as the fruit developed.  相似文献   

17.
In consideration of their origin the adaptive strategies of the evergreen species of the Mediterranean maquis were analysed. Rosmarinus officinalis L., Erica arborea L., and Erica multiflora L. had the lowest net photosynthetic rate (PN) in the favourable period [7.8±0.6 mol(CO2) m–2s–1, mean value], the highest PN decrease (on an average 86 % of the maximum) but the highest recovery capacity (>70 % of the maximum) at the first rainfall in September. Cistus incanus L. and Arbutus unedo L. had the highest PN during the favourable period [15.5±5.2 mol(CO2) m–2s–1, mean value], 79 % decrease during drought, and a lower recovery capacity (on an average 54 %). Quercus ilex L., Phillyrea latifolia L., and Pistacia lentiscus L. had an intermediate PN in the favourable period [9.2±1.3 mol(CO2) m–2s–1, mean value], a lower reduction during drought (on an average 63 %), and a range from 62 % (Q. ilex and P. latifolia) to 39 % (P. lentiscus) of recovery capacity. The Mediterranean species had higher decrease in PN and stomatal conductance during drought and a higher recovery capacity than the pre-Mediterranean species. Among the pre-Mediterranean species, P. latifoliahad the best adaptation to long drought periods also by its higher leaf mass per area (LMA) which lowered leaf temperature thus decreasing transpiration rate during drought. Moreover, its leaf longevity determined a more stable leaf biomass during the year. Among the Mediteranean species, R. officinalis was the best adapted species to short drought periods by its ability to rapidly recover. Nevertheless, R. officinalis had the lowest tolerance to high temperatures by its PN dropping below half its maximum value when leaf temperature was over 33.6°C. R. officinalismay be used as a bioindicator species of global change.This revised version was published online in March 2005 with corrections to the page numbers.  相似文献   

18.
In C4 grasses belonging to the NADP-malic enzyme-type subgroup, malate is considered to be the predominant C4 acid metabolized during C4 photosynthesis, and the bundle sheath cell chloroplasts contain very little photosystem-II (PSII) activity. The present studies showed that Flaveria bidentis (L.), an NADP-malic enzyme-type C4 dicotyledon, had substantial PSII activity in bundle sheath cells and that malate and aspartate apparently contributed about equally to the transfer of CO2 to bundle sheath cells. Preparations of bundle sheath cells and chloroplasts isolated from these cells evolved O2 at rates between 1.5 and 2 mol · min–1 · mg–1 chlorophyll (Chl) in the light in response to adding either 3-phosphoglycerate plus HCO 3 or aspartate plus 2-oxoglutarate. Rates of more than 2 mol O2 · min–1 · mg–1 Chl were recorded for cells provided with both sets of these substrates. With bundle sheath cell preparations the maximum rates of light-dependent CO2 fixation and malate decarboxylation to pyruvate recorded were about 1.7 mol · min–1 · mg–1 Chl. Compared with NADP-malic enzyme-type grass species, F. bidentis bundle sheath cells contained much higher activities of NADP-malate dehydrogenase and of aspartate and alanine aminotransferases. Time-course and pulse-chase studies following the kinetics of radiolabelling of the C-4 carboxyl of C4 acids from 14CO2 indicated that the photosynthetically active pool of malate was about twice the size of the aspartate pool. However, there was strong evidence for a rapid flux of carbon through both these pools. Possible routes of aspartate metabolism and the relationship between this metabolism and PSII activity in bundle sheath cells are considered.Abbreviations DHAP dihydroxyacetone phosphate - NADP-ME(-type) NADP-malic enzyme (type) - NADP-MDH NADP-malate dehydrogenase - OAA oxaloacetic acid - 2-OG 2-oxoglutarate - PEP phosphoenolpyruvate - PGA 3-phosphoglycerate - Pi orthophosphate - Ru5P ribulose 5-phosphate  相似文献   

19.
Transgenic tobacco (Nicotiana tabacum L. cv. W38) with an antisense gene directed against the mRNA of the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit was used to determine the kinetic properties of Rubisco in vivo. The leaves of these plants contained only 34% as much Rubisco as those of the wild type, but other photosynthetic components were not significantly affected. Consequently, the rate of CO2 assimilation by the antisense plants was limited by Rubisco activity over a wide range of CO2 partial pressures. Unlike in the wild-type leaves, where the rate of regeneration of ribulose bisphosphate limited CO2 assimilation at intercellular partial pressures above 400 ubar, photosynthesis in the leaves of the antisense plants responded hyperbolically to CO2, allowing the kinetic parameters of Rubisco in vivo to be inferred. We calculated a maximal catalytic turnover rate, kcat, of 3.5+0.2 mol CO2·(mol sites)–1·s–1 at 25° C in vivo. By comparison, we measured a value of 2.9 mol CO2·(mol sites)–1·–1 in vitro with leaf extracts. To estimate the Michaelis-Menten constants for CO2 and O2, the rate of CO2 assimilation was measured at 25° C at different intercellular partial pressures of CO2 and O2. These measurements were combined with carbon-isotope analysis (13C/12C) of CO2 in the air passing over the leaf to estimate the conductance for transfer of CO2 from the substomatal cavities to the sites of carboxylation (0.3 mol·m–2·s–1·bar–1) and thus the partial pressure of CO2 at the sites of carboxylation. The calculated Michaelis-Menten constants for CO2 and O2 were 259 ±57 bar (8.6±1.9M) and 179 mbar (226 M), respectively, and the effective Michaelis-Menten constant for CO2 in 200 mbar O2 was 549 bar (18.3 M). From measurements of the photocompensation point (* = 38.6 ubar) we estimated Rubisco's relative specificity for CO2, as opposed to O2 to be 97.5 in vivo. These values were dependent on the size of the estimated CO2-transfer conductance.Abbreviations and Symbols A CO2-assimilation rate - gw conductance for CO2 transfer from the substomatal cavities to the sites of carboxylation - Kc, Ko Michaelis-Menten constants for carboxylation, oxygenation of Rubisco - kcat Vcmax/[active site] - O partial pressure of O2 at the site of carboxylation - pc partial pressure of CO2 at the site of carboxylation - pi intercellular CO2 partial pressure - Rd day respiration (non-photorespiratory CO2 evolution) - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - Sc/o relative specificity factor for Rubisco - SSu small subunit of Rubisco - Vcmax, Vomax maximum rates of Rubisco carboxylation, oxygenation - * partial pressure of CO2 in the chloroplast at which photorespiratory CO2 evolution equals the rate of carboxylation  相似文献   

20.
Bärlocher  M.O.  Campbell  D.A.  Al-Asaaed  S.  Ireland  R.J. 《Photosynthetica》2003,41(3):365-372
We investigated seasonal patterns of photosynthetic responses to CO2 concentrations in Spartina alterniflora Loisel, an aerenchymous halophyte grass, from a salt marsh of the Bay of Fundy (NB, Canada), and from plants grown from rhizome in controlled-environment chambers. From late May to August, CO2 compensation concentrations () of field-grown leaves varied between 2.5–10.7 cm3(CO2) m–3, with a mean of 5.4 cm3(CO2) m–3. From September onwards field leaves showed CO2 compensation concentrations from 6.6–21.1 cm3(CO2) m–3, with a mean of 13.1 cm3 m–3 well into the C3–C4 intermediate range. The seasonal variability in did not result from changing respiration, but rather from a sigmoidal response of net photosynthetic rate (P N) to applied CO2 concentration, found in all tested leaves but which became more pronounced late in the season. One explanation for the sigmoidal response of P N to external CO2 concentration could be internal delivery of CO2 from roots and rhizomes to bundle sheath cells via the aerenchyma, but the sigmoidal responses in S. alterniflora persisted out to the tips of leaves, while the aerenchyma extend only to mid-leaf. The sigmoidicity persisted when CO2 response curves were measured from low to high CO2, or from high to low CO2, and even when prolonged acclimation times were used at each CO2 concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号