首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Chang AS  Noor MA 《Genetics》2007,176(1):343-349
F(1) hybrid male sterility is thought to result from interactions between loci on the X chromosome and dominant-acting loci on the autosomes. While X-linked loci that contribute to hybrid male sterility have been precisely localized in many animal taxa, their dominant autosomal interactors have been more difficult to localize precisely and/or have been shown to be of relatively smaller effect. Here, we identified and mapped at least four dominant autosomal factors contributing to hybrid male sterility in the allopatric species pair Drosophila persimilis and D. pseudoobscura bogotana. Using these results, we tested predictions of reduced recombination models of speciation. Consistent with these models, three of the four QTL associated with hybrid male sterility occur in collinear (uninverted) regions of these genomes. Furthermore, these QTL do not contribute significantly to hybrid male sterility in crosses between the sympatric species D. persimilis and D. pseudoobscura pseudoobscura. The autosomal loci identified in this study provide the basis for introgression mapping and, ultimately, for molecular cloning of interacting genes that contribute to F(1) hybrid sterility.  相似文献   

3.
We performed genetic analysis of hybrid sterility and of one morphological difference (sex-comb tooth number) on D. yakuba and D. santomea, the former species widespread in Africa and the latter endemic to the oceanic island of S?o Tomé, on which there is a hybrid zone. The sterility of hybrid males is due to at least three genes on the X chromosome and at least one on the Y, with the cytoplasm and large sections of the autosomes having no effect. F1 hybrid females carrying two X chromosomes from either species are perfectly fertile despite their genetic similarity to completely sterile F1 hybrid males. This implies that the appearance of Haldane's rule in this cross is at least partially due to the faster accumulation of genes causing male than female sterility. The larger effects of the X and Y chromosomes than of the autosomes, however, also suggest that the genes causing male sterility are recessive in hybrids. Some female sterility is also seen in interspecific crosses, but this does not occur between all strains. This is seen in pure-species females inseminated by heterospecific males (probably reflecting incompatibility between the sperm of one species and the female reproductive tract of the other) as well as in inseminated F1 and backcross females, probably reflecting genetically based incompatibilities in hybrids that affect the reproductive system. The latter 'innate' sterility appears to involve deleterious interactions between D. santomea chromosomes and D. yakuba cytoplasm. The difference in male sex-comb tooth number appears to involve fairly large effects of the X chromosome. We discuss the striking evolutionary parallels in the genetic basis of sterility, in the nature of sexual isolation, and in morphological differences between the D. santomea/D. yakuba divergence and two other speciation events in the D. melanogaster subgroup involving island colonization.  相似文献   

4.
Taxa in the early stages of speciation may bear intraspecific allelic variation at loci conferring barrier traits in hybrids such as hybrid sterility. Additionally, hybridization may spread alleles that confer barrier traits to other taxa. Historically, few studies examine within- and between-species variation at loci conferring reproductive isolation. Here, we test for allelic variation within Drosophila persimilis and within the Bogota subspecies of D. pseudoobscura at regions previously shown to contribute to hybrid male sterility. We also test whether D. persimilis and the USA subspecies of D. pseudoobscura share an allele conferring hybrid sterility in a D. pseudoobscura bogotana genetic background. All loci conferred similar hybrid sterility effects across all strains studied, although we detected some statistically significant quantitative effect variation among D. persimilis alleles of some hybrid incompatibility QTLs. We also detected allelism between D. persimilis and D. pseudoobscura USA at a second chromosome hybrid sterility QTL. We hypothesize that either the QTL is ancestral in D. persimilis and D. pseudoobscura USA and lost in D. pseudoobscura bogotana, or gene flow transferred the QTL from D. persimilis to D. pseudoobscura USA. We discuss our findings in the context of population features that may contribute to variation in hybrid incompatibilities.  相似文献   

5.
In most crosses between closely related species of Drosophila, the male hybrids are sterile and show postmeiotic abnormalities. A series of gene expression studies using genomic approaches have found significant down regulation of postmeiotic spermatogenesis genes in sterile male hybrids. These results have led some to suggest a direct relationship between down regulation in gene expression and hybrid sterility. An alternative explanation to a cause-and-effect relationship between misregulation of gene expression and male sterility is rapid divergence of male sex regulatory elements leading to incompatible interactions in an interspecies hybrid genome. To test the effect of regulatory divergence in spermatogenesis gene expression, we isolated 35 fertile D. simulans strains with D. mauritiana introgressions in either the X, second or third chromosome. We analyzed gene expression in these fertile hybrid strains for a subset of spermatogenesis genes previously reported as significantly under expressed in sterile hybrids relative to D. simulans. We found that fertile autosomal introgressions can cause levels of gene down regulation similar to that of sterile hybrids. We also found that X chromosome heterospecific introgressions cause significantly less gene down regulation than autosomal introgressions. Our results provide evidence that rapid male sex gene regulatory divergence can explain misexpression of spermatogenesis genes in hybrids.  相似文献   

6.
Hybrid male sterility, hybrid inviability, sexual isolation, and a hybrid male courtship dysfunction reproductively isolate Drosophila pseudoobscura and D. persimilis. Previous studies of the genetic bases of these isolating mechanisms have yielded only limited information about how much and what areas of the genome are susceptible to interspecies introgression. We have examined the genetic basis of these barriers to gene exchange in several thousand backcross hybrid male progeny of these species using 14 codominant molecular genetic markers spanning the five chromosomes of these species, focusing particularly on the autosomes. Hybrid male sterility, hybrid inviability, and the hybrid male courtship dysfunction were all associated with X-autosome interactions involving primarily the inverted regions on the left arm of the X-chromosome and the center of the second chromosome. Sexual isolation from D. pseudoobscura females was primarily associated with the left arm of the X-chromosome, although both the right arm and the center of the second chromosome also contributed to it. Sexual isolation from D. persimilis females was primarily associated with the second chromosome. The absence of isolating mechanisms being associated with many autosomal regions, including some large inverted regions that separate the strains, suggests that these phenotypes may not be caused by genes spread throughout the genome. We suggest that gene flow between these species via hybrid males may be possible at loci spread across much of the autosomes.  相似文献   

7.
H. Allen Orr 《Genetics》1987,116(4):555-563
The genetic basis of male and female sterility in hybrids of Drosophila pseudoobscura-Drosophila persimilis was studied using backcross analysis. Previous studies indirectly assessed male fertility by measuring testis size; these studies concluded that male sterility results from an X chromosome-autosome imbalance. By directly scoring for the production of motile sperm, male sterility is shown to be largely due to an incompatibility between genes on the X and Y chromosomes of these two species. These species have diverged at a minimum of nine loci affecting hybrid male fertility. Semisterility of hybrid females appears to result from an X chromosome-cytoplasm interaction; the X chromosome thus has the largest effect on sterility in both male and female hybrids. This is apparently the first analysis of the genetic basis of female sterility, or of sterility/inviability affecting both sexes, in an animal hybridization.  相似文献   

8.
Hybrid male sterility is a common outcome of crosses between different species. Gene expression studies have found that a number of spermatogenesis genes are differentially expressed in sterile hybrid males, compared with parental species. Late‐stage sperm development genes are particularly likely to be misexpressed, with fewer early‐stage genes affected. Thus, a link has been posited between misexpression and sterility. A more recent alternative explanation for hybrid gene misexpression has been that it is independent of sterility and driven by divergent evolution of male‐specific regulatory elements between species (faster male hypothesis). The faster male hypothesis predicts that misregulation of spermatogenesis genes should be independent of sterility and approximately the same in both hybrids, whereas sterility should only affect gene expression in sterile hybrids. To test the faster male hypothesis vs. the effect of sterility on gene misexpression, we analyse spermatogenesis gene expression in different species pairs of the Drosophila phylogeny, where hybrid male sterility occurs in only one direction of the interspecies cross (i.e. unidirectional sterility). We find significant differences among genes in misexpression with effects that are lineage‐specific and caused by sterility or fast male regulatory divergence.  相似文献   

9.
Hybrids between D. pseudoobscura bogotana and D. pseudoobscura pseudoobscura are fertile except for males produced in one of the two reciprocal crosses. As there is no premating isolation between these subspecies, nonreciprocal male sterility represents the first step in speciation. Genetic analysis reveals two causes of hybrid F1 sterility: a maternal effect and incompatibilities between chromosomes within males. The maternal effect appears to play the greatest role in hybrid sterility. The X chromosome has the largest effect on fertility of any chromosome, a ubiquitous result in analyses of hybrid sterility and inviability in Drosophila. This effect is entirely attributable to a region comprising less than 30% of the X chromosome. These results are compared to those from a similar study of D. pseudoobscura-D. persimilis hybrids, an older and more reproductively isolated species pair in the same lineage. Such comparisons may allow one to identify the genetic changes characterizing the early versus late stages of speciation.  相似文献   

10.
11.
L. W. Zeng  R. S. Singh 《Genetics》1993,135(1):135-147
We have attempted to estimate the number of genes involved in postzygotic reproductive isolation between two closely related species, Drosophila simulans and Drosophila sechellia, by a novel approach that involves the use of high resolution two-dimensional gel electrophoresis (2DE) to examine testis proteins in parents, hybrids and fertile and sterile backcross progenies. The important results that have emerged from this study are as follows: (1) about 8% of about 1000 proteins examined showed divergence (presence/absence) between the two species; (2) by tracing individual proteins in parental, hybrid and backcross males, we were able to associate the divergent proteins with different chromosomes and found that most divergent proteins are associated with autosomes and very few with X chromosome, Y chromosome and cytoplasm; (3) when proteins showing both quantitative and qualitative differences between the two species were examined in F(1) hybrid males, most (97.4%) proteins were expressed at levels between the two parents and no sign of large scale changes in spot density was observed. All the proteins observed in the two parental species were present in F(1) hybrid males except two species-specific proteins that may be encoded (or regulated) by sex chromosomes; (4) when different fertile and sterile backcross male testes were compared, a few D. sechellia-specific proteins were identified to be consistently associated with male sterility. These results along with the observation that a large proportion (23.6%) of first generation backcross males were fertile show that hybrid male sterility between D. simulans and D. sechellia involves a relatively small number of genes. Role of large scale genetic changes due to general genome incompatibility is not supported. The results also suggest that the large effect of X chromosome on hybrid male sterility is not due to higher divergence of X chromosome than autosomes.  相似文献   

12.
Recent studies suggest that chromosomal rearrangements play a significant role in speciation by preventing recombination and maintaining species persistence despite interspecies gene flow. Factors conferring adaptation or reproductive isolation are maintained in rearranged regions in the face of hybridization, while such factors are eliminated from collinear regions. As a direct test of this rearrangement model, we evaluated the genetic basis of hybrid male sterility in a sympatric species pair, Drosophila pseudoobscura pseudoobscura and D. persimilis, and an allopatric species pair, D. pseudoobscura bogotana and D. persimilis. Our results are consistent with the proposed model: virtually all of the sterility factors in the former pair are associated with three inverted regions, whereas sterility factors are present in the collinear regions in the latter pair. These findings indicate recombination and selection may have eliminated sterility factors outside the inverted regions between D. p. pseudoobscura and D. persimilis, suggesting chromosomal rearrangements may facilitate species persistence despite hybridization.  相似文献   

13.
The Sex-Ratio chromosome in Drosophila pseudoobscura is subject to meiotic drive. It is associated with a series of three nonoverlapping paracentric inversions on the right arm of the X chromosome. The esterase-5 gene region has been localized to section 23 within the subbasal inversion of the Sex-Ratio inversion complex, making esterase- 5 a convenient locus for molecular evolutionary analyses of the Sex- Ratio inversion complex and the associated drive system. A 504-bp fragment of noncoding, intergenic DNA from the esterase-5 gene region was amplified and sequenced from 14 Sex-Ratio and 14 Standard X chromosomes of D. pseudoobscura, and from 9 X chromosomes of its two sibling species, Drosophila persimilis and Drosophila miranda. There is extensive sequence differentiation between the Sex-Ratio and Standard chromosomal types. The common Standard chromosome is highly polymorphic, while, as expected from either the neutral mutation theory or the selective sweep hypothesis, the rarer Sex-Ratio chromosome has much less within-chromosome nucleotide polymorphism. We estimate that the Standard and Sex-Ratio chromosomes in D. pseudoobscura diverged between 700,000 and 1.3 Mya, or at least 2 million generations ago. The clustering of D. pseudoobscura Sex-Ratio chromosomes in a neighbor- joining phylogeny indicates a fairly old, monophyletic origin in this species. It appears from these data that Sex-Ratio genes were present prior to the divergence of D. pseudoobscura and D. persimilis and that both the Standard and Sex-Ratio chromosomes of D. persimilis were derived from the Standard chromosome of D. pseudoobscura after the inversion events that isolated the D. pseudoobscura Sex-Ratio chromosome.   相似文献   

14.
Phadnis N 《Genetics》2011,189(3):1001-1009
Understanding the genetic basis of reproductive isolation between recently diverged species is a central problem in evolutionary genetics. Here, I present analyses of the genetic architecture underlying hybrid male sterility and segregation distortion between the Bogota and USA subspecies of Drosophila pseudoobscura. Previously, a single gene, Overdrive (Ovd), was shown to be necessary but not sufficient for both male sterility and segregation distortion in F(1) hybrids between these subspecies, requiring several interacting partner loci for full manifestation of hybrid phenomena. I map these partner loci separately on the Bogota X chromosome and USA autosomes using a combination of different mapping strategies. I find that hybrid sterility involves a single hybrid incompatibility of at least seven interacting partner genes that includes three large-effect loci. Segregation distortion involves three loci on the Bogota X chromosome and one locus on the autosomes. The genetic bases of hybrid sterility and segregation distortion are at least partially--but not completely--overlapping. My results lay the foundation for fine-mapping experiments to identify the complete set of genes that interact with Overdrive. While individual genes that cause hybrid sterility or inviability have been identified in a few cases, my analysis provides a comprehensive look at the genetic architecture of all components of a hybrid incompatibility underlying F(1) hybrid sterility. Such an analysis would likely be unfeasible for most species pairs due to their divergence time and emphasizes the importance of young species pairs such as the D. pseudoobscura subspecies studied here.  相似文献   

15.
Abstract Most work on adaptive speciation to date has focused on the role of low hybrid fitness as the force driving reinforcement (the evolution of premating isolation after secondary contact that reduces the likelihood of matings between populations). However, recent theoretical work has shown that postmating, prezygotic incompatibilities may also be important in driving premating isolation. We quantified premating, postmating-prezygotic, and early postzygotic fitness effects in crosses among three populations: Drosophila persimilis, D. pseudoobscura USA (sympatric to D. persimilis ), and D. pseudoobscura Bogotá (allopatric to D. persimilis ). Interspecific matings were more likely to fail when they involved the sympatric populations than when they involved the allopatric populations, consistent with reinforcement. We also found that failure rate in sympatric mating trials depended on whether D. persimilis females were paired with D. pseudoobscura males or the reverse. This asymmetry most likely indicates differences in discrimination against heterospecific males by females. By measuring egg laying rate, fertilization success and hatching success, we also compared components of postmating-prezygotic and early postzygotic isolation. Postmating-prezygotic fitness costs were small and not distinguishable between hetero- and conspecific crosses. Early postzygotic fitness effects due to hatching success differences were also small in between-population crosses. There was, however, a postzygotic fitness effect that may have resulted from an X-linked allele found in one of the two strains of D. pseudoobscura USA. We conclude that the postmating-prezygotic fitness costs we measured probably did not drive premating isolation in these species. Premating isolation is most likely driven in sympatric populations by previously known hybrid male sterility.  相似文献   

16.
Male sex genes have shown a pattern of rapid interspecies divergence at both the coding and gene expression level. A common outcome from crosses between closely-related species is hybrid male sterility. Phenotypic and genetic studies in Drosophila sterile hybrid males have shown that spermatogenesis arrest is postmeiotic with few exceptions, and that most misregulated genes are involved in late stages of spermatogenesis. Comparative studies of gene regulation in sterile hybrids and parental species have mainly used microarrays providing a whole genome representation of regulatory problems in sterile hybrids. Real-time PCR studies can reject or reveal differences not observed in microarray assays. Moreover, differences in gene expression between samples can be dependant on the source of RNA (e.g., whole body vs. tissue). Here we survey expression in D. simulans, D. mauritiana and both intra and interspecies hybrids using a real-time PCR approach for eight genes expressed at the four main stages of sperm development. We find that all genes show a trend toward under expression in the testes of sterile hybrids relative to parental species with only the two proliferation genes (bam and bgcn) and the two meiotic class genes (can and sa) showing significant down regulation. The observed pattern of down regulation for the genes tested can not fully explain hybrid male sterility. We discuss the down regulation of spermatogenesis genes in hybrids between closely-related species within the contest of rapid divergence experienced by the male genome, hybrid sterility and possible allometric changes due to subtle testes-specific developmental abnormalities.  相似文献   

17.
Speciation, the evolution of reproductive isolation between populations, serves as the driving force for generating biodiversity. Postzygotic barriers to gene flow, such as F 1 hybrid sterility and inviability, play important roles in the establishment and maintenance of biological species. F 1 hybrid incompatibilities in taxa that obey Haldane's rule, the observation that the heterogametic sex suffers greater hybrid fitness problems than the homogametic sex, are thought to often result from interactions between recessive-acting X-linked loci and dominant-acting autosomal loci. Because they play such prominent roles in producing hybrid incompatibilities, we examine the dominance and nature of epistasis between alleles derived from Drosophila persimilis that confer hybrid male sterility in the genetic background of its sister species, D. pseudoobscura bogotana . We show that epistasis elevates the apparent dominance of individually recessive-acting QTL such that they can contribute to F 1 hybrid sterility. These results have important implications for assumptions underlying theoretical models of hybrid incompatibilities and may offer a possible explanation for why, to date, identification of dominant-acting autosomal "speciation genes" has been challenging.  相似文献   

18.
Orr HA  Irving S 《Genetics》2005,169(2):671-682
We show that, contrary to claims in the literature, "sterile" males resulting from the cross of the Bogota and USA subspecies of Drosophila pseudoobscura are weakly fertile. Surprisingly, these hybrid males produce almost all daughters when crossed to females of any genotype (pure Bogota, pure USA, hybrid F1). Several lines of evidence suggest that this sex ratio distortion is caused by sex chromosome segregation distortion in hybrid males. We genetically analyze this normally cryptic segregation distortion and show that it involves several regions of the Bogota X chromosome that show strong epistatic interactions with each other. We further show that segregation distortion is normally masked within the Bogota subspecies by autosomal suppressors. Our analysis shows that the genetic basis of hybrid segregation distortion is similar to that of hybrid male sterility between the same subspecies. Indeed the severity of segregation distortion is correlated with the severity of sterility among hybrids. We discuss the possibility that hybrid sterility in this paradigmatic case of incipient speciation is caused by segregation distortion.  相似文献   

19.
Greig D 《Heredity》2009,102(1):39-44
Although speciation is one of the most interesting processes in evolution, the underlying causes of reproductive isolation are only partially understood in a few species. This review summarizes the results of many experiments on the reproductive isolation between yeast species of the Saccharomyces sensu stricto group. Hybrids between these species form quite readily in the laboratory, but, if given a choice of species to mate with, some are able to avoid hybridization. F1 hybrids are viable but sterile: the gametes they produce are inviable. For one pair of species, hybrid sterility is probably caused by chromosomal rearrangements, but for all the other species, the major cause of hybrid sterility is antirecombination-the inability of diverged chromosomes to form crossovers during F1 hybrid meiosis. Surprisingly, incompatibility between the genes expressed from different species' genomes is not a major cause of F1 hybrid sterility, although it may contribute to reproductive isolation at other stages of the yeast life cycle.  相似文献   

20.
H A Orr  S Irving 《Genetics》2001,158(3):1089-1100
We analyzed the genetic basis of postzygotic isolation between the Bogota and USA subspecies of Drosophila pseudoobscura. These subspecies diverged very recently (perhaps as recently as 155,000 to 230,000 years ago) and are partially reproductively isolated: Bogota and USA show very little prezygotic isolation but form sterile F1 males in one direction of the hybridization. We dissected the basis of this hybrid sterility and reached four main conclusions. First, postzygotic isolation appears to involve a modest number of genes: we found large chromosome regions that have no effect on hybrid fertility. Second, although apparently few in number, the factors causing hybrid sterility show a remarkably complex pattern of epistatic interaction. Hybrids suffer no hybrid sterility until they carry the "right" allele (Bogota vs. USA) at at least four loci. We describe the complete pattern of interactions between all chromosome regions known to affect hybrid fertility. Third, hybrid sterility is caused mainly by X-autosomal incompatibilities. Fourth, hybrid sterility does not involve a maternal effect, despite earlier claims to the contrary. In general, our results suggest that fewer genes are required for the appearance of hybrid sterility than implied by previous studies of older pairs of Drosophila species. Indeed, a maximum likelihood analysis suggests that roughly 15 hybrid male steriles separate the Bogota and USA subspecies. Only a subset of these would act in F1 hybrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号