首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, AANAT) is the penultimate enzyme in melatonin (5-methoxy-N-acetyltryptamine) biosynthesis. It is the key-enzyme responsible of the nocturnal rhythm of melatonin production in the pineal gland. Specific AANAT inhibitors could be useful for treatment of different physiopathological disorders encountered in diseases such as seasonal affective disorders or obesity. On the basis of previous works and 3D-QSAR studies carried out in our laboratory, we have synthesized and evaluated four novel benzo[b]thiophene derivatives designed as AANAT inhibitors. Compound 13 exhibited high inhibitory activity (IC50 = 1.4 microM) and low affinities for both MT, (1100 nM) and MT2 (1400 nM) receptors.  相似文献   

2.
We separated two forms of arylalkylamine N-acetyltransferase (AANAT) from various organs of the American cockroach, Periplaneta americana. Both forms of the enzyme had an equivalent molecular mass of 28 kDa. One form isolated from the testicular accessory glands had high enzyme activity at acidic pHs. The isoelectric point was 5-6 and the substrate specificity was wider than the other type. The other isolated form from female midguts had a higher level of enzyme activity at basic pHs. These findings suggested that P. americana contains polymorphic AANAT, as is the case in Drosophila melanogaster. These forms differed not only in pH specificity, and substrate specificity but in chromatographic behavior and kinetic properties. Most of the organs we examined contained a mixture of the two forms since two types of AANAT activity were separated in different chromatographic fractions when two pH conditions were used for activity measurement.  相似文献   

3.
Alcaligenes denitrificans Y2k-2 was obtained by selective enrichment followed by screening from soil samples, which showed omega-amino acid:pyruvate transaminase activity, to kinetically resolve aliphatic beta-amino acid, and the corresponding structural gene (aptA) was cloned. The gene was functionally expressed in Escherichia coli BL21 by using an isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible pET expression system (9.6 U/mg), and the recombinant AptA was purified to show a specific activity of 77.2 U/mg for L-beta-amino-n-butyric acid (L-beta-ABA). The enzyme converts various beta-amino acids and amines to the corresponding beta-keto acids and ketones by using pyruvate as an amine acceptor. The apparent K(m) and V(max) for L-beta-ABA were 56 mM and 500 U/mg, respectively, in the presence of 10 mM pyruvate. In the presence of 10 mM L-beta-ABA, the apparent K(m) and V(max) for pyruvate were 11 mM and 370 U/mg, respectively. The enzyme exhibits high stereoselectivity (E > 80) in the kinetic resolution of 50 mM D,L-beta-ABA, producing optically pure D-beta-ABA (99% enantiomeric excess) with 53% conversion.  相似文献   

4.
All biological functions in vertebrates are synchronized with daily and seasonal changes in the environment by the time keeping hormone melatonin. Its nocturnal surge is primarily due to the rhythmic activity of the arylalkylamine N-acetyl transferase AANAT, which thus became the focus of many investigations regarding its evolution and function. Various vertebrate isoforms have been reported from cartilaginous fish to mammals but their origin has not been clearly established. Using phylogeny and synteny, we took advantage of the increasing number of available genomes in order to test whether the various rounds of vertebrate whole genome duplications were responsible for the diversification of AANAT. We highlight a gene secondary loss of the AANAT2 in the Sarcopterygii, revealing for the first time that the AAANAT1/2 duplication occurred before the divergence between Actinopterygii (bony fish) and Sarcopterygii (tetrapods, lobe-finned fish, and lungfish). We hypothesize the teleost-specific whole genome duplication (WDG) generated the appearance of the AANAT1a/1b and the AANAT2/2′paralogs, the 2′ isoform being rapidly lost in the teleost common ancestor (ray-finned fish). We also demonstrate the secondary loss of the AANAT1a in a Paracantopterygii (Atlantic cod) and of the 1b in some Ostariophysi (zebrafish and cave fish). Salmonids present an even more diverse set of AANATs that may be due to their specific WGD followed by secondary losses. We propose that vertebrate AANAT diversity resulted from 3 rounds of WGD followed by previously uncharacterized secondary losses. Extant isoforms show subfunctionalized localizations, enzyme activities and affinities that have increased with time since their emergence.  相似文献   

5.
Serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, AANAT) is the penultimate enzyme in melatonin (5-methoxy-N-acetyltryptamine) biosynthesis. It is the key-enzyme responsible of the nocturnal rhythm of melatonin production in the pineal gland. Specific AANAT inhibitors could be useful for treatment of different physiopathological disorders encountered in diseases such as seasonal affective disorders or obesity. On the basis of previous works and 3D-QSAR studies carried out in our laboratory, we have synthesized and evaluated four novel benzo[b]thiophene derivatives designed as AANAT inhibitors. Compound 13 exhibited high inhibitory activity (IC50=1.4?μM) and low affinities for both MT1 (1100?nM) and MT2 (1400?nM) receptors.  相似文献   

6.
Porins of Pseudomonas fluorescens MFO as fibronectin-binding proteins   总被引:1,自引:0,他引:1  
Gene araA encoding an L-arabinose isomerase (AraA) from the hyperthermophile, Thermotoga neapolitana 5068 was cloned, sequenced, and expressed in Escherichia coli. The gene encoded a polypeptide of 496 residues with a calculated molecular mass of 56677 Da. The deduced amino acid sequence has 94.8% identical amino acids compared with the residues in a putative L-arabinose isomerase of Thermotoga maritima. The recombinant enzyme expressed in E. coli was purified to homogeneity by heat treatment, ion exchange chromatography and gel filtration. The thermophilic enzyme had a maximum activity of L-arabinose isomerization and D-galactose isomerization at 85 degrees C, and required divalent cations such as Co(2+) and Mn(2+) for its activity and thermostability. The apparent K(m) values of the enzyme for L-arabinose and D-galactose were 116 mM (v(max), 119 micromol min(-1) mg(-1)) and 250 mM (v(max), 14.3 micromol min(-1) mg(-1)), respectively, that were determined in the presence of both 1 mM Co(2+) and 1 mM Mn(2+). A 68% conversion of D-galactose to D-tagatose was obtained using the recombinant enzyme at the isomerization temperature of 80 degrees C.  相似文献   

7.
8.
CTP:phosphocholine cytidylyltransferase (CCT) catalyzes the conversion of phosphocholine and cytidine 5'-triphosphate (CTP) to CDP-choline for the eventual synthesis of phosphatidylcholine (PC). The enzyme is regulated by reversible association with cellular membranes, with the rate of catalysis increasing following membrane association. Two isoforms of CCT appear to be present in higher eukaryotes, including Drosophila melanogaster, which contains the tandem genes Cct1 and Cct2. Before this study, the CCT1 isoform had not been characterized and the cellular location of each enzyme was unknown. In this investigation, the cDNA encoding the CCT1 isoform from D. melanogaster has been cloned and the recombinant enzyme purified and characterized to determine catalytic properties and the effect of lipid vesicles on activity. CCT1 exhibited a V max of 23904 nmol of CDP-choline min (-1) mg (-1) and apparent K m values for phosphocholine and CTP of 2.29 and 1.21 mM, respectively, in the presence of 20 muM PC/oleate vesicles. Cytidylyltransferases require a divalent cation for catalysis, and the cation preference of CCT1 was found to be as follows: Mg (2+) > Mn (2+) = Co (2+) > Ca (2+) = Ni (2+) > Zn (2+). The activity of the enzyme is stimulated by a variety of lipids, including phosphatidylcholine, phosphatidylinositol, phosphatidylglycerol, phosphatidylserine, diphosphatidylglycerol, and the fatty acid oleate. Phosphatidylethanolamine and phosphatidic acid, however, did not have a significant effect on CCT1 activity. The cellular location of both CCT1 and CCT2 isoforms was elucidated by expressing green fluorescent fusion proteins in cultured D. melanogaster Schneider 2 cells. CCT1 was identified as the nuclear isoform, while CCT2 is cytoplasmic.  相似文献   

9.
The phosphoglucomutase gene from a wild type Fusarium oxysporum strain (F3), was homologously expressed, under the control of the constitutive promoter of gpdA of Aspergillus nidulans. The transformant produced elevated levels of phosphoglucomutase activity compared to the wild type, a fact that facilitated the subsequent purification procedure. The enzyme (FoPGM) was purified to homogeneity applying three anion exchange and one gel filtration chromatography steps. The native enzyme revealed a monomeric structure with a molecular mass of 60 kDa, while the isoelectric point was 3.5. FoPGM was active in pH ranged from 6.0 to 8.0, with an optimum using 3-(N-morpholino)propanesulfonic acid buffer at 7.0, while loss of activity was observed when phosphate buffer was used in the above mentioned pH range. The optimal temperature for activity was 45°C but the enzyme became unstable at temperatures above 40°C. FoPGM requires the presence of a divalent cation for its function with maximum activity being obtained with Co(2+). The apparent K(m) for Co(2+) was found to be 10 μM. The enzyme was also active with other divalent metal ions such as Mn(2+), Mg(2+), Ni(2+) and Ca(2+) but to a lesser extent. The following kinetic constants were determined: v(max), 0.74 μmol mg(protein)(-1)min(-1); k(cat), 44.2 min(-1); K(m)(G1P), 0.10mM; K(m)(G1,6 diP), 1.03 μM; k(cat)/K(m)(G1P), 443 mM(-1)min(-1) and k(cat)/K(m)(G1,6 diP), 42,860 mM(-1)min(-1). The enzyme was considered to follow a Ping Pong substituted enzyme or enzyme isomerization mechanism.  相似文献   

10.
Arylalkylamine N-acetyltransferase (AANAT, serotonin N-acetyltransferase, EC ) plays a unique transduction role in vertebrate physiology by converting information about day and night into a hormonal signal: melatonin. Only vertebrate members of the AANAT family have been functionally characterized. Here a putative AANAT from Saccharomyces cerevisiae (scAANAT) was studied to determine whether it possessed the catalytic activity of the vertebrate enzyme. scAANAT is 47% similar to ovine AANAT, but lacks the regulatory N- and C-terminal flanking regions conserved in all vertebrate AANATs. It was found to have enzyme activity generally typical for AANAT family members, although the substrate preference pattern was somewhat broader, the specific activity was lower, and the pH optimum was higher. Deletion of scAANAT reduced arylalkylamine acetylation by S. cerevisiae extracts, indicating that scAANAT contributes significantly to this process. The scAANAT sequence conformed to the three-dimensional structure of ovine AANAT catalytic core; however, an important structural element (loop 1) was found to be shorter and to lack a proline involved in substrate binding. These differences could explain the lower specific activity of scAANAT, because of the importance of loop 1 in catalysis. Data base analysis revealed the presence of putative AANATs in other fungi but not in the nearly complete genomes of Drosophila melanogaster or Caenorhabditis elegans. These studies indicate that the catalytic and kinetic characteristics of fungal and vertebrate enzymes can be considered to be generally similar, although some differences exist that appear to be linked to changes in one structural element. Perhaps the most striking difference is that fungal AANATs lack the regulatory domains of the vertebrate enzyme, which appear to be essential for the regulatory role the enzyme plays in photochemical transduction.  相似文献   

11.
Serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, AANAT, EC 2.3.1.87) is the first enzyme in the conversion of serotonin to melatonin. Large changes in AANAT activity play an important role in the daily rhythms in melatonin production. Although a single AANAT gene has been found in mammals and the chicken, we have now identified two AANAT genes in fish. These genes are designated AANAT-1 and AANAT-2; all known AANATs belong to the AANAT-1 subfamily. Pike AANAT-1 is nearly exclusively expressed in the retina and AANAT-2 in the pineal gland. The abundance of each mRNA changes on a circadian basis, with retinal AANAT-1 mRNA peaking in late afternoon and pineal AANAT-2 mRNA peaking 6 h later. The pike AANAT-1 and AANAT-2 enzymes (66% identical amino acids) exhibit marked differences in their affinity for serotonin, relative affinity for indoleethylamines versus phenylethylamines and temperature-activity relationships. Two AANAT genes also exist in another fish, the trout. The evolution of two AANATs may represent a strategy to optimally meet tissue-related requirements for synthesis of melatonin: pineal melatonin serves an endocrine role and retinal melatonin plays a paracrine role.  相似文献   

12.
L-threo-3-Hydroxyaspartate dehydratase (L-threo-3-hydroxyaspartate hydro-lyase), which exhibited specificity for L-threo-3-hydroxyaspartate (K(m)=0.74 mM, V(max)=37.5 micromol min(-1) (mg protein)(-1)) but not for D-threo or D, L-erythro-3-hydroxyaspartate, was purified from a cell-free extract of Pseudomonas sp. T62. The activity of the enzyme was inhibited by hydroxylamine and EDTA, which suggests that pyridoxal 5'-phosphate and divalent cations participate in the enzyme reaction. The NH(2)-terminal amino acid sequence showed significant similarity to the Saccharomyces cerevisiae YKL218c gene product, a hypothetical threonine dehydratase. However, the purified enzyme showed no threonine dehydratase activity.  相似文献   

13.
14.
15.
Serotonin N-acetyltransferase (arylalkylamine N-acetyl-transferase, AANAT) is an enzyme that catalyses the first rate limiting step in the biosynthesis of melatonin (5-methoxy-N-acetyltryptamine). Different physiopathological disorders in human may be due to abnormal secretion of melatonin leading to an inappropriate exposure of melatonin receptors to melatonin. For that reason, we have designed, synthesized and evaluated as inhibitors of human serotonin N-acetyltransferase, a series of compounds that were able to react with coenzyme A to give a bisubstrate analog inhibitor. Compound 12d was found to be a potent AANAT inhibitor (IC50 = 0.18 microM).  相似文献   

16.
Szewczuk LM  Tarrant MK  Sample V  Drury WJ  Zhang J  Cole PA 《Biochemistry》2008,47(39):10407-10419
Serotonin N-acetyltransferase [arylalkylamine N-acetyltransferase (AANAT)] is a key circadian rhythm enzyme that drives the nocturnal production of melatonin in the pineal. Prior studies have suggested that its light and diurnal regulation involves phosphorylation on key AANAT Ser and Thr residues which results in 14-3-3zeta recruitment and changes in catalytic activity and protein stability. Here we use protein semisynthesis by expressed protein ligation to systematically explore the effects of single and dual phosphorylation of AANAT on acetyltransferase activity and relative affinity for 14-3-3zeta. AANAT Thr31 phosphorylation on its own can enhance catalytic efficiency up to 7-fold through an interaction with 14-3-3zeta that lowers the substrate K m. This augmented catalytic profile is largely abolished by double phosphorylation at Thr31 and Ser205. A possible basis for this difference is the dual anchoring of doubly phosphorylated AANAT via one 14-3-3zeta heterodimer. We have developed a novel solution phase assay for accurate K D measurements of 14-3-3zeta-AANAT interaction using 14-3-3zeta fluorescently labeled with rhodamine by expressed protein ligation. We have also generated a doubly fluorescently labeled AANAT which can be used to assess the stability of this protein in a live cell, real-time assay by fluorescence resonance energy transfer measured by microscopic imaging. These studies offer new insights into the molecular basis of melatonin regulation and 14-3-3zeta interaction.  相似文献   

17.
18.
Serotonin N -acetyltransferase (arylalkylamine N -acetyltransferase, AANAT) is an enzyme that catalyses the first rate limiting step in the biosynthesis of melatonin (5-methoxy- N -acetyltryptamine). Different physiopathological disorders in human may be due to abnormal secretion of melatonin leading to an inappropriate exposure of melatonin receptors to melatonin. For that reason, we have designed, synthesized and evaluated as inhibitors of human serotonin N -acetyltransferase, a series of compounds that were able to react with coenzyme A to give a bisubstrate analog inhibitor. Compound 12d was found to be a potent AANAT inhibitor (IC 50 =0.18 μM).  相似文献   

19.
The kinetic properties of phosphofructokinase from muscle of the giant cirripede Austromegabalanus psittacus were characterized, after partial purification by ion exchange chromatography on DEAE-cellulose. This enzyme showed differences regarding PFKs from other marine invertebrates: the affinity for fructose 6-phosphate (Fru 6-P) was very low, with an S(0.5) of 22.6+/-1.4 mM (mean+/-S.D., n=3), and a high cooperativity (n(H) of 2.90+/-0.21; mean+/-S.D., n=3). The barnacle PFK showed hyperbolic saturation kinetics for ATP (apparent K(m ATP)=70 microM, at 5 mM Fru 6-P, in the presence of 2 mM ammonium sulfate). ATP concentrations higher than 1 mM inhibited the enzyme. Ammonium sulfate activated the PFK several folds, increasing the affinity of the enzyme for Fru 6-P and V(max). 5'-AMP (0.2 mM) increased the affinity for Fru 6-P (S(0.5) of 6.2 mM). Fructose 2,6-bisphosphate activated the PFK, with a maximal activation at concentrations higher than 2 microM. Citrate reverted the activation of PFK produced by 0.2 mM 5'-AMP (IC(50 citrate)=2.0 mM), producing a higher inhibition than that exerted on other invertebrate PFKs. Barnacle muscular PFK was activated in vitro after exposure to exogenous cyclic-AMP (0.1 mM) as well as by phosphatidylserine (50 microg/ml), indicating a possible control by protein kinase A and a phospholipid dependent protein kinase (PKC). The results suggest a highly regulated enzyme in vivo, by allosteric mechanisms and also by protein phosphorylation.  相似文献   

20.
A full-length cDNA clone that encodes progesterone 5beta-reductase (5beta-POR) was isolated from Digitalis lanata leaves. The reading frame of the 5beta-POR gene is 1170 nucleotides corresponding to 389 amino acids. For expression, a Sph1/Sal1 5beta-POR fragment was cloned into the pQE vector and was transformed into Escherichia coli strain M15[pREP4]. The recombinant gene was functionally expressed and the recombinant enzyme was characterized. The K(m) and v(max) values for the putative natural substrate progesterone were calculated to be 0.120 mM and 45 nkat mg(-1) protein, respectively. Only 5beta-pregnane-3,20-dione but not its alpha-isomer was formed when progesterone was used as the substrate. Kinetic constants for cortisol, cortexone, 4-androstene-3,17-dione and NADPH were also determined. The molecular organization of the 5beta-POR gene in D. lanata was determined by Southern blot analysis. The 5beta-POR is highly conserved within the genus Digitalis and the respective genes and proteins share considerable homology to putative progesterone reductases from other plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号