首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The display was composed of four boxes, horizontally aligned above the fixation point. In Experiment I, each box was cued by a digit shown at fixation. In Experiment II there were only two numeric cues, signalling the inner or the outer boxes, depending on the experimental condition. The subject was instructed to orient attention to the cued box, and to respond to the imperative stimulus as fast as possible, wherever it appeared. By using four time interval (SOAs), we tried to determine the route covered by attention movements. In Experiment I, with the shortest SOA (100 msec), it was shown that attention does not reach the cued box through a direct path. Rather it moves first on the inner boxes, thereafter focusing on the cued location. The same results were obtained in Experiment II, where the cue directed attention to the inner boxes. When the external boxes were cued, however, this trend was not observed.  相似文献   

2.
Abstract This study analyzed neuronal responses in the second somatosensory (SII) and 7b cortical areas during a selective attention task. Cues directed attention to one of three simultaneous stimuli: vibrotactile stimuli applied to mirror sites on both hands or to a similarly timed auditory tone. Two stimulus patterns appeared with equal probability for the cued stimulus: a constant amplitude sinewave or the latter with a superimposed brief amplitude pulse midway in the trial. Uncued stimuli always contained amplitude pulses. Monkeys demonstrated whether an amplitude pulse at the cued location was present or absent by making appropriately rewarded up and down foot pedal movements. Cue location and stimulus pattern varied trial-wise and pseudo-randomly. Average firing rates to vibrotactile stimuli in 82 of 181 SII cells and 13 of 22 area 7b cells differed significantly during at least one epoch for trials cued to the contralateral hand when compared to trials cued to the ipsilateral hand or auditory stimulus. Predominant were relatively suppressed firing rates during times prior to the epoch containing the amplitude pulses or enhanced activity during and after these pulses. Generally, different cells showed suppression early vs enhancement later in a trial. Analyses of the ratio between firing rates before and during the amplitude pulses suggested improved evoked signals to the amplitude pulses. The discussion considers attention as a mechanism for reducing distractions, early in the trial through suppressing these signals, or for selectively increasing response magnitudes in the cued channel, especially around times when amplitude pulses were present or absent.  相似文献   

3.
Although it is well known that attention to a visual or auditory stimulus can enhance its perception, less is known concerning the effects of attention on the perception of natural tactile stimuli. The present study was conducted to examine the magnitude of the effect of cross-modal manipulations of attention in human subjects on the detection of weak, low-frequency vibrotactile stimuli delivered to the glabrous skin of the finger pad of the right index finger via an Optacon. Three suprathreshold vibrotactile arrays (40 Hz), varying in the number of activated pegs and hence the area of skin stimulated, were used. Subjects were trained to detect the occurrence of vibrotactile or visual stimuli and to respond by pressing a foot pedal as quickly as possible thereafter. Two instructional lights were used to cue the subjects as to which stimulus modality they should attend, in three experimental conditions. In the first cue condition, the forthcoming stimulus modality was indicated by the illumination of its associated light. In the second cue condition, both instructional lights were illuminated, and the subjects were asked to divide their attention equally between the two modalities. In the third cue condition, the stimulus modality was falsely indicated by the illumination of the cue not associated with the stimulus to be presented. Reaction times (RTs) were calculated for each trial. For each modality, tactile and visual, the RTs varied significantly with the cue condition, with the mean RT changing in a graded manner across the experimental conditions (being shortest for the correctly cued condition, intermediate for the neutrally cued condition, and longest for the incorrectly cued condition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The present experiment investigated the influence of age on the magnitude of attentional effects. Subjects were cued to attend to one of two possible stimulus locations horizontally arranged. The instructions were to respond as fast as possible to the occurrence of a visual stimulus, regardless of whether it occurred in a cued or in a non-cued location. When the stimulus occurred in a non-cued location, the subject had to reorient attention to the non-attended, but stimulated, location. Reorienting of attention was directed toward either the left or the right side. The results showed that for the elders, time for reorienting was longer than for younger subjects.  相似文献   

5.
Perceptual illusion and the real-time control of action   总被引:10,自引:0,他引:10  
Participants were cued by an auditory tone to grasp a target object from within a size-contrast display. The peak grip aperture was unaffected by the perceptual size illusion when the target array was visible between the response cue and movement onset (vision trials). The grasp was sensitive to the illusion, however, when the target array was occluded from view when the response was cued (occlusion trials). This was true when the occlusion occurred 2.5 s before the response cue (delay), but also when the occlusion coincided with the response cue (no-delay). Unlike previous experiments, vision and occlusion trials were presented in random sequence. The results suggest that dedicated, real-time visuomotor mechanisms are engaged for the control of action only after the response is cued, and only if the target is visible. These visuomotor mechanisms compute the absolute metrics of the target object and therefore resist size-contrast illusions. In other situations (e.g. prior to the response cue, or if the target is no longer visible), a perceptual representation of the target object can be used for action planning. Unlike the real-time visuomotor mechanisms, perception-based movement planning makes use of relational metrics, and is therefore sensitive to size-contrast illusions.  相似文献   

6.
This study examined selective attention to tactile dimensions by combining a selective cueing paradigm with a test of integrality. In Experiment 1, subjects selectively attended to changes in the frequency or duration of pairs of vibrotactile stimuli and identified the higher frequency or longer duration stimulus. In Experiment 2, using surface gratings in an identical experimental procedure, subjects identified the rougher or longer duration stimulus. In both experiments, greater performance accuracy was found on trials where the cue correctly (valid) predicted the changing dimension, vs incorrectly (invalid) cued or no-cue (neutral) trials. More errors on the invalidly vs neutrally cued trials show the cost of focal attention. Increases in performance on validly vs neutrally cued trials show a benefit of filtering irrelevant stimuli in the cued conditions. Results effectively demonstrate focal attention to tactile features. Tests of integrality, in terms of the effects of correlated change in both dimensions, showed no redundancy gain for either vibrotactile or grating tasks, suggesting that frequency and roughness are separable from stimulus duration. Interference of negative correlated change for frequency but not roughness discriminations may be explained by differences in task difficulty.  相似文献   

7.
This study examined selective attention to tactile dimensions by combining a selective cueing paradigm with a test of integrality. In Experiment 1, subjects selectively attended to changes in the frequency or duration of pairs of vibrotactile stimuli and identified the higher frequency or longer duration stimulus. In Experiment 2, using surface gratings in an identical experimental procedure, subjects identified the rougher or longer duration stimulus. In both experiments, greater performance accuracy was found on trials where the cue correctly (valid) predicted the changing dimension, vs incorrectly (invalid) cued or no-cue (neutral) trials. More errors on the invalidly vs neutrally cued trials show the cost of focal attention. Increases in performance on validly vs neutrally cued trials show a benefit of filtering irrelevant stimuli in the cued conditions. Results effectively demonstrate focal attention to tactile features. Tests of integrality, in terms of the effects of correlated change in both dimensions, showed no redundancy gain for either vibrotactile or grating tasks, suggesting that frequency and roughness are separable from stimulus duration. Interference of negative correlated change for frequency but not roughness discriminations may be explained by differences in task difficulty.  相似文献   

8.
Event-related brain potentials (ERPs) were recorded in a visuo-spatial attention task where the position of an imperative stimulus was indicated either validly or invalidly by a central arrow (trial-by-trial cueing). Subjects had to perform choice RT tasks with the response being dependent either on the identity of the target stimulus or on its position. When target identity was relevant for response selection, validly cued stimuli elicited amplitude enhancements of the early, sensory-evoked P1 and N1 components at lateral posterior sites. The N1 validity effect was limited to scalp sites ipsilateral to the visual field of stimulus presentation. Although these effects were found only when the sensory discrimination task was considerably difficult, they are in line with models assuming that modulations of sensory-perceptual processing (“sensory gating”) are induced by spatial cueing. However, when target location was response-relevant, N1 amplitude enhancements were consistently elicited by invalidly cued letters.CNV and LRP measures indicated that the arrow elicited response-related processing in the cue-target interval. Such processes occurred even when the cue contained no information about an upcoming response. Two consecutive lateralization phases were distinguishable in the LRP, with experimentally induced response assignments becoming effective only during the second phase.  相似文献   

9.
Rats were trained to discriminate short or long durations of houselight illumination using a choice procedure. During the test phase of each trial, the left and right levers were presented with an auditory cue above one of them on (cued lever) while the other was off (uncued lever). The auditory cue was presented immediately after sample offset and the levers were inserted after the auditory cue had been presented for 2 s. For half of the rats, the correct response following the short sample was to press the cued lever, while following the long sample, it was to press the uncued lever. This was reversed for the remaining rats. Following acquisition of the discrimination, two different types of delay tests were administered. In the first set, the delay between offset of the sample and onset of the auditory cue was manipulated (Cue Delay Test). In the second set, the delay between onset of the auditory cue and entry of the levers into the chamber was manipulated (Response Delay Test). Cue Delay testing resulted in a choose-long bias at the longer delays. Response Delay testing did not result in a systematic response bias and there was little forgetting over the delay interval. These data suggest that the rats did not stop the internal clock when the nominal sample was offset, but allowed it to keep running until the auditory cue was presented. The data from the Response Delay Test indicate that either a response decision was made based on the clock reading as soon as the auditory cue was presented, or the clock reading itself was retained over the delay with no subjective shortening and little forgetting.  相似文献   

10.
S Wang  M Fukuchi  C Koch  N Tsuchiya 《PloS one》2012,7(8):e41040
While a single approaching object is known to attract spatial attention, it is unknown how attention is directed when the background looms towards the observer as s/he moves forward in a quasi-stationary environment. In Experiment 1, we used a cued speeded discrimination task to quantify where and how spatial attention is directed towards the target superimposed onto a cloud of moving dots. We found that when the motion was expansive, attention was attracted towards the singular point of the optic flow (the focus of expansion, FOE) in a sustained fashion. The effects were less pronounced when the motion was contractive. The more ecologically valid the motion features became (e.g., temporal expansion of each dot, spatial depth structure implied by distribution of the size of the dots), the stronger the attentional effects. Further, the attentional effects were sustained over 1000 ms. Experiment 2 quantified these attentional effects using a change detection paradigm by zooming into or out of photographs of natural scenes. Spatial attention was attracted in a sustained manner such that change detection was facilitated or delayed depending on the location of the FOE only when the motion was expansive. Our results suggest that focal attention is strongly attracted towards singular points that signal the direction of forward ego-motion.  相似文献   

11.

Background

In predictive spatial cueing studies, reaction times (RT) are shorter for targets appearing at cued locations (valid trials) than at other locations (invalid trials). An increase in the amplitude of early P1 and/or N1 event-related potential (ERP) components is also present for items appearing at cued locations, reflecting early attentional sensory gain control mechanisms. However, it is still unknown at which stage in the processing stream these early amplitude effects are translated into latency effects.

Methodology/Principal Findings

Here, we measured the latency of two ERP components, the N2pc and the sustained posterior contralateral negativity (SPCN), to evaluate whether visual selection (as indexed by the N2pc) and visual-short term memory processes (as indexed by the SPCN) are delayed in invalid trials compared to valid trials. The P1 was larger contralateral to the cued side, indicating that attention was deployed to the cued location prior to the target onset. Despite these early amplitude effects, the N2pc onset latency was unaffected by cue validity, indicating an express, quasi-instantaneous re-engagement of attention in invalid trials. In contrast, latency effects were observed for the SPCN, and these were correlated to the RT effect.

Conclusions/Significance

Results show that latency differences that could explain the RT cueing effects must occur after visual selection processes giving rise to the N2pc, but at or before transfer in visual short-term memory, as reflected by the SPCN, at least in discrimination tasks in which the target is presented concurrently with at least one distractor. Given that the SPCN was previously associated to conscious report, these results further show that entry into consciousness is delayed following invalid cues.  相似文献   

12.
Objectives: Spatial analysis of the evoked brain electrical fields during a cued revealed an extremely robust anteriorization of the positivity of a P300 microstate in the NoGo compared to the Go condition (NoGo-anteriorization in a prevailing study). To allow a neuroanatomical interpretation the NoGo-anteriorization was investigated with a new three-dimensional source tomography method (LORETA) was applied.Methods: The test contains subsets of stimuli requiring the execution (Go) or the inhibition (NoGo) of a cued motor response which can be considered as mutual control conditions for the study of inhibitory brain functions. 21-channel ERPs were obtained from 10 healthy subjects during a cued CPT, And analyzed with LORETA.Results: Topographic analyses revealed significantly different scalp distributions between the Go and the NoGo conditions in both P100 and P300 microstates, indicating that already at an early stage different neural assemblies are activated. LORETA disclosed a significant hyperactivity located in the right frontal lobe during the NoGo condition in the P300 microstate.Conclusions: The results indicate that right frontal sources are responsible for the NoGo-anteriorization of the scalp P300 which is consistent with animal and human lesion studies of inhibitory brain functions. Furthermore, it demonstrates that frontal activation is confined to a brief microstate and time-locked to phasic inhibitory motor control. This adds important functional and chronometric specificity to findings of frontal activation obtained with PET and Near-Infrared-Spectroscopy studies during the cued CPT, and suggests that these metabolic results are not due to general task demands.  相似文献   

13.
Inhibition of return (IOR) is an attentional mechanism that previously has been reported to be either intact or blunted in subjects with schizophrenia (SCZ). In the present study, we explored the neural mechanism of IOR in SCZ by comparing the target-locked N1 and P1 activity evoked by valid-cued trials with that evoked by invalid-cued trials. Twenty-seven schizophrenia patients and nineteen healthy controls participated in a task involving covert orienting of attention with two stimulus onset asynchronies (SOAs: 700 ms and 1200 ms) during which 64-channel EEG data were recorded. Behavioral reaction times (RTs) were longer in response to valid-cued trials than to invalid-cued ones, suggesting an intact IOR in SCZ. However, reduced N1 amplitude elicited by valid-cued trials suggested a stronger inhibition of attention from being oriented to a previously cued location, and therefore a relative inhibition of perceptual processing at that location in SCZ. These results indicate that altered N1 activity is associated with the preservation of IOR in SCZ and could be a sensitive marker to track the IOR effect.  相似文献   

14.
Deaf individuals have been known to process visual stimuli better at the periphery compared to the normal hearing population. However, very few studies have examined attention orienting in the oculomotor domain in the deaf, particularly when targets appear at variable eccentricity. In this study, we examined if the visual perceptual processing advantage reported in the deaf people also modulates spatial attentional orienting with eye movement responses. We used a spatial cueing task with cued and uncued targets that appeared at two different eccentricities and explored attentional facilitation and inhibition. We elicited both a saccadic and a manual response. The deaf showed a higher cueing effect for the ocular responses than the normal hearing participants. However, there was no group difference for the manual responses. There was also higher facilitation at the periphery for both saccadic and manual responses, irrespective of groups. These results suggest that, owing to their superior visual processing ability, the deaf may orient attention faster to targets. We discuss the results in terms of previous studies on cueing and attentional orienting in deaf.  相似文献   

15.
Selective attention can be employed to a restricted region in space or to specific objects. Many properties of this attentional window or spotlight are not well understood. In the present study, we examined the question whether the putative shape of the attentional spotlight can be determined by endogenous cueing within a visual search paradigm. Participants searched for a target among distractors, which were arranged within a vertical or horizontal rectangle. The shape of this rectangle was cued endogenously in a valid or invalid way. Response times (RTs) to correct identification of target orientation were recorded. In Experiment 1, the difference between valid and invalid RTs demonstrated that cueing resulted in elongated attentional areas. This was true only for a group of experienced psychophysical participants, whereas a group of inexperienced participants were not able to use cueing in this way. In Experiment 2, the line motion illusion was used to examine the spatial properties of the attended area. The results confirmed for both experienced and inexperienced participants that attention was confined to the cued elongated area only. We present converging evidence for an attentional spotlight whose shape can be adjusted flexibly by appropriate endogenous cueing.  相似文献   

16.
We investigated the role of muscarinic acetylcholine receptors (mAChRs) in eyeblink serial feature-positive discrimination learning in mice using the mAChR antagonist. A 2-s light cue was delivered 5 or 6 s before the presentation of a 350-ms tone paired with a 100-ms periorbital electrical shock (cued trial) but not before the tone-alone presentation (non-cued trial). Mice received 30 cued and 30 non-cued trials each day in a random order. We found that saline-injected control mice were successfully discriminating between cued and non-cued trials within a few days of conditioning. The mice responded more frequently to the tone in cued trials than in non-cued trials. Analysis of conditioned response (CR) dynamics revealed that the CR onset latency was shorter in cued trials than in non-cued trials, despite the CR peak amplitude not differing significantly between the two conditions. In contrast, scopolamine-injected mice developed an equal number of CRs with similar temporal patterns irrespective of the presence of the cue during the 7 days of conditioning, indicating in a failure to acquire conditional discrimination. In addition, the scopolamine administration to the control mice after they had successfully acquired discrimination did not impair the conditional discrimination and expression of pre-acquired CR. These results suggest that mAChRs may play a pivotal role in memory formation in the conditional brain state associated with the feature cue; however they are unlikely to be involved in the development of discrimination after conditional memory had formed in the serial feature-positive discrimination task during eyeblink conditioning.  相似文献   

17.
Effective processing of threat-related stimuli is of significant evolutionary advantage. Given the intricate relationship between attention and the neural processing of threat-related emotions, this study manipulated attention allocation and emotional categories of threat-related stimuli as independent factors and investigated the time course of spatial-attention-modulated processing of disgusting and fearful stimuli. The participants were instructed to direct their attention either to the two vertical or to the two horizontal locations, where two faces and two houses would be presented. The task was to respond regarding the physical identity of the two stimuli at cued locations. Event-related potentials (ERP) evidences were found to support a two-stage model of attention-modulated processing of threat-related emotions. In the early processing stage, disgusted faces evoked larger P1 component at right occipital region despite the attention allocation while larger N170 component was elicited by fearful faces at right occipito-temporal region only when participants attended to houses. In the late processing stage, the amplitudes of the parietal P3 component enhanced for both disgusted and fearful facial expressions only when the attention was focused on faces. According to the results, we propose that the temporal dynamics of the emotion-by-attention interaction consist of two stages. The early stage is characterized by quick and specialized neural encoding of disgusting and fearful stimuli irrespective of voluntary attention allocation, indicating an automatic detection and perception of threat-related emotions. The late stage is represented by attention-gated separation between threat-related stimuli and neutral stimuli; the similar ERP pattern evoked by disgusted and fearful faces suggests a more generalized processing of threat-related emotions via top-down attentional modulation, based on which the defensive behavior in response to threat events is largely facilitated.  相似文献   

18.
Many species of frogs and salamanders, in at least 12 families, alter their timing of hatching in response to conditions affecting mortality of eggs or larvae. Some terrestrially laid or stranded embryos wait to hatch until they are submerged in water. Some embryos laid above water accelerate hatching if the eggs are dehydrating; others hatch early if flooded. Embryos can hatch early in response to predators and pathogens of eggs or delay hatching in response to predators of larvae; some species do both. The phylogenetic pattern of environmentally cued hatching suggests that similar responses have evolved convergently in multiple amphibian lineages. The use of similar cues, including hypoxia and physical disturbance, in multiple contexts suggests potential shared mechanisms underlying the capacity of embryos to respond to environmental conditions. Shifts in the timing of hatching often have clear benefits, but we know less about the trade-offs that favor plasticity, the mechanisms that enable it, and its evolutionary history. Some potentially important types of cued hatching, such as those involving embryo-parent interactions, are relatively unexplored. I discuss promising directions for research and the opportunities that the hatching of amphibians offers for integrative studies of the mechanisms, ecology and evolution of a critical transition between life-history stages.  相似文献   

19.
Neuronal responses in somatosensory cortical areas 3b and 1-2 (S1) were recorded during an attention task involving cue directed selection of one of three simultaneous stimuli: dual sinewave shaped vibrotactile stimuli applied to mirror sites on both hands or a similarly timed auditory tone. The cued stimulus occurred with one of two equally probable patterns: a constant amplitude vibration or the latter with a superimposed brief sinewave amplitude pulse midway during stimulation. Uncued stimuli always contained amplitude pulses. Two monkeys signaled the absence or presence of an amplitude pulse by appropriately moving a foot pedal up or down. Cues initiated trials by marking the location where the monkey had to discriminate the stimulus pattern. Cue location and stimulus pattern varied randomly per trial. Approximately 50% of cells (44/77 in 3b and 39/77 in 1-2) had significantly different firing rates to stimulation cued to the contralateral hand relative to spatially cuing the ipsilateral hand or cross-modally the auditory stimulus. Relatively suppressed firing rates during times prior to the epoch containing amplitude pulses improved signal-to-noise ratios for responses to amplitude pulses. Instances of significant enhanced activity during and after intervals with amplitude pulses were rare and relative to suppressed activity when cues directed attention to the ipsilateral hand or auditory stimulus. The present findings suggest that attention influences even the earliest stage somatosensory cortical processing. Findings were more modest in S1 than those previously seen in S2 (Burton et al., Somatosens Mot Res 14: 237-267, 1997), which supports the concept of multistage attention processes for touch.  相似文献   

20.
Prospective memory (PM) describes the ability to execute a previously planned action at the appropriate point in time. Although behavioral studies clearly showed that prospective memory performance is affected by the emotional significance attributed to the intended action, no study so far investigated the brain mechanisms subserving the modulatory effect of emotional salience on PM performance. The general aim of the present study was to explore brain regions involved in prospective memory processes when PM cues are associated with emotional stimuli. In particular, based on the hypothesised critical role of the prefrontal cortex in prospective memory in the presence of emotionally salient stimuli, we expected a stronger involvement of aPFC when the retrieval and execution of the intended action is cued by an aversive stimulus. To this aim BOLD responses of PM trials cued by aversive facial expressions were compared to PM trials cued by neutral facial expressions. Whole brain analysis showed that PM task cued by aversive stimuli is differentially associated with activity in the right lateral prefrontal area (BA 10) and in the left caudate nucleus. Moreover a temporal shift between the response of the caudate nucleus that preceded that of aPFC was observed. These findings suggest that the caudate nucleus might provide an early analysis of the affective properties of the stimuli, whereas the anterior lateral prefrontal cortex (BA10) would be involved in a slower and more deliberative analysis to guide goal-directed behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号