首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteins with high‐sequence identity but very different folds present a special challenge to sequence‐based protein structure prediction methods. In particular, a 56‐residue three‐helical bundle protein (GA95) and an α/β‐fold protein (GB95), which share 95% sequence identity, were targets in the CASP‐8 structure prediction contest. With only 12 out of 300 submitted server‐CASP8 models for GA95 exhibiting the correct fold, this protein proved particularly challenging despite its small size. Here, we demonstrate that the information contained in NMR chemical shifts can readily be exploited by the CS‐Rosetta structure prediction program and yields adequate convergence, even when input chemical shifts are limited to just amide 1HN and 15N or 1HN and 1Hα values.  相似文献   

2.
He Y  Yeh DC  Alexander P  Bryan PN  Orban J 《Biochemistry》2005,44(43):14055-14061
We describe here the solution NMR structures of two IgG binding domains with highly homologous sequences but different three-dimensional structures. The proteins, G311 and A219, are derived from the IgG binding domains of their wild-type counterparts, protein G and protein A, respectively. Through a series of site-directed mutations and phage display selections, the sequences of G311 and A219 were designed to converge to a point of high-level sequence identity while keeping their respective wild-type tertiary folds. Structures of both artificially evolved sequences were determined by NMR spectroscopy. The main chain fold of G311 can be superimposed on the wild-type alpha/beta protein G structure with a backbone rmsd of 1.4 A, and the A219 structure can be overlaid on the wild-type three-alpha-helix protein A fold also with a backbone rmsd of 1.4 A. The structure of G311, in particular, accommodates a large number of mutational changes without undergoing a change in the overall fold of the main chain. The structural differences are maintained despite a high level (59%) of sequence identity. These proteins serve as starting points for further experiments that will probe basic concepts of protein folding and conformational switching.  相似文献   

3.
Using parallel tempering simulations with high statistics, we investigate the folding and thermodynamic properties of three small proteins with distinct native folds: the all-helical 1RIJ, the all-sheet beta3s, and BBA5, which has a mixed helix-sheet fold. In all three cases, simulations with our energy function find the native structures as global minima in free energy at experimentally relevant temperatures. However, the folding process strongly differs for the three molecules, indicating that the folding mechanism is correlated with the form of the native structure.  相似文献   

4.
More than one fifth of the proteins encoded by the genome of Escherichia coli are destined to the bacterial cell envelope. Over the past 20 years, the mechanisms by which envelope proteins reach their three-dimensional structure have been intensively studied, leading to the discovery of an intricate network of periplasmic folding helpers whose members have distinct but complementary roles. For instance, the correct assembly of ß-barrel proteins containing disulfide bonds depends both on chaperones like SurA and Skp for transport across the periplasm and on protein folding catalysts like DsbA and DsbC for disulfide bond formation. In this review, we provide an overview of the current knowledge about the complex network of protein folding helpers present in the periplasm of E. coli and highlight the questions that remain unsolved. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.  相似文献   

5.
Van Dorn LO  Newlove T  Chang S  Ingram WM  Cordes MH 《Biochemistry》2006,45(35):10542-10553
In the Cro protein family, an evolutionary change in secondary structure has converted an alpha-helical fold to a mixture of alpha-helix and beta-sheet. P22 Cro and lambda Cro represent the ancestral all-alpha and descendant alpha+beta folds, respectively. The major structural differences between these proteins are at the C-terminal end of the domain (residues 34-56), where two alpha-helices in P22 Cro align with two beta-strands in lambda Cro. We sought to assess the possibility that smooth evolutionary transitions could have converted the all-alpha structure to the alpha+beta structure through sequences that could adopt both folds. First, we used scanning mutagenesis to identify and compare patterns of key stabilizing residues in the C-terminal regions of both P22 Cro and lambda Cro. These patterns exhibited little similarity to each other, with structurally important residues in the two proteins most often occurring at different sequence positions. Second, "hybrid scanning" studies, involving replacement of each wild-type residue in P22 Cro with the aligned wild-type residue in lambda Cro and vice versa, revealed five or six residues in each protein that strongly destabilized the other. These results suggest that key stability determinants for each Cro fold are quite different and that the P22 Cro sequence strongly favors the all-alpha structure while the lambda Cro sequence strongly favors the alpha+beta structure. Nonetheless, we were able to design a "structurally ambivalent" sequence fragment (SASF1), which corresponded to residues 39-56 and simultaneously incorporated most key stabilizing residues for both P22 Cro and lambda Cro. NMR experiments showed SASF1 to stably fold as a beta-hairpin when incorporated into the lambda Cro sequence but as a pair of alpha-helices when incorporated into P22 Cro.  相似文献   

6.

Background  

Protein misfolding is the main cause of a group of fatal neurodegenerative diseases in humans and animals. In particular, in Prion-related diseases the normal cellular form of the Prion Protein PrP (PrP C ) is converted into the infectious PrP Sc through a conformational process during which it acquires a high β-sheet content. Doppel is a protein that shares a similar native fold, but lacks the scrapie isoform. Understanding the molecular determinants of these different behaviours is important both for biomedical and biophysical research.  相似文献   

7.
Molecular modeling of proteins is confronted with the problem of finding homologous proteins, especially when few identities remain after the process of molecular evolution. Using even the most recent methods based on sequence identity detection, structural relationships are still difficult to establish with high reliability. As protein structures are more conserved than sequences, we investigated the possibility of using protein secondary structure comparison (observed or predicted structures) to discriminate between related and unrelated proteins sequences in the range of 10%-30% sequence identity. Pairwise comparison of secondary structures have been measured using the structural overlap (Sov) parameter. In this article, we show that if the secondary structures likeness is >50%, most of the pairs are structurally related. Taking into account the secondary structures of proteins that have been detected by BLAST, FASTA, or SSEARCH in the noisy region (with high E: value), we show that distantly related protein sequences (even with <20% identity) can be still identified. This strategy can be used to identify three-dimensional templates in homology modeling by finding unexpected related proteins and to select proteins for experimental investigation in a structural genomic approach, as well as for genome annotation.  相似文献   

8.
The protein folding problem is often studied by comparing the mechanisms of proteins sharing the same structure but different sequence. The recent design of the two proteins GA88 and GB88, displaying different structures and functions while sharing 88% sequence identity (49 out of 56 amino acids), allows the unique opportunity for a complementary approach. At which stage of its folding pathway does a protein commit to a given topology? Which residues are crucial in directing folding mechanisms to a given structure? By using a combination of biophysical and computational techniques, we have characterized the folding of both GA88 and GB88. We show that, contrary to expectation, GB88, characterized by a native α+β fold, displays in the denatured state a content of native-like helical structure greater than GA88, which is all-α in its native state. Both experiments and simulations indicate that such residual structure may be tuned by changing pH. Thus, despite the high sequence identity, the folding pathways for these two proteins appear to diverge as early as in the denatured state. Our results suggest a mechanism whereby protein topology is committed very early along the folding pathway, being imprinted in the residual structure of the denatured state.  相似文献   

9.
Alphabet size and informational entropy, two formal measures of sequence complexity, are herein applied to two prior studies on the folding of minimal proteins. These measures show a designed four-helix bundle to be unlike its natural counterparts but rather more like a coiled-coil dimer. Segments from a simplified sarc homology 3 domain and more than 2000000 segments from globular proteins both have lower bounds for alphabet size of 10 and for entropy near 2.9. These values are therefore suggested to be necessary and sufficient for folding into globular proteins having both rigid side chain packing and biological function.  相似文献   

10.
R J Monnat  D T Reay 《Gene》1986,43(3):205-211
Recombinant DNA techniques have been used to search for mitochondrial (mt) nucleotide (nt) sequence differences between human tissues within an individual. mtDNA isolated from brain, heart, liver, kidney, and skeletal muscle of two different individuals was cleaved with SacI and XbaI, and then cloned in bacteriophage M13. Partial nt sequence determination of 121 independently isolated recombinant M13 clones containing either the cytochrome oxidase subunit III gene or the D-loop region of human mtDNA revealed base substitution differences between individuals, and between each individual and the published human mtDNA sequence. A majority of these base substitutions were transitions. No systematic nt sequence differences were identified between tissues within an individual, however. These results suggest that mtDNA sequence alterations do not accompany organogenesis, and that somatic mutations do not accumulate in the mtDNA of different human tissues to a level of greater than one nt substitution per molecule.  相似文献   

11.
12.
Folding and association of proteins   总被引:62,自引:0,他引:62  
  相似文献   

13.
Folding and association of proteins   总被引:2,自引:0,他引:2  
The acquisition of the native three-dimensional structure of proteins consists of sequential folding reactions with well-populated and well-defined structural intermediates. For small proteins successive stages in the folding have been resolved kinetically; these suggest that H-bonded elements of secondary structure are formed first, followed by folding steps to generate the complete tertiary structure.The rate determining step in the folding of a number of small proteins has been shown to be proline cis tram isomerization. As indicated by experiments using fast kinetics the overall folding mechanism, even in a small single-domain molecule like ribonuclease, involves more than one intermediate.Large protein molecules contain domains which may fold independently. For multi-domain proteins, the pathway of folding therefore involves folding by parts, followed by merging of folded domains.In the case of assembly systems (e.g., oligomeric or multimeric enzymes) folding and association have to be subtly interconnected with respect to the time scale, since the correct assembly of subunits requires their proper folding. In this sense the initial function of oligomeric proteins is their own self-assembly. The corresponding mechanism underlying the spontaneous formation of the native quaternary structure of oligomeric proteins must be the consecutive folding and association of the constituent polypeptide chains.Equilibrium and kinetic studies have been concerned with a number of dimeric, tetrameric and multimeric enzymes, using enzymatic activity to measure structure formation: alcohol dehydrogenase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, lactic dehydrogenase, malic dehydrogenase, pyruvate dehydrogenase, triose phosphate isomerase, tryptophan synthase.These experiments make use of the reversibility of protein denaturation, focusing on refolding and reassociation rather than folding and association, because there is no direct approach to structural investigations of the nascent polypeptide chain in vivo.Optimum conditions of reconstitution yield up to 100% reactivation. After separation of irreversibly denatured protein, reconstituted and native protein turn out to be indistinguishable. The major side reaction leading to wrong aggregation is due to competition between folding and association.Due to the high specificity of the association reaction chimeric species are not observed, and multimeric systems containing different component enzymes show specific assembly.The kinetics of reconstitution generally obey an irreversible sequential first- order/second-order mechanism involving inactive monomers; only in the case of aldolase is subunit activity suggested. For a number of oligomeric enzymes renaturation from various denaturants, in the absence or presence of coenzyme is characterized by identical kinetics. For glyceraldehyde-3-phosphate dehydrogenase, however, free NAD as well as a covalently bound NAD-analog are found to enhance the reconstitution.In the case of assembly structures exceeding the dimer, the observed consecutive folding/association mechanism does not allow us to decide whether the observed second order processes belong to the formation of the dimer or tetramer. Chemical cross-linking and hybridization techniques allow the equilibrium state and the assembly kinetics of oligomeric systems to be analyzed quantitatively. Using this method, e.g., for lactic dehydrogenase, it is obvious that dissociation leads to the homogeneous monomer, while tetramer formation is found to parallel reactivation.In general, equilibrium and kinetic experiments prove that full enzymatic activity requires association.In the case of multisubunit enzymes (multienzyme complexes) heterologous interactions of the component enzymes seem to be involved in the rate determining (first order) reshuffling processes which generate catalytic activity in the overall enzymatic reaction.Dedicated to Professor Ernst M. Helmreich on the occasion of his sixtieth birthday  相似文献   

14.
Kim SY  Lee J  Lee J 《Biophysical chemistry》2005,115(2-3):195-200
Understanding how a protein folds is a long-standing challenge in modern science. We have used an optimized atomistic model (united-residue force field) to simulate folding of small proteins of various structures: HP-36 (alpha protein), protein A (beta), 1fsd (alpha+beta), and betanova (beta). Extensive Monte Carlo folding simulations (ten independent runs with 10(9) Monte Carlo steps at a temperature) starting from non-native conformations are carried out for each protein. In all cases, proteins fold into their native-like conformations at appropriate temperatures, and glassy transitions occur at low temperatures. To investigate early folding trajectories, 200 independent runs with 10(6) Monte Carlo steps are also performed at a fixed temperature for a protein. There are a variety of possible pathways during non-equilibrium early processes (fast process, approximately 10(4) Monte Carlo steps). Finally, these pathways converge to the point unique for each protein. The convergence point of the early folding pathways can be determined only by direct folding simulations. The free energy surface, an equilibrium thermodynamic property, dictates the rest of the folding (slow process, approximately 10(8) Monte Carlo steps).  相似文献   

15.
Protein farnesylation has an important role in the regulation of plant development and signal transduction, but the exact function of this modification is not well understood. The identification of protein farnesyltransferase substrates, together with the genetic analysis of mutants that are deficient in protein farnesylation, should significantly increase our knowledge of this form of protein modification in plants.  相似文献   

16.
Zuo G  Wang J  Wang W 《Proteins》2006,63(1):165-173
The downhill folding observed experimentally for a small protein BBL is studied using off-lattice Gō-like model. Our simulations show that the downhill folding has low cooperativity and is barrierless, which is consistent with the experimental findings. As an example of comparison in detail, the two-state folding behavior of proteins, for example, protein CI2, is also simulated. By observing the formation of contacts between the residues for these two proteins, it is found that the physical origin of the downhill folding is due to the deficiency of nonlocal contacts which determine the folding cooperatively. From a statistics on contacts of the native structures of 17 well-studied proteins and the calculation of their cooperativity factors kappa2 based on folding simulations, a strong correlation between the number of nonlocal contacts per residue NN and the factors kappa2 is obtained. Protein BBL with a value of NN = 0.73 has the lowest cooperativity factor kappa2 = 0.34 among all 17 proteins. A crossover around NNc approximately 0.9 could be defined to separate the two-state folders and the downhill folder roughly. A protein would behave downhill folding when its NN = NNc. For proteins with their NN values are about (or slightly larger than) NNc, the folding behaves with low cooperativity and the barriers are small, showing a weak two-state behavior or a downhill-like behavior. Furthermore, simulations on mutants of a two-state folder show that a mutant becomes a downhill folder when its NN is reduced to a value smaller than NNc. These could enable us to identify the downhill folding or the cooperative two-state folding behavior solely from the native structures of proteins.  相似文献   

17.
Elucidating the mechanism for the fast folding of proteins is a challenging task. In our earlier work, we introduced the concept of "long-range order" and related it successfully to protein folding rates. In this article, we propose a new hypothesis for the folding of two-state all-beta proteins. The mechanism is based on the formation of a hydrophobic core, propagation of beta-strands, and the establishment of hydrogen bonds. Our hypothesis has been strengthened by the observation of a folding nucleus in beta-strands and the hydrogen-bonding network between residues in beta-strands. Our insights on protein folding show an excellent agreement with experimental observations.  相似文献   

18.
The PE_PGRS family of proteins unique to mycobacteria is demonstrated to contain multiple calcium-binding and glycine-rich sequence motifs GGXGXD/NXUX. This sequence repeat constitutes a calcium-binding parallel beta-roll or parallel beta-helix structure and is found in RTX toxins secreted by many Gram-negative bacteria. It is predicted that the highly homologous PE PGRS proteins containing multiple copies of the nona-peptide motif could fold into similar calcium-binding structures. The implication of the predicted calcium-binding property of PE PGRS proteins in the light of macrophage-pathogen interaction and pathogenesis is presented.  相似文献   

19.
The thermodynamics of proteins designed on three common folds (SH3, chymotrypsin inhibitor 2 [CI2], and protein G) is studied with a simplified C(alpha) model and compared with the thermodynamics of proteins designed on random-generated folds. The model allows to design sequences to fold within a dRMSD ranging from 1.2 to 4.2 A from the crystallographic native conformation and to study properties that are hard to be measured experimentally. It is found that the denatured state of all of them is not random but is, to different extents, partially structured. The degree of structure is more abundant for SH3 and protein G, giving rise to a weaker stability but a more efficient folding kinetics than CI2 and, even more, than the random-generated folds. Consequently, the features of the unfolded state seem to be as important in the determination of the thermodynamic properties of these proteins as the features of the native state.  相似文献   

20.
Mao J  Hauser K  Gunner MR 《Biochemistry》2003,42(33):9829-9840
The electrochemical midpoint potentials (E(m)'s) of 13 cytochromes, in globin (c, c(2), c(551), c(553)), four-helix bundle (c', b(562)), alpha beta roll (b(5)), and beta sandwich (f) motifs, with E(m)'s spanning 450 mV were calculated with multiconformation continuum electrostatics (MCCE). MCCE calculates changes in oxidation free energy when a heme-axial ligand complex is moved from water into protein. Calculated and experimental E(m)'s are in good agreement for cytochromes with His-Met and bis-His ligated hemes, where microperoxidases provide reference E(m)'s. In all cytochromes, E(m)'s are raised by 130-260 mV relative to solvated hemes by the loss of reaction field (solvation) energy. However, there is no correlation between E(m) and heme surface exposure. Backbone amide dipoles in loops or helix termini near the axial ligands raise E(m)'s, but amides in helix bundles contribute little. Heme propionates lower E(m)'s. If the propionic acids are partially protonated in the reduced cytochrome, protons are released on heme oxidation, contributing to the pH dependence of the E(m). In all cytochromes studied except b(5)'s and low potential globins, buried side chains raise E(m)'s. MCCE samples ionizable group protonation states, heme redox states, and side chain rotamers simultaneously. Globins show the largest structural changes on heme oxidation and four-helix bundles the least. Given the calculated protein-induced E(m) shift and measured cytochrome E(m) the five-coordinate, His heme in c' is predicted to have a solution E(m) between that of isolated bis-His and His-Met hemes, while the reference E(m) for His-Ntr ligands in cytochrome f should be near that of His-Met hemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号