首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
He Y  Yeh DC  Alexander P  Bryan PN  Orban J 《Biochemistry》2005,44(43):14055-14061
We describe here the solution NMR structures of two IgG binding domains with highly homologous sequences but different three-dimensional structures. The proteins, G311 and A219, are derived from the IgG binding domains of their wild-type counterparts, protein G and protein A, respectively. Through a series of site-directed mutations and phage display selections, the sequences of G311 and A219 were designed to converge to a point of high-level sequence identity while keeping their respective wild-type tertiary folds. Structures of both artificially evolved sequences were determined by NMR spectroscopy. The main chain fold of G311 can be superimposed on the wild-type alpha/beta protein G structure with a backbone rmsd of 1.4 A, and the A219 structure can be overlaid on the wild-type three-alpha-helix protein A fold also with a backbone rmsd of 1.4 A. The structure of G311, in particular, accommodates a large number of mutational changes without undergoing a change in the overall fold of the main chain. The structural differences are maintained despite a high level (59%) of sequence identity. These proteins serve as starting points for further experiments that will probe basic concepts of protein folding and conformational switching.  相似文献   

2.
Using parallel tempering simulations with high statistics, we investigate the folding and thermodynamic properties of three small proteins with distinct native folds: the all-helical 1RIJ, the all-sheet beta3s, and BBA5, which has a mixed helix-sheet fold. In all three cases, simulations with our energy function find the native structures as global minima in free energy at experimentally relevant temperatures. However, the folding process strongly differs for the three molecules, indicating that the folding mechanism is correlated with the form of the native structure.  相似文献   

3.
Van Dorn LO  Newlove T  Chang S  Ingram WM  Cordes MH 《Biochemistry》2006,45(35):10542-10553
In the Cro protein family, an evolutionary change in secondary structure has converted an alpha-helical fold to a mixture of alpha-helix and beta-sheet. P22 Cro and lambda Cro represent the ancestral all-alpha and descendant alpha+beta folds, respectively. The major structural differences between these proteins are at the C-terminal end of the domain (residues 34-56), where two alpha-helices in P22 Cro align with two beta-strands in lambda Cro. We sought to assess the possibility that smooth evolutionary transitions could have converted the all-alpha structure to the alpha+beta structure through sequences that could adopt both folds. First, we used scanning mutagenesis to identify and compare patterns of key stabilizing residues in the C-terminal regions of both P22 Cro and lambda Cro. These patterns exhibited little similarity to each other, with structurally important residues in the two proteins most often occurring at different sequence positions. Second, "hybrid scanning" studies, involving replacement of each wild-type residue in P22 Cro with the aligned wild-type residue in lambda Cro and vice versa, revealed five or six residues in each protein that strongly destabilized the other. These results suggest that key stability determinants for each Cro fold are quite different and that the P22 Cro sequence strongly favors the all-alpha structure while the lambda Cro sequence strongly favors the alpha+beta structure. Nonetheless, we were able to design a "structurally ambivalent" sequence fragment (SASF1), which corresponded to residues 39-56 and simultaneously incorporated most key stabilizing residues for both P22 Cro and lambda Cro. NMR experiments showed SASF1 to stably fold as a beta-hairpin when incorporated into the lambda Cro sequence but as a pair of alpha-helices when incorporated into P22 Cro.  相似文献   

4.

Background  

Protein misfolding is the main cause of a group of fatal neurodegenerative diseases in humans and animals. In particular, in Prion-related diseases the normal cellular form of the Prion Protein PrP (PrP C ) is converted into the infectious PrP Sc through a conformational process during which it acquires a high β-sheet content. Doppel is a protein that shares a similar native fold, but lacks the scrapie isoform. Understanding the molecular determinants of these different behaviours is important both for biomedical and biophysical research.  相似文献   

5.
The protein folding problem is often studied by comparing the mechanisms of proteins sharing the same structure but different sequence. The recent design of the two proteins GA88 and GB88, displaying different structures and functions while sharing 88% sequence identity (49 out of 56 amino acids), allows the unique opportunity for a complementary approach. At which stage of its folding pathway does a protein commit to a given topology? Which residues are crucial in directing folding mechanisms to a given structure? By using a combination of biophysical and computational techniques, we have characterized the folding of both GA88 and GB88. We show that, contrary to expectation, GB88, characterized by a native α+β fold, displays in the denatured state a content of native-like helical structure greater than GA88, which is all-α in its native state. Both experiments and simulations indicate that such residual structure may be tuned by changing pH. Thus, despite the high sequence identity, the folding pathways for these two proteins appear to diverge as early as in the denatured state. Our results suggest a mechanism whereby protein topology is committed very early along the folding pathway, being imprinted in the residual structure of the denatured state.  相似文献   

6.
7.
Alphabet size and informational entropy, two formal measures of sequence complexity, are herein applied to two prior studies on the folding of minimal proteins. These measures show a designed four-helix bundle to be unlike its natural counterparts but rather more like a coiled-coil dimer. Segments from a simplified sarc homology 3 domain and more than 2000000 segments from globular proteins both have lower bounds for alphabet size of 10 and for entropy near 2.9. These values are therefore suggested to be necessary and sufficient for folding into globular proteins having both rigid side chain packing and biological function.  相似文献   

8.
Folding and association of proteins   总被引:62,自引:0,他引:62  
  相似文献   

9.
Kim SY  Lee J  Lee J 《Biophysical chemistry》2005,115(2-3):195-200
Understanding how a protein folds is a long-standing challenge in modern science. We have used an optimized atomistic model (united-residue force field) to simulate folding of small proteins of various structures: HP-36 (alpha protein), protein A (beta), 1fsd (alpha+beta), and betanova (beta). Extensive Monte Carlo folding simulations (ten independent runs with 10(9) Monte Carlo steps at a temperature) starting from non-native conformations are carried out for each protein. In all cases, proteins fold into their native-like conformations at appropriate temperatures, and glassy transitions occur at low temperatures. To investigate early folding trajectories, 200 independent runs with 10(6) Monte Carlo steps are also performed at a fixed temperature for a protein. There are a variety of possible pathways during non-equilibrium early processes (fast process, approximately 10(4) Monte Carlo steps). Finally, these pathways converge to the point unique for each protein. The convergence point of the early folding pathways can be determined only by direct folding simulations. The free energy surface, an equilibrium thermodynamic property, dictates the rest of the folding (slow process, approximately 10(8) Monte Carlo steps).  相似文献   

10.
Folding and association of proteins   总被引:2,自引:0,他引:2  
The acquisition of the native three-dimensional structure of proteins consists of sequential folding reactions with well-populated and well-defined structural intermediates. For small proteins successive stages in the folding have been resolved kinetically; these suggest that H-bonded elements of secondary structure are formed first, followed by folding steps to generate the complete tertiary structure.The rate determining step in the folding of a number of small proteins has been shown to be proline cis tram isomerization. As indicated by experiments using fast kinetics the overall folding mechanism, even in a small single-domain molecule like ribonuclease, involves more than one intermediate.Large protein molecules contain domains which may fold independently. For multi-domain proteins, the pathway of folding therefore involves folding by parts, followed by merging of folded domains.In the case of assembly systems (e.g., oligomeric or multimeric enzymes) folding and association have to be subtly interconnected with respect to the time scale, since the correct assembly of subunits requires their proper folding. In this sense the initial function of oligomeric proteins is their own self-assembly. The corresponding mechanism underlying the spontaneous formation of the native quaternary structure of oligomeric proteins must be the consecutive folding and association of the constituent polypeptide chains.Equilibrium and kinetic studies have been concerned with a number of dimeric, tetrameric and multimeric enzymes, using enzymatic activity to measure structure formation: alcohol dehydrogenase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, lactic dehydrogenase, malic dehydrogenase, pyruvate dehydrogenase, triose phosphate isomerase, tryptophan synthase.These experiments make use of the reversibility of protein denaturation, focusing on refolding and reassociation rather than folding and association, because there is no direct approach to structural investigations of the nascent polypeptide chain in vivo.Optimum conditions of reconstitution yield up to 100% reactivation. After separation of irreversibly denatured protein, reconstituted and native protein turn out to be indistinguishable. The major side reaction leading to wrong aggregation is due to competition between folding and association.Due to the high specificity of the association reaction chimeric species are not observed, and multimeric systems containing different component enzymes show specific assembly.The kinetics of reconstitution generally obey an irreversible sequential first- order/second-order mechanism involving inactive monomers; only in the case of aldolase is subunit activity suggested. For a number of oligomeric enzymes renaturation from various denaturants, in the absence or presence of coenzyme is characterized by identical kinetics. For glyceraldehyde-3-phosphate dehydrogenase, however, free NAD as well as a covalently bound NAD-analog are found to enhance the reconstitution.In the case of assembly structures exceeding the dimer, the observed consecutive folding/association mechanism does not allow us to decide whether the observed second order processes belong to the formation of the dimer or tetramer. Chemical cross-linking and hybridization techniques allow the equilibrium state and the assembly kinetics of oligomeric systems to be analyzed quantitatively. Using this method, e.g., for lactic dehydrogenase, it is obvious that dissociation leads to the homogeneous monomer, while tetramer formation is found to parallel reactivation.In general, equilibrium and kinetic experiments prove that full enzymatic activity requires association.In the case of multisubunit enzymes (multienzyme complexes) heterologous interactions of the component enzymes seem to be involved in the rate determining (first order) reshuffling processes which generate catalytic activity in the overall enzymatic reaction.Dedicated to Professor Ernst M. Helmreich on the occasion of his sixtieth birthday  相似文献   

11.
Elucidating the mechanism for the fast folding of proteins is a challenging task. In our earlier work, we introduced the concept of "long-range order" and related it successfully to protein folding rates. In this article, we propose a new hypothesis for the folding of two-state all-beta proteins. The mechanism is based on the formation of a hydrophobic core, propagation of beta-strands, and the establishment of hydrogen bonds. Our hypothesis has been strengthened by the observation of a folding nucleus in beta-strands and the hydrogen-bonding network between residues in beta-strands. Our insights on protein folding show an excellent agreement with experimental observations.  相似文献   

12.
Mao J  Hauser K  Gunner MR 《Biochemistry》2003,42(33):9829-9840
The electrochemical midpoint potentials (E(m)'s) of 13 cytochromes, in globin (c, c(2), c(551), c(553)), four-helix bundle (c', b(562)), alpha beta roll (b(5)), and beta sandwich (f) motifs, with E(m)'s spanning 450 mV were calculated with multiconformation continuum electrostatics (MCCE). MCCE calculates changes in oxidation free energy when a heme-axial ligand complex is moved from water into protein. Calculated and experimental E(m)'s are in good agreement for cytochromes with His-Met and bis-His ligated hemes, where microperoxidases provide reference E(m)'s. In all cytochromes, E(m)'s are raised by 130-260 mV relative to solvated hemes by the loss of reaction field (solvation) energy. However, there is no correlation between E(m) and heme surface exposure. Backbone amide dipoles in loops or helix termini near the axial ligands raise E(m)'s, but amides in helix bundles contribute little. Heme propionates lower E(m)'s. If the propionic acids are partially protonated in the reduced cytochrome, protons are released on heme oxidation, contributing to the pH dependence of the E(m). In all cytochromes studied except b(5)'s and low potential globins, buried side chains raise E(m)'s. MCCE samples ionizable group protonation states, heme redox states, and side chain rotamers simultaneously. Globins show the largest structural changes on heme oxidation and four-helix bundles the least. Given the calculated protein-induced E(m) shift and measured cytochrome E(m) the five-coordinate, His heme in c' is predicted to have a solution E(m) between that of isolated bis-His and His-Met hemes, while the reference E(m) for His-Ntr ligands in cytochrome f should be near that of His-Met hemes.  相似文献   

13.
The PE_PGRS family of proteins unique to mycobacteria is demonstrated to contain multiple calcium-binding and glycine-rich sequence motifs GGXGXD/NXUX. This sequence repeat constitutes a calcium-binding parallel beta-roll or parallel beta-helix structure and is found in RTX toxins secreted by many Gram-negative bacteria. It is predicted that the highly homologous PE PGRS proteins containing multiple copies of the nona-peptide motif could fold into similar calcium-binding structures. The implication of the predicted calcium-binding property of PE PGRS proteins in the light of macrophage-pathogen interaction and pathogenesis is presented.  相似文献   

14.
Alexander PA  Rozak DA  Orban J  Bryan PN 《Biochemistry》2005,44(43):14045-14054
To better understand how amino acid sequences specify unique tertiary folds, we have used random mutagenesis and phage display selection to evolve proteins with a high degree of sequence identity but different tertiary structures (homologous heteromorphs). The starting proteins in this evolutionary process were the IgG binding domains of streptococcal protein G (G(B)) and staphylococcal protein A (A(B)). These nonhomologous domains are similar in size and function but have different folds. G(B) has an alpha/beta fold, and A(B) is a three-helix bundle (3-alpha). IgG binding function is used to select for mutant proteins which retain the correct tertiary structure as the level of sequence identity is increased. A detailed thermodynamic analysis of the folding reactions and binding reactions for a pair of homologous heteromorphs (59% identical) is presented. High-resolution NMR structures of the pair are presented by He et al. [(2005) Biochemistry 44, 14055-14061]. Because the homologous but heteromorphic proteins are identical at most positions in their sequence, their essential folding signals must reside in the positions of nonidentity. Further, the thermodynamic linkage between folding and binding is used to assess the propensity of one sequence to adopt two unique folds.  相似文献   

15.
An important signaling pathway for disease resistance in tomato involves the R gene product Pto which phosphorylates Ptil, a downstream member of this signaling cascade. Both Pto and Pti1 are Ser/Thr protein kinases capable of autophosphorylation in vitro. Two soybean (Glycine max L. Merr. var. Hobbit) cDNAs (sPti1a and sPti1b) were cloned and sequenced and found to each have 78% amino acid sequence identity with tomato Pti1. Glutathione S-transferase fusions of sPti1a and b expressed in Escherichia coli did not autophosphorylate in vitro, but were efficiently phosphorylated by tomato Pto. Replacement of Tyr197 with an Asp that is invariant at this position in other protein kinases did not restore autophosphorylation activity to sPti1a or b. Tyr197 was also present in the Pti1 homologues of three distant relatives of G. max. Together these results suggest that soybean Pti1 might function in a Pto-like signaling pathway that does not require Pti1 kinase activity.  相似文献   

16.
We recently introduced a physical model [T.X. Hoang, A. Trovato, F. Seno, J.R. Banavar, A. Maritan, Geometry and symmetry pre-sculpt the free energy landscape of proteins. Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 7960-7964, J.R. Banavar, T.X. Hoang, A. Maritan, F. Seno, A. Trovato, A unified perspective on proteins-a physics approach. Phys. Rev., E 70 (2004) 041905] for proteins which incorporates, in an approximate manner, several key features such as the inherent anisotropy of a chain molecule, the geometrical and energetic constraints placed by the hydrogen bonds and sterics, and the role played by hydrophobicity. Within this framework, marginally compact conformations resembling the native state folds of proteins emerge as broad competing minima in the free energy landscape even for a homopolymer. Here we show how the introduction of sequence heterogeneity using a simple scheme of just two types of amino acids, hydrophobic (H) and polar (P), and sequence design allows a selected putative native fold to become the free energy minimum at low temperature. The folding transition exhibits thermodynamic cooperativity, if one neglects the degeneracy between two different low energy conformations sharing the same fold topology.  相似文献   

17.
We have determined the solution structures of recombinant domain 1 and native domain 6 of the multi-domain Kazal-type serine proteinase inhibitor LEKTI using multi-dimensional NMR spectroscopy. While two of the 15 potential inhibitory LEKTI domains contain three disulfide bonds typical of Kazal-type inhibitors, the remaining 13 domains have only two of these disulfide bridges. Therefore, they may represent a novel type of serine proteinase inhibitor. The first and the sixth LEKTI domain, which have been isolated from human blood ultrafiltrate, belong to this group. In spite of sharing the same disulfide pattern and a sequence identity of about 35% from the first to the fourth cysteine, the two proteins show different structures in this region. The three-dimensional structure of domain 6 consists of two helices and a beta-hairpin structure, and closely resembles the three-dimensional fold of classical Kazal-type serine proteinase inhibitors including the inhibitory binding loop. Domain 6 has been shown to be an efficient, but non-permanent serine proteinase inhibitor. The backbone geometry of its canonical loop is not as well defined as the remaining structural elements, providing a possible explanation for its non-permanent inhibitory activity. We conclude that domain 6 belongs to a subfamily of classical Kazal-type inhibitors, as the third disulfide bond and a third beta-strand are missing. The three-dimensional structure of domain 1 shows three helices and a beta-hairpin, but the central part of the structure differs remarkably from that of domain 6. The sequence adopting hairpin structure in domain 6 exhibits helical conformation in domain 1, and none of the residues within the putative P3 to P3' stretch features backbone angles that resemble those of the canonical loop of known proteinase inhibitors. No proteinase has been found to be inhibited by domain 1. We conclude that domain 1 adopts a new protein fold and is no canonical serine proteinase inhibitor.  相似文献   

18.
Acidic fibroblast growth factors from human (hFGF-1) and newt (nFGF-1) (Notopthalamus viridescens) are 16-kDa, all beta-sheet proteins with nearly identical three-dimensional structures. Guanidine hydrochloride (GdnHCl)-induced unfolding of hFGF-1 and nFGF-1 monitored by fluorescence and far-UV circular dichroism (CD) shows that the FGF-1 isoforms differ significantly in their thermodynamic stabilities. GdnHCl-induced unfolding of nFGF-1 follows a two-state (Native state to Denatured state(s)) mechanism without detectable intermediate(s). By contrast, unfolding of hFGF-1 monitored by fluorescence, far-UV circular dichroism, size-exclusion chromatography, and NMR spectroscopy shows that the unfolding process is noncooperative and proceeds with the accumulation of stable intermediate(s) at 0.96 M GdnHCl. The intermediate (in hFGF-1) populated maximally at 0.96 M GdnHCl has molten globule-like properties and shows strong binding affinity to the hydrophobic dye, 1-Anilino-8-naphthalene sulfonate (ANS). Refolding kinetics of hFGF-1 and nFGF-1 monitored by stopped-flow fluorescence reveal that hFGF-1 and nFGF-1 adopts different folding mechanisms. The observed differences in the folding/unfolding mechanisms of nFGF-1 and hFGF-1 are proposed to be either due to differential stabilizing effects of the charged denaturant (Gdn(+) Cl(-)) on the intermediate state(s) and/or due to differences in the structural interactions stabilizing the native conformation(s) of the FGF-1 isoforms.  相似文献   

19.
Beta-barrel membrane proteins occur in the outer membranes of Gram-negative bacteria, mitochondria and chloroplasts. The membrane-spanning sequences of beta-barrel membrane proteins are less hydrophobic than those of alpha-helical membrane proteins, which is probably the main reason why completely different folding and membrane assembly pathways have evolved for these two classes of membrane proteins. Some beta-barrel membrane proteins can be spontaneously refolded into lipid bilayer model membranes in vitro. They may also have this ability in vivo although lipid and protein chaperones likely assist with their assembly in appropriate target membranes. This review summarizes recent work on the thermodynamic stability and the mechanism of membrane insertion of beta-barrel membrane proteins in lipid model and biological membranes. How lipid compositions affect folding and assembly of beta-barrel membrane proteins is also reviewed. The stability of these proteins in membranes is not as large as previously thought (<10 kcal/mol) and is modulated by elastic forces of the lipid bilayer. Detailed kinetic studies indicate that beta-barrel membrane proteins fold in distinct steps with several intermediates that can be characterized in vitro. Formation of the barrel is synchronized with membrane insertion and all beta-hairpins insert simultaneously in a concerted pathway.  相似文献   

20.
Raman optical activity (ROA) spectra have been measured for the proteins hen phosvitin, yeast invertase, bovine alpha-casein, soybean Bowman-Birk protease inhibitor, and rabbit Cd(7)-metallothionein, all of which have irregular folds in the native state. The results show that ROA is able to distinguish between two types of disorder. Specifically, invertase, alpha-casein, the Bowman-Birk inhibitor, and metallothionein appear to possess a "static" type of disorder similar to that in disordered states of poly(L-lysine) and poly(L-glutamic acid); whereas phosvitin appears to possess a more "dynamic" type of disorder similar to that in reduced (unfolded) lysozyme and ribonuclease A and also in molten globule protein states. In the delimiting cases, static disorder corresponds to that found in loops and turns within native proteins with well-defined tertiary folds that contain sequences of residues with fixed but nonrepetitive phi,psi angles; and dynamic disorder corresponds to that envisaged for the model random coil in which there is a distribution of Ramachandran phi,psi angles for each amino acid residue, giving rise to an ensemble of interconverting conformers. In both cases there is a propensity for the phi,psi angles to correspond to the alpha, beta and poly(L-proline) II (PPII) regions of the Ramachandran surface, as in native proteins with well-defined tertiary folds. Our results suggest that, with the exception of invertase and metallothionein, an important conformational element present in the polypeptide and protein states supporting the static type of disorder is that of the PPII helix. Long sequences of relatively unconstrained PPII helix, as in alpha-casein, may impart a plastic (rheomorphic) character to the structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号