首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The experiments described were directed toward understanding relationships between mouse satellite DNA, sister chromatid pairing, and centromere function. Electron microscopy of a large mouse L929 marker chromosome shows that each of its multiple constrictions is coincident with a site of sister chromatid contact and the presence of mouse satellite DNA. However, only one of these sites, the central one, possesses kinetochores. This observation suggests either that satellite DNA alone is not sufficient for kinetochore formation or that when one kinetochore forms, other potential sites are suppressed. In the second set of experiments, we show that highly extended chromosomes from Hoechst 33258-treated cells (Hilwig, I., and A. Gropp, 1973, Exp. Cell Res., 81:474-477) lack kinetochores. Kinetochores are not seen in Miller spreads of these chromosomes, and at least one kinetochore antigen is not associated with these chromosomes when they were subjected to immunofluorescent analysis using anti-kinetochore scleroderma serum. These data suggest that kinetochore formation at centromeric heterochromatin may require a higher order chromatin structure which is altered by Hoechst binding. Finally, when metaphase chromosomes are subjected to digestion by restriction enzymes that degrade the bulk of mouse satellite DNA, contact between sister chromatids appears to be disrupted. Electron microscopy of digested chromosomes shows that there is a significant loss of heterochromatin between the sister chromatids at paired sites. In addition, fluorescence microscopy using anti-kinetochore serum reveals a greater inter-kinetochore distance than in controls or chromosomes digested with enzymes that spare satellite. We conclude that the presence of mouse satellite DNA in these regions is necessary for maintenance of contact between the sister chromatids of mouse mitotic chromosomes.  相似文献   

2.
The fluorescence of human lymphocyte chromosomes stained with sulfhydryl group-specific fluorochromes is markedly enhanced by a mild near-ultraviolet irradiation pretreatment, indicating breakage of protein disulfide bonds. When metaphase preparations of cells cultured in the presence of BrdU during two cell cycles are irradiated and subsequently stained with the sulfhydryl group-specific fluorescent reagents used in this study, a differential fluorescence of sister chromatids is observed. After staining with the DNA-specific fluorochrome DAPI an opposite pattern of lateral differentiation appears. It can be concluded that the chromatid containing bifilarly BrdU-substituted DNA has a higher content of sulfhydryl groups than the chromatid containing unifilarly BrdU-substituted DNA. This implies a more pronounced effect of breakage of disulfide bonds in the chromatid with the higher degree of BrdU-substitution. BrdU-containing chromosomes pretreated with the mild near-ultraviolet irradiation procedure used by us, do not show any differentiation of sister chromatids after Feulgen staining. Using sulfhydryl group-specific reagents, differential fluorescence of sister chromatids could still be induced by irradiation with near-ultraviolet light after the complete removal of DNA from the chromosomes by incubation with DNase I. Thus, the protein effect of irradiation of BrdU-containing chromosomes takes place independently of what occurs to DNA.Our results indicate that subsequent to the primary alteration of chromatin structure caused by the incorporation of BrdU into DNA, breakage of disulfide bonds of chromosomal proteins might play an important role in bringing about differential staining of sister chromatids, at least for those procedures that use irradiation as a pretreatment or prolonged illumination during microscopic examination.  相似文献   

3.
We have identified a regulator of sister chromatid cohesion in a screen for cell cycle-controlled proteins. This 35 kDa protein is degraded through anaphase-promoting complex (APC)-dependent ubiquitination in G1. The protein is nuclear in interphase cells, dispersed from the chromatin in mitosis, and interacts with the cohesin complex. In Xenopus embryos, overexpression of the protein causes failure to resolve and segregate sister chromatids in mitosis and an increase in the level of cohesin associated with metaphase chromosomes. In cultured cells, depletion of the protein causes mitotic arrest and complete failure of sister chromatid cohesion. This protein is thus an essential, cell cycle-dependent mediator of sister chromatid cohesion. Based on sequence analysis, this protein has no apparent orthologs outside of the vertebrates. We speculate that the protein, which we have named sororin, regulates the ability of the cohesin complex to mediate sister chromatid cohesion, perhaps by altering the nature of the interaction of cohesin with the chromosomes.  相似文献   

4.
Immunocytology of chiasmata and chromosomal disjunction at mouse meiosis   总被引:13,自引:0,他引:13  
Immunocytological and in situ hybridization evidence supports the hypothesis that at meiosis of chiasmate organisms, chromosomal disjunction and reductional segregation of sister centromeres are integrated with synaptonemal complex functions. The Mr 125,000 synaptic protein, Syn1, present between cores of paired homologous chromosomes during pachytene of meiotic prophase, is lost from synaptonemal complexes coordinately with homolog separation at diplotene. Separation is constrained by exchanges between non-sister chromatids, the chiasmata. We show that the Mr 30,000 chromosomal core protein, Cor1, associated with sister chromatid pairs, remains an axial component of post-pachytene chromosomes until metaphase I. We demonstrate that at this time the chromatin loops are still attached to their cores. A reciprocal exchange event between two homologous non-sister chromatids is therefore immobilized by anchorage of sister chromatids to their respective cores. Cores thus contribute to the sister chromatid cohesiveness required for maintenance of chiasmata and proper chromosomal disjunction. Cor1 protein accumulates in juxtaposition to pairs of sister centromeres during metaphase I. Presumably, independent movement of sister centromeres at anaphase I is restricted by Cor1 anchorage. That reductional separation of sister centromeres is mediated by Cor1, is supported by the dissociation of Cor1 from separating sister centromeres at anaphase II and by its absence from mitotic anaphases.  相似文献   

5.
Mitotic chromosome structure and pathways of mitotic condensation remain unknown. The limited amount of structural data on mitotic chromosome structure makes it impossible to distinguish between several mutually conflicting models. Here we used a Chinese hamster ovary cell line with three different lac operator-tagged vector insertions distributed over an ∼1 μm chromosome arm region to determine positioning reproducibility, long-range correlation in large-scale chromatin folding, and sister chromatid symmetry in minimally perturbed, metaphase chromosomes. The three-dimensional positions of these lac operator-tagged spots, stained with lac repressor, were measured in isolated metaphase chromosomes relative to the central chromatid axes labeled with antibodies to topoisomerase II. Longitudinal, but not axial, positioning of spots was reproducible but showed intrinsic variability, up to ∼300 nm, between sister chromatids. Spot positions on the same chromatid were uncorrelated, and no correlation or symmetry between the positions of corresponding spots on sister chromatids was detectable, showing the absence of highly ordered, long-range chromatin folding over tens of mega-basepairs. Our observations are in agreement with the absence of any regular, reproducible helical, last level of chromosome folding, but remain consistent with any hierarchical folding model in which irregularity in folding exists at one or multiple levels.  相似文献   

6.
BACKGROUND: The linkage between duplicated chromosomes (sister chromatids) is established during S phase by the action of cohesin, a multisubunit complex conserved from yeast to humans. Most cohesin dissociates from chromosome arms when the cell enters mitotic prophase, leading to the formation of metaphase chromosomes with two cytologically discernible chromatids. This process is known as sister-chromatid resolution. Although two mitotic kinases have been implicated in this process, it remains unknown exactly how the cohesin-mediated linkage is destabilized at a mechanistic level. RESULTS: The wings apart-like (Wapl) protein was originally identified as a gene product that potentially regulates heterochromatin organization in Drosophila melanogaster. We show that the human ortholog of Wapl is a cohesin-binding protein that facilitates cohesin's timely release from chromosome arms during prophase. Depletion of Wapl from HeLa cells causes transient accumulation of prometaphase-like cells with chromosomes that display poorly resolved sister chromatids with a high level of cohesin. Reduction of cohesin relieves the Wapl-depletion phenotype, and depletion of Wapl rescues premature sister separation observed in Sgo1-depleted or Esco2-depleted cells. Conversely, overexpression of Wapl causes premature separation of sister chromatids. Wapl physically associates with cohesin in HeLa-cell nuclear extracts. Remarkably, in vitro reconstitution experiments demonstrate that Wapl forms a stoichiometric, ternary complex with two regulatory subunits of cohesin, implicating its noncatalytic function in inactivating cohesin's ability to interact with chromatin. CONCLUSIONS: Wapl is a new regulator of sister chromatid resolution and promotes release of cohesin from chromosomes by directly interacting with its regulatory subunits.  相似文献   

7.
The direct staining of BUdR-substituted Chinese hamster chromosomes in a 4Na-EDTA-Giemsa solution resulted in a B-dark type of sister chromatid differential staining (SCD) in which bifilarly substituted chromatids stained dark. On the other hand, when BUdR-substituted chromosomes were pretreated with a 4Na-EDTA solution and then stained with Giemsa, a B-light type SCD was obtained in which bifilarly substituted chromatids stained light.  相似文献   

8.
The effect of cell cycle mutation ff3 on chromosome segregation was studied on fixed cells of neural ganglia. The cell distributions by diameter of interphase nuclei and by distance between sister chromatid sets were compared at anaphase and telophase. In the control wild-type strain Lausenne, the cell distribution by distance between sister chromatids in anaphase was similar to their distribution by nuclear size. The mean distance between segregating chromatids at anaphase (lcp) coincided with the mean diameter of interphase nuclei (dcp) and was 8.3 microns. Cells passed to telophase when chromatids were at least 10 microns apart. The mutant ff3 strain differed from the control strain Lausenne in cell distribution by interphase nuclear diameter and distance between sister chromatids in anaphase; the mean nuclear diameter and mean distance between segregating chromatids similarly increased to 9.3 microns. A specific feature of mitosis in mutant strain ff3 was a premature beginning of telophase chromatin reorganization. This caused the occurrence of cells with abnormally short (less then the interphase nuclear diameter) distance between sister chromatid sets in telophase but not in anaphase, as if these cells had passed from anaphase to telophase prematurely, during the chromatid movement toward poles in anaphase A.  相似文献   

9.
In mitosis, cohesion appears to be present along the entire length of the chromosome, between centromeres and along chromosome arms. By metaphase, sister chromatids appear as two adjacent but visibly distinct rods. Sister chromatids separate from one another in anaphase by releasing all chromosome cohesion. This is different from meiosis I, in which pairs of sister chromatids separate from one another, moving to each spindle pole by releasing cohesion only between sister chromatid arms. Then, in anaphase II, sister chromatids separate by releasing centromere cohesion. Our objective was to find where cohesion is present or absent on chromosomes in mitosis and meiosis and when and how it is released. We determined cohesion directly by pulling on chromosomes with two micromanipulation needles. Thus, we could distinguish for the first time between apparent doubleness as seen in the microscope and physical separability. We found that apparent doubleness can be deceiving: Visibly distinct sister chromatids often cannot be separated. We also demonstrated that cohesion is released gradually in anaphase, with chromosomes looking as if they were unzipped or pulled apart. This implied that tension from spindle forces was required, but we showed directly that no tension was necessary to pull chromatids apart.  相似文献   

10.
Lateral asymmetry in human constitutive heterochromatin   总被引:7,自引:2,他引:7  
Human lymphocytes were grown for one replication cycle in BrdU, stained with 33258 Hoechst, exposed to UV light and subsequently treated with 2 x SSC and stained with Giemsa. This technique differentially stains the constitutive heterochromatin of chromosomes 1, 9, 15, 16, and the Y. In the heterochromatin of chromosome 9 both sister chromatids stained darkly and symmetrically but in the other four chromosomes the heterochromatin showed lateral asymmetry, one chromatid being darkly stained while its sister chromatid was as pale or paler than the rest of the chromosome. The lateral asymmetry is presumed to reflect an underlying asymmetry in distribution of thymine between the two strands of the DNA duplex in the satellite DNA component of the chromosomes. In some number 1 chromosomes compound lateral asymmetry was seen; darkly staining material was present on both sister chromatids although at any given point lateral asymmetry was maintained so that if one chromatid stained darkly the corresponding point on the sister chromatid was very pale. The pattern of compound lateral asymmetry varied among the number 1 chromosomes studied but was constant for any one homologue from one individual. This technique reveals a previously unsuspected type of polymorphism within the constitutive heterochromatin of man.  相似文献   

11.
Frank Uhlmann 《EMBO reports》2009,10(10):1095-1102
Sister chromatid cohesion is the basis for the recognition of chromosomal DNA replication products for their bipolar segregation in mitosis. Fundamental to sister chromatid cohesion is the ring‐shaped cohesin complex, which is loaded onto chromosomes long before the initiation of DNA replication and is thought to hold replicated sister chromatids together by topological embrace. What happens to cohesin when the replication fork approaches, and how cohesin recognizes newly synthesized sister chromatids, is poorly understood. The characterization of a number of cohesion establishment factors has begun to provide hints as to the reactions involved. Cohesin is a member of the evolutionarily conserved family of Smc subunit‐based protein complexes that contribute to many aspects of chromosome biology by mediating long‐range DNA interactions. I propose that the establishment of cohesion equates to the selective stabilization of those cohesin‐mediated DNA interactions that link sister chromatids in the wake of replication forks.  相似文献   

12.
During meiosis, homologues become juxtaposed and synapsed along their entire length. Mutations in the cohesin complex disrupt not only sister chromatid cohesion but also homologue pairing and synaptonemal complex formation. In this study, we report that Pds5, a cohesin-associated protein known to regulate sister chromatid cohesion, is required for homologue pairing and synapsis in budding yeast. Pds5 colocalizes with cohesin along the length of meiotic chromosomes. In the absence of Pds5, the meiotic cohesin subunit Rec8 remains bound to chromosomes with only minor defects in sister chromatid cohesion, but sister chromatids synapse instead of homologues. Double-strand breaks (DSBs) are formed but are not repaired efficiently. In addition, meiotic chromosomes undergo hypercondensation. When the mitotic cohesin subunit Mcd1 is substituted for Rec8 in Pds5-depleted cells, chromosomes still hypercondense, but synapsis of sister chromatids is abolished. These data suggest that Pds5 modulates the Rec8 activity to facilitate chromosome morphological changes required for homologue synapsis, DSB repair, and meiotic chromosome segregation.  相似文献   

13.
We have studied two aspects of the process of sister chromatid separation in the Drosophila melanogaster neuroblasts. First, we analyzed the requirement of a functional spindle for sister chromatid separation to take place using microtubule depolymerizing drugs such as colchicine or a reversible analogue (MTC). Incubation of this tissue in colchicine causes the cells to block irreversibly at metaphase and no significant levels of sister chromatid separation were observed even after long periods of incubation. Exposure of neuroblasts to MTC also causes cells to block at metaphase, but after reversion most of the cells enter anaphase and are thus able to complete sister chromatid separation. These results imply that a functional spindle is required for sister chromatid separation. Second, we studied the role of heterochromatin during chromatid pairing and subsequent separation in chromosomes which carry either one or two extra pieces of heterochromatin. The results indicate that sister chromatids establish strong pairing along the translocated heterochromatin. During the early stages of anaphase, these chromosomes separate first the centromeric region and later the regions bearing extra heterochromatin. These results indicate that constitutive heterochromatin plays an important role for sister chromatid pairing and might be involved in the process of separation.  相似文献   

14.
Automatic measurement of sister chromatid exchange frequency.   总被引:1,自引:0,他引:1  
An automatic system for detecting and counting sister chromatid exchanges in human chromosomes has been developed. Metaphase chromosomes from lymphocytes which had incorporated 5-bromodeoxyuridine for two replication cycles were treated with the dye 33258 Hoechst and photodegraded so that the sister chromatids exhibited differential Giemsa staining. A computer-controlled television-microscope system was used to acquire digitized metaphase spread images by direct scanning of microscope slides. Individual objects in the images were identified by a thresholding procedure. The probability that each object was a single, separate chromosome was estimated from size and shape measurements. An analysis of the spatial relationships of the dark-chromatid regions of each object yielded a set of possible exchange locations and estimated probabilities that such locations corresponded to sister chromatid exchanges. A normalized estimate of the sister chromatid exchange frequency was obtained by summing the joint probabilities that a location contained an exchange within a single, separate chromosome over the set of chromosomes from one or more cells and dividing by the expected value of the total chromosome area analyzed. Comparison with manual scoring of exchanges showed satisfactory agreement up to levels of approximately 30 sister chromatid exchanges/cell, or slightly more than twice control levels. The processing time for this automated sister chromatid exchange detection system was comparable to that of manual scoring.  相似文献   

15.
Cohesin, an SMC (structural maintenance of chromosomes) protein-containing complex, governs several important aspects of chromatin dynamics, including the essential chromosomal process of sister chromatid cohesion. The exact mechanism by which cohesin achieves the bridging of sister chromatids is not known. To elucidate this mechanism, we reconstituted a recombinant cohesin complex and investigated its binding to DNA fragments corresponding to natural chromosomal sites with high and low cohesin occupancy in vivo. Cohesin displayed uniform but nonspecific binding activity with all DNA fragments tested. Interestingly, DNA fragments with high occupancy by cohesin in vivo showed strong nucleosome positioning in vitro. We therefore utilized a defined model chromatin fragment (purified reconstituted dinucleosome) as a substrate to analyze cohesin interaction with chromatin. The four-subunit cohesin holocomplex showed a distinct chromatin binding activity in vitro, whereas the Smc1p-Smc3p dimer was unable to bind chromatin. Histone tails and ATP are dispensable for cohesin binding to chromatin in this reaction. A model for cohesin association with chromatin is proposed.  相似文献   

16.
Is isolabeling a false image?   总被引:1,自引:0,他引:1  
Isolabeling in Chinese hamster chromosomes was studied by using a new method which enabled clear demarcation of sister chromatids without the usage of tritium label. The method involved continuous labeling of cells with 5-bromodeoxyuridine and staining of fixed chromosomes with acridine orange. Isolabeling was easily observed in chromosome preparations processed according to the conventional autoradiographic methods, especially in cells treated with ethyl methanesulphonate, and its frequency was dependent on the concentration of the drug. On the other hand, no isolabeling was detected in preparations made by the new method, but exchanges of short segments of sister chromatids were observed frequently, depending upon the concentration of ethyl methanesulphonate. These results strongly suggest that isolabeling observable in autoradiographs is a consequence of sister chromatid exchanges combined with image spread that attends autoradiography.  相似文献   

17.
During S phase, not only does DNA have to be replicated, but also newly synthesized DNA molecules have to be connected with each other. This sister chromatid cohesion is essential for the biorientation of chromosomes on the mitotic or meiotic spindle, and is thus an essential prerequisite for chromosome segregation. Cohesion is mediated by cohesin complexes that are thought to embrace sister chromatids as large rings. Cohesin binds to DNA dynamically before DNA replication and is converted into a stably DNA-bound form during replication. This conversion requires acetylation of cohesin, which in vertebrates leads to recruitment of sororin. Sororin antagonizes Wapl, a protein that is able to release cohesin from DNA, presumably by opening the cohesin ring. Inhibition of Wapl by sororin therefore “locks” cohesin rings on DNA and allows them to maintain cohesion for long periods of time in mammalian oocytes, possibly for months or even years.DNA replication during the synthesis (S) phase generates identical DNA molecules, which, in their chromatinized form, are called sister chromatids. The pairs of sister chromatids remain united as part of one chromosome during the subsequent gap (G2) phase and during early mitosis, in prophase, prometaphase, and metaphase. During these stages of mitosis chromosomes condense, in most eukaryotes the nuclear envelope breaks down, and in all species chromosomes are ultimately attached to both poles of the mitotic spindle. Only once this biorientation has been achieved for all chromosomes, the sister chromatids are separated from each other in anaphase and transported toward opposite spindle poles of the mother cell, enabling its subsequent division into two genetically identical daughter cells.This series of events critically depends on the fact that sister chromatids remain physically connected with each other from S phase until metaphase. This physical connection, called sister chromatid cohesion, opposes the pulling forces that are generated by microtubules that attach to kinetochores and thereby enables the biorientation of chromosomes on the mitotic spindle (Tanaka et al. 2000b). Without cohesion, sister chromatids could therefore not be segregated symmetrically between the forming daughter cells, resulting in aneuploidy. For the same reasons, cohesion is essential for chromosome segregation in meiosis I and meiosis II. Cohesion defects in human oocytes can lead to aneuploidy, which is thought to be the major cause of spontaneous abortion, because only a few types of aneuploidy are compatible with viability, such as trisomy 21 (Down syndrome), trisomy 18 (Edwards syndrome), and trisomy 13 (Patau syndrome) (Hunt and Hassold 2010). Studying the mechanisms of cohesion is therefore essential for understanding how the genome is passed properly from one cell generation to the next.In addition, sister chromatid cohesion facilitates the repair of DNA double-strand breaks in cells that have replicated their DNA, where such breaks can be repaired by a homologous recombination mechanism that uses the undamaged sister chromatid as a template (for review, see Watrin et al. 2006). Furthermore, mutations in the proteins that are required for sister chromatid cohesion can cause defects in chromatin structure and gene regulation, and can in rare cases lead to congenital developmental disorders, called Cornelia de Lange syndrome, Roberts/SC Phocomelia syndrome, and Warsaw Breakage syndrome (for review, see Mannini et al. 2010).  相似文献   

18.
High concentrations of okadaic acid, sufficient to inhibit phosphatase 1 and 2A activities, induces formation of diplochromosomes in HeLa cells. It has been shown that this is due to a failure of sister chromatid separation in earlier mitosis in the presence of okadaic acid in the medium and not due to bypassing of mitosis (endoreduplication). Moreover, it has been demonstrated that the sister chromatid adherence does not depend on any under-replicated chromatin segment shared by the sister chromatids which might happen in okadaic acid induced premature mitosis, but due to the failure of the centromeres to separate at metaphase - anaphase transition. The role of phophatase 1 in sister chromatid separation has been discussed  相似文献   

19.
M. W. Neff  D. J. Burke 《Genetics》1991,127(3):463-473
Previous experiments suggest that mitotic chromosome segregation in some fungi is a nonrandom process in which chromatids of the same replicative age are destined for cosegregation. We have investigated the pattern of chromatid segregation in Saccharomyces cerevisiae by labeling the DNA of a strain auxotrophic for thymidine with 5-bromodeoxyuridine. The fate of DNA strands was followed qualitatively by immunofluorescence microscopy and quantitatively by microphotometry using an anti-5-bromodeoxyuridine monoclonal antibody. Chromatids of the same replicative age were distributed randomly to daughter cells at mitosis. Quantitative measurements showed that the amount of fluorescence in the daughter nuclei derived from parents with hemilabeled chromosomes diminished in intensity by one half. The concentration of 5-bromodeoxyuridine used in the experiments had little effect on the frequency of either homologous or sister chromatid exchanges. We infer that the 5-bromodeoxyuridine was distributed randomly due to mitotic segregation of chromatids and not via sister chromatid exchanges.  相似文献   

20.
Mitotic chromosome formation involves a relatively minor condensation of the chromatin volume coupled with a dramatic reorganization into the characteristic “X” shape. Here we report results of a detailed morphological analysis, which revealed that chromokinesin KIF4 cooperated in a parallel pathway with condensin complexes to promote the lateral compaction of chromatid arms. In this analysis, KIF4 and condensin were mutually dependent for their dynamic localization on the chromatid axes. Depletion of either caused sister chromatids to expand and compromised the “intrinsic structure” of the chromosomes (defined in an in vitro assay), with loss of condensin showing stronger effects. Simultaneous depletion of KIF4 and condensin caused complete loss of chromosome morphology. In these experiments, topoisomerase IIα contributed to shaping mitotic chromosomes by promoting the shortening of the chromatid axes and apparently acting in opposition to the actions of KIF4 and condensins. These three proteins are major determinants in shaping the characteristic mitotic chromosome morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号