首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
By means of sucrose density centrifugation three membrane fractions, named light, medium and heavy have been isolated from cells of Rhodopseudomonas capsulata strain 37b4, adapting from chemotrophic to phototrophic growth conditions. Succinate dehydrogenase activity of aerobically grown cells was mainly confined to the heavy (chromatophore) fraction. Upon changing to phototrophic conditions the activity of the succinate dehydrogenase increased in the medium and light fraction. All fractions contain bacteriochlorophyll. NADH dehydrogenase of chemotrophically grown cells was enriched in the light and medium fraction but is increased in the heavy fraction under phototrophic growth conditions. The capacity of photophosphorylation is high in the light and heavy fraction. The results indicate a differentially incorporation of functional subunits into specific parts of the membrane system during membrane differentiation.Abbreviations Bchl bacteriochlorophyll - CCCP carbonyl cyanide m-chlorophenyl hydrazone - DCCD N,N-dicyclohexyl carbodiimide  相似文献   

2.
The effects of transfer from low to high ligh intensity on membrane bound electrontransport reactions of Rhodospirillum rubrum were investigated. The experiments were performed with cultures which did not form bacteriochlorophyll (Bchl) for about two cell mass doublings during the initial phase of adaptation to high light intensity. Lack of Bchl synthesis causes a decrease of Bchl contents of cells and membranes. Also, the cellular amounts of photosynthetically active intracytoplasmic membranes decrease.In crude membrane fractions containing both cytoplasmic and intracytoplasmic membranes the initial activities of NADH oxidizing reactions increase only slightly (about 1.2 times) per protein, but the initial activities of succinate oxidizing reactions decrease (multiplied by a factor of 0.7). On a Bchl basis activities of NADH oxidizing reactions increase 3.4 times while activities of succinate dependent reactions increase 1.9 times. With isolated intracytoplasmic membranes activities of NADH as well as succinate dependent reactions increase to a comparable extent on a Bchl basis (about 1.8 times) and stay nearly constant on a protein basis. Cytochrome c oxidase responds like succinate dependent reactions. The data indicate that in cells growing under the conditions applied NADH oxidizing electron transport systems are incorporated into both, cytoplasmic and intracytoplasmic membranes, while incorporation of succinate oxidizing systems is confined to intracytoplasmic membranes only.Activities of photophosphorylation and succinate dependent NAD+ reduction in the light increase per Bchl about 1.8 times. On a Bchl basis increases of the fast light induced on reactions at 422 nm and increases of soluble cytochrome c 2 levels are comparable to increases of photophosphorylations and succinate dependent activities. But increases of slow light off reactions at 428 nm and of b-type cytochrome levels become three times greater then increases of cytochrome c 2 reactions and levels. These results infer that although electrontransport reactions of intracytoplasmic membranes change correlated to each other, Bchl, cytochrome c 2 and b-type cytochromes cellular levels are independent of each other. Furthermore, the data indicate that cytochrome c 2 rather than b-type cytochrome is involved with steps rate limiting for photophosphorylation.Abbreviations Bchl bacteriochlorophyll - DCIP 2,6-dichlorophenolindophenol  相似文献   

3.
The effect of NAD(P) and analogs of this nucleotide on nitrogenase activity in Rhodospirillum rubrum has been studied. Addition of NAD+ to nitrogen fixing Rsp. rubrum leads to inhibition of nitrogenase. NADP+ has the same effect but NADH or analogs modified in the nicotinamide portion do not cause inhibition. In contrast to ammonium ions, addition of NAD+ leads to inhibition of nitrogenase in cells that have been N-starved under argon. The inhibitory effect of NAD+ is more pronounced at lower light intensities. Addition of NAD+ also leads to inhibition of glutamine synthetase, a phenomenon also occurring when “switchoff” is produced by the addition of effectors such as ammonium ions or glutamine. It is also shown that NAD+ is taken up by Rsp. rubrum cells.  相似文献   

4.
Summary The growth of photosynthetically precultured cells of Rhodospirillum rubrum under aerobic condition in light is investigated. Special emphasis is given to the question of whether the photosynthetic electron transport chain is influenced under these conditions. Light-induced absorbance changes under anaerobic conditions show that although in whole cells a variation can be noted, the reactions of isolated membranes decrease only very slowly and parallel to each other. The photophosphorylation activity remains constant on a bacteriochlorophyll basis. On a cell mass basis this activity decreases parallel to the decreasing bacteriochlorophyll content. Light-dependent NAD+ reduction by ascorbate-DCPI remains constant on a bacteriochlorophyll basis, whereas succinate supported NAD+ reduction in light increases. On a cell mass basis the activity of succinate supported NAD+ reduction stays nearly constant, thus showing similar responses to the presence of oxygen in light as the NADH oxidase system. NADH oxidase activity increases on a bacteriochlorophyll basis and does not change on a cell mass basis. Parallel to the NADH-oxidase system, oxygen uptake in the dark by whole cells does not change after aerobiosis in light. Light inhibits respiration even after several generations of growth in the presence of oxygen; however, the inhibition decreases slowly. Light inhibition of respiration can be totally overcome by the addition of the uncoupler CCCP. These results indicate that light-dependent electron transport is not influenced significantly by the presence of oxygen. Although the respiratory system is formed, cells preferentially grow photosynthetically. Respiration takes over when the amount of bacteriochlorophyll reaches very low values.Abbreviations ADP adenosine diphosphate - ATP adenosine triphosphate - BChl bacteriochlorophyll - CCCP carbonylcyanide-m-chlorophenyl hydrazone - DCPI Na-2,6-dichlorophenol-indophenol - NAD(P)+ nictotinamide-adenine-di; nucleotide (phosphate) - NADPH reduced NAD(P)+ - TMPD N,N,N-N-tetra; methyl-p-phenyldiamine  相似文献   

5.

Background

The ratio of NAD+/NADH is a key indicator that reflects the overall redox state of the cells. Until recently, there were no methods for real time NAD+/NADH monitoring in living cells. Genetically encoded fluorescent probes for NAD+/NADH are fundamentally new approach for studying the NAD+/NADH dynamics.

Methods

We developed a genetically encoded probe for the nicotinamide adenine dinucleotide, NAD(H), redox state changes by inserting circularly permuted YFP into redox sensor T-REX from Thermus aquaticus. We characterized the sensor in vitro using spectrofluorometry and in cultured mammalian cells using confocal fluorescent microscopy.

Results

The sensor, named RexYFP, reports changes in the NAD+/NADH ratio in different compartments of living cells. Using RexYFP, we were able to track changes in NAD+/NADH in cytoplasm and mitochondrial matrix of cells under a variety of conditions. The affinity of the probe enables comparison of NAD+/NADH in compartments with low (cytoplasm) and high (mitochondria) NADH concentration. We developed a method of eliminating pH-driven artifacts by normalizing the signal to the signal of the pH sensor with the same chromophore.

Conclusion

RexYFP is suitable for detecting the NAD(H) redox state in different cellular compartments.

General significance

RexYFP has several advantages over existing NAD+/NADH sensors such as smallest size and optimal affinity for different compartments. Our results show that normalizing the signal of the sensor to the pH changes is a good strategy for overcoming pH-induced artifacts in imaging.  相似文献   

6.
The mitochondrial NADH/NAD+ ratio for free nucleotides in rat pancreatic islets was judged from the cell content in L-glutamate and L-alanine, 2-ketoglutarate and pyruvate, and NH 4 + . At a physiological concentration of D-glucose, such a ratio averaged 9.6±1.1%. A rise in hexose concentrations, above a threshold value in excess of 5.6 mM, caused a rapid, sustained and rapidly reversible decrease in the mitochondrial NADH/NAD+ ratio. It is speculated that in the process of glucose-stimulated insulin release, the latter change participates in the coupling between metabolic and secretory events by favouring both the activity of key mitochondrial dehydrogenases and the translocation of Ca2+ from the mitochondria into the cytosol.  相似文献   

7.
In spite of previous reports, the activities of respiratory oxygen uptake by whole cells are higher with chemotrophically than with phototrophically grown cells of Rhodospirillum rubrum and Rhodospirillum tenue. The same applies to NADH dependent respiratory reactions as determined with isolated crede membrane preparations. This is largely, but not only, due to an outstandingly high increase in activity of cytochrome c-oxidase measurable upon adaptation of phototrophically grown cells to chemotrophic conditions. In R. rubrum the dependency of the total respiratory chain on the activities of different sections of this chain becomes confused by the presence of differently composed membranes (i.e. cytoplasmic and intracytoplasmic membranes) which under the experimental conditions become functionally differentiated to different extents. But in R. tenue, which does not produce intracytoplasmic membranes, respiration at low activities parallels clearly cytochrome c oxidase activities while high respiratory activities parallel the activities of NADH dehydrogenase. The data are interpreted to indicate that, in cells of facultative phototrophic bacteria, the formation of the respiratory chain, up to certain stages, depends on the formation of the terminal oxidase. At least in R. tenue this is comparable to the role of bacteriochlorophyll in the formation of the photosynthetic apparatus.Abbreviation Bchl bacteriochlorophyll  相似文献   

8.
J. Oelze  M.D. Kamen 《BBA》1975,387(1):1-11
1. Respiration of chemotrophically and phototrophically grown Rhodospirillum rubrum is inhibited by 2-hydroxydiphenyl.2. Membrane-bound NADH oxidase and NADH: cytochrome c reductase are inhibited also. The inhibitor constant for both reactions (Ki) is 0.075±0.012 mM. NADH dehydrogenase is not inhibited significantly.3. The inhibition of succinate:cytochrome c reductase is associated for chemotrophic membranes with Ki = 0.22±0.03 mM and for phototrophic membranes with Ki = 0.49±0.09 mM. Succinate dehydrogenase is not affected by 2-hydroxydiphenyl.4. Cytochrome oxidase is inhibited only slightly.5. While NADH-dependent reactions in both phototrophic and chemotrophic membranes are inhibited maximally more than 95%, succinate-dependent reactions can be inhibited more than 95% only in chemotrophic membranes. In photo-trophic membranes the maximum inhibition of succinate-dependent reactions is about 70%.6. The type of inhibition in both cases 2 and 3 is non-competitive.7. While the reduction of b-type cytochrome is inhibited by 2-hydroxydiphenyl, the degree of ubiquinone reduction is not influenced. The data suggest that the site of inhibition is localized between ubiquinone and cytochrome b.8. Implications of these data for the respiratory electron transport system in R. rubrum are discussed.  相似文献   

9.
Summary Of thirteen bacterial strains and four strains of yeast-like organisms, permeabilized cells of two bacterial and one yeast strain effectively converted added NAD+ into NADH in the presence of glucose as substrate.Arthrobacter ureafaciens reduced more than 90% of 10 mM NAD+ into NADH during 1h.  相似文献   

10.
Cell division of the wild type strain Corynebacterium (formerly Brevibacterium) ammoniagenes ATCC 6872 which requires 1 M Mn2+ for balanced growth was inhibited by addition of 20 mM hydroxyurea (HU) or 10 mM p-methoxyphenol (MP) to a Mn2+-supplemented fermentation medium at an appropriate time. Scanning electron microscopy (SEM) showed a restricted elongation characteristic of arrest of the cell cycle in coryneform bacteria. The cultures treated with HU or MP had, respectively, a fourfold or sixfold enhanced accumulation of NAD+ by a salvage biosynthetic pathway. An assay of nucleotide-permeable cells for ribonucleotide reductase activity using [3H-CDP] as substrate revealed a pre-early and complete decline of DNA precursor biosynthesis not found in the untreated control. Overproduction of NAD+ is an alternative to the conventional fermentation process using Mn2+ deficiency. A simple model is presented to discuss the metabolic regulation of the new process based on the presence of a manganese ribonucleotide reductase (Mn-RNR) in the producing strain.  相似文献   

11.
The activities of nuclear enzymes involved in NAD+ metabolism in Saccharomyces cerevisiae strain 913a-1 and its mutant 110 previously selected as an NAD+ producer were investigated. The presence of extracellular nicotinamide increased the total NAD+ pool in the cells and increased [3H]nicotinic acid incorporation; however, NAD+ concentration in isolated nuclei decreased slightly. The stimulating effect of nicotinamide on intracellular synthesis of NAD+ correlated with increases in ADP-ribosyl transferase, NAD+-pyrophosphorylase, and NAD+ ase activities.  相似文献   

12.
An in vivo method of producing isoamyl acetate and succinate simultaneously has been developed in Escherichia coli to maximize yields of both high value compounds as well as maintain the proper redox balance between NADH and NAD+. Previous attempts at producing the ester isoamyl acetate anaerobically did not produce the compound in high concentrations because of competing pathways and the need for NAD+ regeneration. The objective of this study is to produce succinate as an example of a reduced coproduct to balance the ratio of NADH/NAD+ as a way of maximizing isoamyl acetate production. Because the volatility of the two compounds differs greatly, the two could be easily separated in an industrial setting. An ldhA, adhE double mutant strain (SBS110MG) served as the control strain to test the effect of an additional ackApta mutation as found in SBS990MG. Both strains overexpressed the two heterologous genes pyruvate carboxylase and alcohol acetyltransferase (for ester production). The triple mutant SBS990MG was found to produce higher levels of both isoamyl acetate and succinate. At the optimal condition of 25°C, the culture produced 9.4 mM isoamyl acetate and 45.5 mM succinate. SBS990MG produced 36% more ester and over 700% more succinate than SBS110MG. In addition, this study demonstrated that a significantly higher isoamyl acetate concentration can be attained by simultaneously balancing the carbon and cofactor flow; the isoamyl acetate concentration of 9.4 mM is more than seven times higher than an earlier report of about 1.2 mM. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

13.
The specific activity of NAD+ kinase (ATP:NAD+ 2-phosphotransferase, EC 2.7.1.23) from Neurospora crassa shows sharp peaks when the organism enters a new developmental stage of the asexual life cycle: the peaks are observed during hydration and germination of conidia, at the transition from exponential to stationary growth and at the photostimulated conidiation. As stimulation of NAD+ kinase activity by light in conidiating mycelium is not sensitive to translation inhibitors, the activiation of pre-existing molecules, rather than induction of protein synthesis de novo may be supposed. Enzyme electrophoresis revealed the presence of four forms of NAD+ kinase having different apparent molecular weights (I=333,000; II=306,000; III=229,000 and IV=203,000). Manifestation of the activity of individual forms of NAD+ kinase is developmentally controlled: form III is most abundant during vegetative growth, forms I and II prevail in conidia. At the conidial germination the increase of NAD+ kinase activity is associated with the activation of form III, whereas during photostimulation of conidiation form II is the most activated one. Therefore, certain molecular forms of the enzyme may be regarded as biochemical markers for different developmental stages of N. crassa.  相似文献   

14.
A halophilic NAD+-dependent 2-aminobutyrate dehydrogenase (EC1.4.1.1) was purified to homogeneity from a crude extract of an extreme halophile, Halobacterium saccharovorum DSM 1137, with a 30% yield. The enzyme had a molecular mass of about 160 kDa and consisted of four identical subunits. It retained more than 70% of the activity after heating at 60 °C for 1 h and kept it at 30 °C for 8 months in the presence of 2 M NaCl. The enzyme showed maximum activity in the presence of 2 M RbCl or KCl. The enzyme required NAD+ as a coenzyme and used -2-aminobutyrate, -alanine, and -norvaline as substrates. The best substrate was -2-aminobutyrate. The optimum pH was 9.3 for the oxidative deamination of -2-aminobutyrate and 8.6 for the reductive amination of 2-ketobutyrate. The Michaelis constants were 1.2 mM for -2-aminobutyrate, 0.16 mM for NAD+, 0.012 mM for NADH, 0.78 mM for 2-ketobutyrate, and 500 mM for ammonia in the presence of 2 M KCl. The Km values for the substrates depended on the concentration of KCl, and the Km values decreased under high salt conditions.  相似文献   

15.
Rhodospirillum rubrum grown either chemotrophically or phototrophically at 14°C and 30°C, was employed to study the effect of temperature on fatty acid composition as well as on several membrane bound functions involved in energy metabolism. Upon growth at both temperatures the fatty acid composition of membranes showed differences, which could be attributed to an incomplete formation of photosynthetically active membranes rather than specifically to the growth temperature. Activities of NADH dependent respiration and light induced proton extrusion by cells did not show discontinuities in Arrhenius plots down to temperatures of 15°C and 5°C, respectively. In contrast, coupling factor Mg2+- and Ca2+-ATPase as well as succinate cytochrome c oxidoreductase showed significant breaks at 20°C and 18°C, respectively. Similarly, in Rhodopseudomonas sphaeroides. NADH dependent respiration and light induced proton extrusion by cells was continuous over the entire range of temperatures applied. ATPase as well as succinate cytochrome c oxidoreductase, on the other hand, featured discontinuities in Arrhenius plots at 20°C and 19°C. The implication of the data on growth rates and membrane structure are discussed.Abbreviation Bchl baceteriochlorophyll  相似文献   

16.
Fluorescent silver nanoclusters (Ag NCs) displaying dual-excitation and dual-emission properties have been developed for the specific detection of NAD+ (nicotinamide adenine dinucleotide, oxidized form). With the increase of NAD+ concentrations, the longer wavelength emission (with the peak at 550 nm) was gradually quenched due to the strong interactions between the NAD+ and Ag NCs, whereas the shorter wavelength emission (peaking at 395 nm) was linearly enhanced. More important, the dual-emission intensity ratio (I395/I550), fitting by a single-exponential decay function, can efficiently detect various NAD+ levels from 100 to 4000 μM, as well as label NAD+/NADH (reduced form of NAD) ratios in the range of 1–50.  相似文献   

17.
The function of mitochondrial Adh3 in the thermotolerant yeast Kluyveromyces marxianus was investigated. An ADH3-disrupted mutant exhibited growth retardation on non-fermentable carbon sources, except for ethanol, and this was suppressed by supplementation with antioxidants. Detailed analysis of the phenotype revealed that the mutant showed an increase in the activity of NADH dehydrogenase, sensitivity to H2O2, and accumulation of reactive oxygen species (ROS), and that these carbon sources increased the activity of succinate dehydrogenase. The increase in both activities may reflect enhanced expression of both dehydrogenases by elevation of their substrate levels. The ROS level became low when antioxidants were added. These findings suggest that the ADH3 mutation and such carbon sources cause an elevation of the substrate level of the respiratory chain and eventually of the ROS level via increased expression of primary dehydrogenases, which in turn causes cell growth retardation. Adh3 might thus play a crucial role in the control of the NADH/NAD+ balance in mitochondria.  相似文献   

18.
The influence of temperature on yields of cell protein and bacteriochlorophyll as well as on the rates of growth and bacteriochlorophyll synthesis was studied with Rhodospirillum rubrum and Rhodopseudomonas sphaeroides. Under chemotrophic conditions net cell-protein production increased in cultures of both species along with temperature from 14°C up to the optimum at 33°C. Under phototrophic conditions cell-protein yields were largely constant within the range from 21°C to 33°C. At temperatures below 21°C and above 33°C yields decreased. These results are interpreted in terms of coupling between energy yielding or redox equivalent providing metabolisms and cell biosynthesis. Upon adaptation from chemotrophic to phototrophic conditions a direct relationship between temperature increase and bacteriochlorophyll level was observed. Arrhenius plots of both, specific growth rates and rates of bacteriochlorophyll synthesis, revealed discontinuities at about 20°C. Temperature coefficients either above or below those discontinuities were similar in both species. In R. rubrum temperature coefficients of the synthesis of total bacteriochlorophyll were also representative of the synthesis of photochemical reaction center and light harvesting bacteriochlorophylls. But in R. sphaeroides significant differences were observed between temperature coefficients of the syntheses of bacteriochlorophylls of the costantly composed reaction centerlight harvesting complex on one hand and of both, total and the quantitatively variable light harvesting bacteriochlorophylls on the other. The results are interpreted in light of hypotheses on the regulation (a) of cellular bacteriochlorophyll levels as well as (b) of the ratio of functionally different bacteriochlorophylls in the photosynthetic apparatus.Abbreviation Bchl bacteriochlorophyll  相似文献   

19.
Kang HS  Na BK  Park DH 《Biotechnology letters》2007,29(8):1277-1280
A crude cell extract from a butane-utilizing bacterium, Alcaligenes sp., catalyzed the oxidation of butane to butanol coupled to NADH. A graphite electrode modified with Neutral Red (NR-electrode) catalyzed the reduction of NAD+ to NADH. About 4.9 mM butanol was produced from 50% n-butane/O2 mixture through the combined reactions of the crude enzyme and the NR-electrode in 250 ml reactor for 3 h.  相似文献   

20.
Rhodospirillum rubrum CAF10, a spontaneous cytochrome oxidase defective mutant, was isolated from strain S1 and used to analyze the aerobic respiratory system of this bacterium. In spite of its lack of cytochrome oxidase activity, strain CAF10 grew aerobically in the dark although at a decreased rate and with a reduced final yield. Furthermore, aerobically grown mutant cells took up O2 at high rates and membranes isolated from those cells exhibited levels of NADH and succinate oxidase activities which were similar to those of wild type membranes. It was observed also that whereas in both strains O2 uptake (intact cells) and NADH and succinate oxidase activities (isolated membranes) were not affected by 0.2 mM KCN, the cytochrome oxidase activity of the wild type strain was inhibited about 90% by 0.2 mM KCN. These data indicate the simultaneous presence of two terminal oxidases in the respiratory system of R. rubrum, a cytochrome oxidase and an alternate oxidase, and suggest that the rate of respiratory electron transfer is not limited at the level of the terminal oxidases. It was also found that the aerobic oxidation of cellular cytochrome c 2 required the presence of a functional cytochrome oxidase activity. Therefore it seems that this electron carrier, which only had been shown to participate in photosynthetic electron transfer, is also a constituent of the respiratory cytochrome oxidase pathway.Abbreviations DCIP 2,6-dichlorophenolindophenol - DMPD N,N-dimethyl-p-phenylenediamine - TMPD N,N,N,N-tetramethyl-p-phenylenediamine - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)-ethyl]-glycine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号