首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
《Free radical research》2013,47(4):255-265
α-phenyl-tert-butyl-nitrone (PBN) a spin adduct forming agent is believed to have a protective action in ischemia-reperfusion injury of brain by forming adducts of oxygen free radicals including ±OH radical. Electron paramagnetic resonance (EPR) has been used to both detect and monitor the time course of oxygen free radical formation in the in vivo rat cerebral cortex. Cortical cups were placed over both cerebral hemispheres of methoxyflurane anesthetized rats prepared for four vessel occlusion-evoked cerebral ischemia. Prior to the onset of sample collection, both cups were perfused with artificial cerebrospinal fluid (aCSF) containing the spin trap agent α-(4-pyridyl-1-oxide)-N-tert butylnitrone (POBN 100 mM) for 20 min. In addition 50 mg/kg BW of POBN was administered intraperitoneally (IP) 20 min prior to ischemia in order to improve our ability to detect free radical adducts. Cup fluid was subsequently replaced every 15 min during ischemia and every 10 min during reperfusion with fresh POBN containing CSF and the collected cortical superfusates were analyzed for radical adducts by EPR spectroscopy. After a basal 10 min collection, cerebral ischemia was induced for 15 or 30 min (confirmed by EEG flattening) followed by a 90 min reperfusion. -OH radical adducts (characterized by six line EPR spectra) were detected during ischemia and 90 min reperfusion. No adduct was detected in the basal sample or after 90 min of reperfusion. Similar results were obtained when diethylenetriaminepenta-acetic acid (100 μM; DETAPAC) a chelating agent was included in the artificial CSF. Systemic administration of PBN (100 mg/kg BW) produced a significant attenuation of radical adduct during reperfusion. A combination of systemic and topical PBN (100 mM) was required to suppress -OH radical adduct formation during ischemia as well as reperfusion. PBN free radical adducts were detected in EPR spectra of the lipid extracts of PBN treated rat brains subjected to ischemia/reperfusion. Thus this study suggests that PBN's protective action in cerebral ischemia/reperfusion injury is related to its ability to prevent a cascade of free radical generation by forming spin adducts.  相似文献   

2.
Abstract: To obtain direct evidence of oxygen radical activity in the course of cerebral ischemia under different intraischemic temperatures, we used a method based on the chemical trapping of hydroxyl radical in the form of the stable adducts 2,3- and 2,5-dihydroxybenzoic acid (DHBA) following salicylate administration. Wistar rats were subjected to 20 min of global forebrain ischemia by two-vessel occlusion plus systemic hypotension (50 mm Hg). Intraischemic striatal temperature was maintained as normothermic (37°C), hypothermic (30°C), or hyperthermic (39°C) but was held at 37°C before and following ischemia. Salicylate was administered either systemically (200 mg/kg, i.p.) or by continuous infusion (5 mM) through a microdialysis probe implanted in the striatum. Striatal extracellular fluid was sampled at regular intervals before, during, and after ischemia, and levels of 2,3- and 2,5-DHBA were assayed by HPLC with electrochemical detection. Following systemic administration of salicylate, stable baseline levels of 2,3- and 2,5-DHBA were observed before ischemia. During 20 min of normothermic ischemia, a 50% reduction in mean levels of both DHBAs was documented, suggesting a baseline level of hydroxyl radical that was diminished during ischemia, presumably owing to oxygen restriction to tissue at that time. During recirculation, 2,3- and 2,5-DHBA levels increased by 2.5- and 2.8-fold, respectively. Levels of 2,3-DHBA remained elevated during 1 h of reperfusion, whereas the increase in 2,5-DHBA levels persisted for 2 h. The increases in 2,3- and 2,5-DHBA levels observed following hyperthermic ischemia were significantly higher (3.8- and fivefold, respectively). In contrast, no significant changes in DHBA levels were observed following hypothermic ischemia. The postischemic changes in DHBA content observed following local administration of salicylate were comparable to the results obtained with systemic administration, thus confirming that the hydroxyl radicals arose within brain parenchyma itself. These results provide evidence that hydroxyl radical levels are increased during postischemic recirculation, and this process is modulated by intraischemic brain temperature. Hence, these data suggest a possible mechanism for the effects of temperature on ischemic outcome and support a key role for free radical-induced injury in the development of ischemic damage.  相似文献   

3.
The aim of our study was to investigate the changes of various biochemical parameters (concentrations of lactate, free arachidonate, cyclo- and lipoxygenase products) in rat brain after ischemia and reperfusion and the effects of pretreatment with the ganglioside derivative GM1-lactone on the same parameters. Ischemia was induced by reversible occlusion of common carotid arteries for 20 min, which included a final 5 min of respiration of 5% oxygen in nitrogen. Reperfusion was obtained by removing the occlusion. Pre-ischemic conditions were obtained on sham-operated animals. Animals were killed by microwave irradiation of their heads. Brain levels of lactate and of free arachidonate were markedly increased after ischemia and returned to normal values at 5 min of reperfusion. Levels of the cyclooxygenase metabolites prostaglandin F2 alpha, 6-keto-prostaglandin F1 alpha, and thromboxane B2 were increased after ischemia, whereas levels of the lipoxygenase metabolite leukotriene C4 (LTC4) did not change. After reperfusion, a very marked increase of the cyclooxygenase products occurred but not of LTC4. Treatment with GM1-lactone prevented the elevation of cyclo- and lipoxygenase metabolites especially during reperfusion, with limited effects on lactate and free arachidonate levels.  相似文献   

4.
The in vivo production of HO- requires iron ions, H2O2 and O2- or other oxidants but probably does not occur through the Haber-Weiss reaction. Instead oxidants, such as O2-, increase free iron by releasing Fe(II) from the iron-sulfur clusters of dehydratases and by interfering with the iron-sulfur clusters reassembly. Fe(II) then reduces H2O2, and in turn Fe(III) and the oxidized cluster are re-reduced by cellular reductants such as NADPH and glutathione. In this way, SOD cooperates with cellular reductants in keeping the iron-sulfur clusters intact and the rate of HO- production to a minimum.

O2- and other oxidants can release iron from Fe(II)-containing enzymes as well as copper from thionein. The released Fe(III) and Cu(II) are then reduced to Fe(II) and Cu(I) and can then participate in the Fenton reaction.

In mammalian cells oxidants are able to convert cytosolic aconitase into active IRE-BP, which increases the “free” iron concentration intracellularly both by decreasing the biosynthesis of ferritin and increasing biosynthesis of transferrin receptors.

The biological role of the soxRS regulon of Escherichia coli, which is involved in the adaptation toward oxidative stress, is presumably to counteract the oxidative inactivation of the iron clusters and the subsequent release of iron with consequent increased rate of production of HO.  相似文献   

5.
Methylguanidine (MG) is known as not only a nephrotoxin but also as a neurotoxine. We have previously showed that MG itself generates hydroxyl radicals (•OH) in an in vitro study. In this study, we examined the inhibitory effects of ascorbate, EPC-K1 (α-tocopheryl-l-ascorbate-2-O-phosphate diester), Trolox (water-soluble vitamin E analogue), and glutathione (GSH) on •OH generation from MG using an electron spin resonance (ESR) spectrometry with spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). It was found that these compounds have potent inhibitory effect on •OH generation from MG in the order of ascorbate > GSH > EPC-K1 > Trolox. Special issue article in honor of Dr. Akitane Mori.  相似文献   

6.
Abstract: Posttraumatic hypothermia reduces the extent of neuronal damage in remote cortical and subcortical structures following traumatic brain injury (TBI). We evaluated whether excessive extracellular release of glutamate and generation of hydroxyl radicals are associated with remote traumatic injury, and whether posttraumatic hypothermia modulates these processes. Lateral fluid percussion was used to induce TBI in rats. The salicylate-trapping method was used in conjunction with microdialysis and HPLC to detect hydroxyl radicals by measurement of the stable adducts 2,3- and 2,5-dihydroxybenzoic acid (DHBA). Extracellular glutamate was measured from the same samples. Following trauma, brain temperature was maintained for 3 h at either 37 or 30°C. Sham-trauma animals were treated in an identical manner. In the normothermic group, TBI induced significant elevations in 2,3-DHBA (3.3-fold, p < 0.01), 2,5-DHBA (2.5-fold, p < 0.01), and glutamate (2.8-fold, p < 0.01) compared with controls. The levels of 2,3-DHBA and glutamate remained high for approximately 1 h after trauma, whereas levels of 2,5-DHBA remained high for the entire sampling period (4 h). Linear regression analysis revealed a significant positive correlation between integrated 2,3-DHBA and glutamate concentrations ( p < 0.05). Posttraumatic hypothermia resulted in suppression of both 2,3- and 2,5-DHBA elevations and glutamate release. The present data indicate that TBI is followed by prompt increases in both glutamate release and hydroxyl radical production from cortical regions adjacent to the impact site. The magnitude of glutamate release is correlated with the extent of the hydroxyl radical adduct, raising the possibility that the two responses are associated. Posttraumatic hypothermia blunts both responses, suggesting a mechanism by which hypothermia confers protection following TBI.  相似文献   

7.
ICRF-187 (dexrazoxane) is currently in clinical trials as a cardioprotective agent for the prevention of doxorubicin-induced cardiotoxicity. ICRF-187 likely acts through its strongly metal ion-binding rings-opened hydrolysis product ADR-925 by removing iron from its complex with doxorubicin or by chelating free iron. The ability of NADPH-cytochrome-P450 reductase to promote hydroxyl radical formation by iron complexes of ADR-925 and EDTA was compared by EPR spin trapping. The iron-EDTA complex produced hydroxyl radicals at six times the rate that the iron-ADR-925 complex did. The aerobic oxidation of ferrous complexes of ADR-925, its tetraacid analog, EDTA and DTPA was followed spectropho-tometrically. The iron(II)-ADR-925 complex was aerobically oxidized 700 times slower than was the EDTA complex. It is concluded that even though ADR-925 does not completely eliminate iron-based hydroxyl radical production, it likely protects by preventing site-specific hydroxyl radical damage by the iron-doxorubicin complex.  相似文献   

8.
Abstract: To examine the role played by free radicals in brain injury, we performed experiments to detect radicals in the frontal cortex of rats, using electron spin resonance (ESR) and microdialysis. A dialysis probe was inserted into the frontal cortex, and spin adducts in perfusates were immediately detected by ESR. We obtained a relatively stable doublet signal, with parameters of g = 2.0057 and aH = 0.17 mT. This signal corresponded with that of the ascorbyl radical. Ascorbyl radical in the perfusate collected from the frontal cortex was augmented by microinjection of H2O2 and FeCl2 adjacent to the dialysis probe. When the rats were challenged with cold-induced brain injury, ascorbyl radical and lactate dehydrogenase (LDH) level in the perfusate increased significantly. Pretreatment with superoxide dismutase and catalase attenuated the increase in ascorbyl radical and LDH level induced by the cold injury. Infusion of FeCl2 dissolved in perfusate caused a pronounced increase in ascorbyl radical and LDH level after the cold injury. We conclude that the direct detection of free radical formation further supports the hypothesis that free radicals play an important role in traumatic brain injury. Our findings also indicate that combined microdialysis with ESR spectroscopy is a useful in vivo method for monitoring free radical production in the brain.  相似文献   

9.
In this investigation, microdialysis has been used to study the effects of 1-methyl-4-phenylpyridinium (MPP+), an inhibitor of mitochondrial complex I and alpha-ketoglutarate dehydrogenase and the active metabolite of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), on extracellular concentrations of glutathione (GSH) and cysteine (CySH) in the rat striatum and substantia nigra (SN). During perfusion of a neurotoxic concentration of MPP+ (2.5 mM) into the rat striatum or SN, extracellular concentrations of GSH and CySH remain at basal levels (both approximately 2 microM). However, when the perfusion is discontinued, a massive but transient release of GSH occurs, peaking at 5,000% of basal levels in the striatum and 2,000% of basal levels in the SN. The release of GSH is followed by a slightly delayed and smaller elevation of extracellular concentrations of CySH that can be blocked by the gamma-glutamyl transpeptidase (gamma-GT) inhibitor acivicin. Low-molecular-weight iron and extracellular hydroxyl radical (OH*) have been implicated as participants in the mechanism underlying the dopaminergic neurotoxicity of MPTP/MPP+. During perfusion of Fe2+ (OH*) into the rat striatum and SN, extracellular levels of GSH also remain at basal levels. When perfusions of Fe2+ are discontinued, a massive transient release of GSH occurs followed by a delayed, small, but progressive elevation of extracellular CySH level that again can be blocked by acivicin. Previous investigators have noted that extracellular concentrations of the excitatory/excitotoxic amino acid glutamate increase dramatically when perfusions of neurotoxic concentrations of MPP+ are discontinued. This observation and the fact that MPTP/MPP+ causes the loss of nigrostriatal GSH without corresponding increases of glutathione disulfide (GSSG) and the results of the present investigation suggest that the release and gamma-GT/dipeptidase-mediated hydrolysis of GSH to glutamate, glycine, and CySH may be important factors involved with the degeneration of dopamine neurons. It is interesting that a very early event in the pathogenesis of Parkinson's disease is a massive loss of GSH in the SN pars compacta that is not accompanied by corresponding increases of GSSG levels. Based on the results of this and prior investigations, a new hypothesis is proposed that might contribute to an understanding of the mechanisms that underlie the degeneration of dopamine neurons evoked by MPTP/MPP+, other agents that impair neuronal energy metabolism, and Parkinson's disease.  相似文献   

10.
Iron chelation therapy was initially designed to alleviate the toxic effects of excess iron evident in iron-overload diseases. However, some iron chelator-metal complexes have also gained interest due to their high redox activity and toxicological properties that have potential for cancer chemotherapy. This communication addresses the conflicting results published recently on the ability of the iron chelator, Dp44mT, to induce hydroxyl radical formation upon complexation with iron (B.B. Hasinoff and D. Patel, J Inorg. Biochem.103 (2009), 1093-1101). This previous study used EPR spin-trapping to show that Dp44mT-iron complexes were not able to generate hydroxyl radicals. Here, we demonstrate the opposite by using the same technique under very similar conditions to show the Dp44mT-iron complex is indeed redox-active and induces hydroxyl radical formation. This was studied directly in an iron(II)/H2O2 reaction system or using a reducing iron(III)/ascorbate system implementing several different buffers at pH 7.4. The demonstration by EPR that the Dp44mT-iron complex is redox-active confirms our previous studies using cyclic voltammetry, ascorbate oxidation, benzoate hydroxylation and a plasmid DNA strand-break assay. We discuss the relevance of the redox activity to the biological effects of Dp44mT.  相似文献   

11.
In agreement with classic studies, succinate-supplemented rat and pigeon heart and nonsynaptic brain mitochondrial free radical production is stopped by ADP additions causing the stimulation of respiration from State 4 to State 3. Nevertheless, with Complex I-linked substrates, mitochondria produce free radicals in State 3 at rates similar or somewhat higher than during resting respiration. The absence of sharp increases in free radical production during intense respiration is possible due to strong decreases of free radical leak in State 3. The results indicate that Complex I is the main mitochondrial free radical generator in State 3, adding to its already known important generation of active oxygen species in State 4. The observed rate of mitochondrial free radical production with Complex I-linked substrates in the active State 3 can help to explain two paradoxes: (a) the lack of massive muscle oxidative damage and shortening of life span due to exercise, in spite of up to 23-fold increases of oxygen consumption together with the very low levels of antioxidants present in heart, skeletal muscle, and brain; (b) the presence of some degree of oxidative stress during exercise and hyperactivity in spite of the stop of mitochondrial free radical production by ADP with succinate as substrate.  相似文献   

12.
库克诺你果汁提取物体外清除自由基及抗氧化活性研究   总被引:8,自引:2,他引:8  
本文对诺你果汁多糖、乙醇溶出物和乙酸乙酯萃取物体外对超氧阴离子(O2·)、羟自由基(·OH)、DPPH和脂质过氧化(LPO)的抑制作用进行了研究。超氧阴离子(O2·)由邻苯三酚自氧化产生;羟自由基(·OH)由Fenton反应产生;利用Fe2 诱发卵黄脂蛋白产生丙二醛(MDA),TBA法测定。所有测定均为分光光度法。结果表明,与已知抗氧化剂L抗坏血酸相比,乙醇溶出物和乙酸乙酯萃取物均有明显的捕捉自由基和抗氧化能力,而多糖捕捉自由基和抗氧化能力很低,且对O2·没有抑制作用,反而会增加其生成速度。  相似文献   

13.
The objective of this immunohistochemical research was to reveal the distribution of a proline-rich peptide-1 (PRP-1) in various brain structures of intact and trauma-injured rats and to identify the mechanisms of promotion of neuronal recovery processes following PRP-1 treatment. PRP-1, produced by bovine hypothalamic magnocellular cells and consisting of 15 amino acid residues, is a fragment of neurophysin vasopressin associated glycoprotein isolated from bovine neurohypophysis neurosecretory granules. PRP-1-immunoreactivity (PRP-1-IR) was detected in the brain of intact rats in the neurons of paraventricular (PVN) and supraoptic (SON) nuclei in the hypothalamus, in almost all cell groups in the medulla oblongata, in Purkinje and some cerebellar nuclei cells, and in nerve fibers. At 3 weeks after hemisection of the spinal cord (SC) an asymmetry of PRP-1 localization in the PVN and SON was observed: no PRP-1-IR was exhibited at the affected sides of both nuclei. Daily intramuscular administration of PRP-1 for 3 weeks significantly increased the number of PRP-1-immunoreactive (PRP-1-Ir) varicose nerve fibers, and cells in PVN and SON and in cell groups of the limbic system and brain stem. Tanycytes in the median eminence and covering ependyma also demonstrated strong PRP-1-IR. PRP-1 treatment also activated neuropeptide Y-IR (NPY-IR) in nerve fibers and immunophilin fragment-IR (IphF-IR) in lymphocytes and nerve cells. A strong increase of PRP-1-IR was observed in the PVN and SON of SC-injured rats following the treatment with another PRP (PRP-3). Preliminary physiological data demonstrate that PRP-3 is more "aggressive" in the recovery processes than PRP-1. Based on the findings regarding PRP action on neurons survival, axons regeneration, and the number of IphF-Ir lymphocytes and NPY-Ir nerve fibers, PRP is suggested to act as a neuroprotector, functioning as a putative neurotransmitter and immunomodulator.  相似文献   

14.
The binding characteristics and distribution of M1 and M2 muscarinic cholinergic receptors and high-affinity choline uptake sites were studied in the striatum of the rat at 3-4 and 9-12 weeks of age after exposure to unilateral perinatal hypoxic-ischemic brain injury. High-affinity choline uptake sites were labeled with [3H]hemicholinium-3, M1 receptors with [3H]pirenzepine, and M2 receptors with [3H]AF-DX 116. Saturation experiments revealed a significant decrease in the maximal binding capacity (Bmax) for [3H]pirenzepine-labeled M1 receptors in the lesioned caudate/putamen complex in immature rats with moderate brain injury, in comparison with controls. In contrast, the Bmax value for [3H]hemicholinium-3-labeled high-affinity choline uptake sites was significantly increased. No changes in dissociation constants (KD) were observed. These changes were most pronounced in the dorsolateral region of striatum. Striatal regional distribution of [3H]AF-DX 116 was not affected. In mature rats, binding of [3H]pirenzepine returned to control values, whereas [3H]hemicholinium binding showed a persistent increase (23%). The increase in [3H]hemicholinium-3 binding, as a specific marker of cholinergic nerve terminals, is consistent with our prior morphologic studies demonstrating relative preservation of cholinergic neurons and neuropil, and supports the concept that striatal cholinergic systems are resistant to hypoxic-ischemic injury.  相似文献   

15.
Spectroscopic studies on trans-[Ru(NH3)4(SO4)L]+ where L=imidazole, histidine, pyridine and substituted pyridines were undertaken to understand the effect of various ligands on the Ru-N bonding in these complexes. The sulfate complexes show two major bands in the 250-270 and 310-350 nm region of the UV-Vis spectrum. Based on quantum chemical calculations the lowest energy band has been assigned to a LMCT (SO4 2− → RuIII) transition. The energy of the LMCT transition decreases as the order of the axial ligand L basicity: Him > L-hist > 4-NH2-py > 4-Cl-py > 4-pic > py > nia > 4-Cn-py > isn > pz. EPR spectra give only two g values showing that the two LUMO containing the metal dπ orbitals are degenerate and the energy separation between the LUMO and HOMO, calculated from the g values correlates linearly with the charge transfer energy and electrochemical properties. These correlations suggest extensive π donation from L to the Ru(III) d orbitals. An X-ray study of the 4-pic complex shows a bent S-O-Ru bond of 127.5° and MO calculations for three other complexes predict similar angles due to extensive σ and π bonding interaction between the sulfate oxygen and the Ru(III) ion. Surprisingly, the MO calculations do not predict the observed degeneracy in the LUMO orbital found by EPR studies. We shall argue that these discrepancies can be reconciled by insisting that the orientation of the L ring be coplanar with the S-O-Ru plane as is the case in the one X-ray study.  相似文献   

16.
In a developmental study, we have shown that DM-20 is present before proteolipid protein (PLP) in the fetal bovine cerebral hemispheres. When the white matter appears (27-30 weeks of gestation), the amount of DM-20 drastically increases. DM-20 remains the major proteolipid until birth. PLP is detected only 2-4 weeks after the appearance of white matter, that is, more than 4 weeks after the appearance of DM-20. The early appearance of DM-20 at the beginning of myelination raises the question of its particular function. In the adult bovine cerebral hemispheres, PLP is the major proteolipid but DM-20 remains quantitatively important because the PLP/DM-20 ratio ranges from 1.5 to 1.7. In the same developmental study we have, in the fetal cerebral hemispheres, isolated and characterized a novel proteolipid (apparent Mr 20,000), which appears even before DM-20 and is not detected in the adult brain. It is structurally related to PLP and DM-20 because the first 31 N-terminal amino acid residues are the same. However, in immunoblot, it did not react either with the antitridecapeptide 117-129 antiserum of PLP or with the anti-C-terminal hexapeptide antiserum of PLP.  相似文献   

17.
Cysteine sulfinate decarboxylase (CSD), the putative biosynthetic enzyme for taurine, has been shown to exist in two forms in rat brain, respectively CSDI and CSDII, one of which (CSDII) is considered to be in fact glutamate decarboxylase (GAD). CSDI assay after immunotrapping was made possible by using an anti-CSD antiserum raised in sheep immunized with a partially purified CSD fraction from liver. This antiserum immunoprecipitated both liver CSD and brain CSDI activities with the same affinity but did not inhibit their enzymatic activities. The immunotrapping of CSDI was selective without any contamination by GAD/CSDII activity. The immunotrapped CSD activity, which corresponded exactly to the amount of CSD not precipitated by a GAD/CSDII antiserum, was not inhibited by a specific irreversible GAD inhibitor. A quantitative, selective and sensitive assay was thus developed by measuring CSD activity on the solid phase after immunotrapping. Kinetic parameters of the immunotrapped enzyme remained unchanged. CSDI activity represented only a fraction, around 20% with saturating concentration of substrate, of the total CSD activity in rat brain homogenate. This indicates that most studies on total CSD activity dealt essentially with CSDII activity that is indeed GAD. Regional and subcellular distributions of CSDI have been determined. CSDI activity was about threefold higher in the richest (cerebellum) compared to the poorest (striatum) region without any correlation with GAD/CSDII distribution. Subcellular distribution showed a fourfold enrichment of CSDI activity in the synaptosomal fraction. The precise role of CSDI and CSDII in the biosynthesis of taurine in vivo remains to be elucidated.  相似文献   

18.
The effect of a unilateral perinatal hypoxic-ischemic brain injury on dopamine D1 and D2 receptors and uptake sites was investigated in rats by using in vitro quantitative binding autoradiography, 2-3 weeks after the insult. We observed significant decreases in the Bmax and KD for [3H]SCH 23390-labeled D1 and in the Bmax for [3H]spiperone-labeled D2 receptors in the lesioned caudate-putamen in rats with moderate brain injury (visible loss in hemispheric volume ipsilateral to the injury) compared with the nonlesioned contralateral caudate-putamen or with control rats. Changes in [3H]SCH 23390 and [3H]spiperone binding predominated in the dorsolateral part of the lesioned caudate-putamen. Pronounced reduction in [3H]SCH 23390 binding was also observed in the substantia nigra pars reticulata on the side of the lesion. In contrast, we did not observe any significant change in Bmax or KD for [3H]mazindol-labeled dopamine uptake sites. Similarly, no significant changes in the levels of dopamine or its metabolites were found on the side of the lesion. The observed reductions in striatal dopamine D1 and D2 receptors are a reflection of striatal cell loss induced by the hypoxic-ischemic injury. The absence of changes in [3H]mazindol binding or dopamine levels in the lesioned caudate-putamen indicates that the dopaminergic presynaptic structures are preserved.  相似文献   

19.
Abstract: To examine the role of nerve-specific (Na+, K+)-ATPase in chronic changes in noradrenergic activity, we examined the effects of noradrenergic denervation and hyperinnervation on p -nitrophenylphosphatase activity and on total and nerve-specific ouabain binding. High-affinity and erythrosin B-sensitive binding were compared as measurements of nerve-specific binding. Hyperinnervation and denervation was produced in cerebellum and cerebral cortex, respectively, by 6-hydroxydopamine lesions of the dorsal noradrenergic bundle. Hyperinnervation increased, and denervation decreased, enzyme activity, high-affinity ouabain inhibition, and erythrosin B-sensitive ouabain binding. As (Nat+, K+)-ATPase has a major role in the regulation of neural excitability and energy metabolism, and the ouabain binding site has been shown to have endogenous ligands, these changes in (Na+, K+)-ATPase may be important in the long-term regulation of neuron function by norepinephrine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号