首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. To investigate the impact of zebra mussels ( Dreissena polymorpha ) on phytoplankton community composition, temporal variability in selective feeding by the mussels was determined from April to November 2005 in a natural lake using Delayed Fluorescence (DF) excitation spectroscopy.
2. Selective grazing by zebra mussels varied in relation to seasonal phytoplankton dynamics; mussels showed a consistent preference for cryptophytes and avoidance of chlorophytes and cyanobacteria. Diatoms, chrysophytes and dinoflagellates responded differentially to zebra mussel grazing depending on their size. Analysis of excreted products of the zebra mussels revealed that in addition to chlorophytes and cyanobacteria, phytoplankton >50  μ m and very small phytoplankton (≤7  μ m) were largely expelled in pseudofaeces.
3. The zebra mussel is a selective filter-feeder that alters its feeding behaviour in relation to phytoplankton composition to capture and ingest high quality phytoplankton, especially when phytoplankton occur in preferred size ranges. Flexibility of zebra mussel feeding behaviour and variation in susceptibility among phytoplankton groups to mussel ingestion indicate that invading zebra mussels could alter phytoplankton community composition of lakes and have important ecosystem consequences.  相似文献   

2.
1 . To investigate direct effects of zebra mussel ( Dreissena polymorpha ) feeding activities on phytoplankton community composition, short‐term microcosm experiments were performed in natural water with complex phytoplankton communities. Both gross effects (without resuspension of mussel excretions) and net effects (with resuspension) were studied.
2. Gross clearance rates were not selective; essentially all taxa were removed at similar rates ranging from 24 to 63 mL mussel–1 h–1. Net clearance rates were highly selective; different plankton taxa were removed at very different rates, ranging from 12 to 83% of the gross rates, leading to consistent changes in the phytoplankton community composition. Thus, although zebra mussels can cause most phytoplankton to decline, there is considerable variation among taxa in either pre‐digestive selection or post‐digestive survival.
3. The direct, short‐term effects of zebra mussels on phytoplankton community composition are consistent with some of the major changes observed in the Hudson River since establishment of zebra mussels.
4. We show, with simple calculations, how zebra mussel filtration rate, its selective efficiency on various taxa, and phytoplankton growth rates interact to produce changes in the phytoplankton composition.  相似文献   

3.
Suppression of microzooplankton by zebra mussels: importance of mussel size   总被引:3,自引:0,他引:3  
1. The zebra mussel (Dreissena polymorpha) is amongst the most recent species to invade the Great Lakes. We explored the suppressive capabilities of mussels 6–22-mm in size on Lake St Clair microzooplankton (< 240)μm) in laboratory experiments. 2. Absolute suppression of rotifers and Dreissena veliger larvae was proportional to mussel shell length for individuals larger than 10 mm; larger zooplankton, mainly copepod nauplii and Cladocera, were not affected. Mussel clearance rates on rotifers generally exceeded those on veligers, although rates for both increased with increasing mussel size. Rotifer-based clearance rates of large (22 mm) mussels approached published values for phytoplankton food. 3. Most zooplankton taxa, particularly rotifers, declined significantly in western Lake Erie during the late 1980s concomitant with the establishment and population growth of zebra mussels in the basin. Densities of some taxa subsequently increased, although rotifers and copepod nauplii densities remained suppressed through 1993. Available evidence indicates that direct suppression by Dreissena coupled with food limitation provides the most parsimonious explanation for these patterns.  相似文献   

4.
SUMMARY 1. The feeding behaviour of the zebra mussel ( Dreissena polymorpha ) was studied in the laboratory on different combinations of food, including a green alga ( Chlamydomonas reinhardtii ) and toxic and non-toxic strains of the cyanobacterium Microcystis aeruginosa .
2. The highest clearance rate of phytoplankton by zebra mussels was found when the mussels were feeding on a mixture of Chlamydomonas and non-toxic Microcystis , the lowest on a mixture of Chlamydomonas and toxic Microcystis .
3. The differences found in the clearance rates between food combinations can be partly explained by the production of pseudofaeces containing live phytoplankton cells. Zebra mussels expelled significantly more live phytoplankton cells in the presence of toxic Microcystis than in the presence of non-toxic Microcystis . The pseudofaeces contained predominantly live Chlamydomonas cells. Proportionately much less live Microcystis cells were encountered in the pseudofaeces.
4. Consequently, grazing of zebra mussels on a combination of Chlamydomonas and Microcystis may finally result in a dominance of Chlamydomonas over Microcystis . The presence of toxic Microcystis may even strengthen this shift.  相似文献   

5.
1. The zebra mussel ( Dreissena polymorpha ) is one of the most successful invasive species; it has colonised many aquatic systems in Europe and North America with strong impacts on various ecosystem processes. The effect of D. polymorpha filtration on pelagic seston concentrations has been quantified in several studies, but the magnitude and stoichiometry of the transfer of sestonic biomass into benthic detritus by D. polymorpha and the accompanying enrichment of the benthic habitat is still under-investigated.
2. We studied biodeposition by zebra mussels in two series of laboratory experiments with the food algae Cryptomonas erosa and Scenedesmus obliquus . We also measured the year-round biodeposition rate under natural conditions in the oligotrophic Lake Constance.
3. In all experiments, zebra mussel biodeposition was linearly related to seston concentration. In the field, the relationship changed with a seasonal shift in algal composition and lower biodeposition rates during the spring algal bloom.
4. For both algal species in laboratory experiments, biodeposited material was depleted in phosphorous at an algal concentration ≤0.6 mg ash-free dry mass L−1, but not at higher concentrations. This effect was not observed in the field, probably because of high variation in C : N : P stoichiometry.
5. By mediating the transfer of pelagic resources into the benthos zebra mussels provide a sufficient amount of detritus for benthic invertebrates, especially during summer. Thus, material biodeposited by the mussels might increase benthic secondary production from pelagic resources, and zebra mussels are important mediators of this flux of organic matter from the pelagic zone into the benthos.  相似文献   

6.
Annual changes of rotifers, copepods, cladocerans, the ciliate Epistylis rotans, and larvae of Dreissena polymorpha were analysed for the period 1908–1990. Though food resources increased 6–10 fold in the course of eutrophication, only rotifers and Epistylis increased accordingly. Probably as a result of increased predation pressure crustaceans increased only twice. The seasonal pattern of metazoans and protozoans (flagellates, sarcodines, ciliates) were analysed for 12 and 3 years, resp. During winter and spring, large heterotrophic flagellates and ciliates dominated the zooplankton and were responsible for a pronounced - formerly underestimated - grazing pressure on phytoplankton. In early summer, metazoan filter-feeders were often able to cause a significant reduction of phyto- and protozooplankton. However, during some years, phytoplankton declined in the absence of a pronounced grazing pressure. Field data and experiments revealed that predators were able to regulate the density of cladocerans in early summer (mainly cyclopoids) and summer (mainly Leptodora, smelt and fish juveniles).  相似文献   

7.
Dreissenid mussels (the zebra mussel Dreissena polymorpha and the quagga mussel Dreissena bugensis ) have invaded lakes and rivers throughout North America and Europe, where they have been linked to dramatic changes in benthic invertebrate community diversity and abundance. Through a meta-analysis of published data from 47 sites, we developed statistical models of Dreissena impact on benthic macroinvertebrates across a broad range of habitats and environmental conditions. The introduction of Dreissena was generally associated with increased benthic macroinvertebrate density and taxonomic richness, and with decreased community evenness (of taxa excluding Dreissena ). However, the strength of these effects varied with sediment particle size across sites. The effects of Dreissena differed among taxonomic and functional groups of macroinvertebrates, with positive effects on the densities of scrapers and predators, particularly leeches (Hirudinea), flatworms (Turbellaria), and mayflies (Ephemeroptera). Gastropod densities increased in the presence of Dreissena , but large-bodied snail taxa tended to decline. Dreissena was associated with declines in the densities sphaeriid clams and other large filter-feeding taxa, as well as burrowing amphipods ( Diporeia spp.), but had strong positive effects on gammarid amphipods. These patterns are robust to variation in the methodology of primary studies. The effects of Dreissena are remarkably concordant with those of ecologically similar species, suggesting universality in the interactions between introduced byssally attached mussels and other macroinvertebrates.  相似文献   

8.
Species interactions between two types of sessile benthic invertebrates, the zebra mussel (Dreissena polymorpha) and freshwater sponges (Porifera), were evaluated in Michigan City IN Harbor in southern Lake Michigan during 1996. The study objective was to define whether competition plays a role in structuring benthic communities using experimental techniques commonly employed in marine systems. Sponges were uninhibited by zebra mussel presence and overgrew zebra mussel shells on hard vertical substrata. In contrast, zebra mussels did not overgrow sponge colonies, but did show an ability to re-capture hard substrata if relinquished by the sponge. The negative affect of sponges on zebra mussels through overgrowth and recruitment suggests interactions that could eventually displace zebra mussels from these benthic communities. However, seasonal reduction of sponge biomass from autumn through winter appears to allow the zebra mussel a periodic respite from overgrowth, preventing exclusion of zebra mussels from the community and allowing these two taxa to co-exist.  相似文献   

9.
1. Previous studies documented that zebra mussels became abundant in the Hudson River during 1992 causing an 80–90% reduction in phytoplankton biomass. This study used intervention time series analysis of abundance, biomass and reproduction over the period 1987–95 to assess changes in zooplankton in response to the invasion.
2. Zebra mussels caused a size-dependent decline in zooplankton. Microzooplankton, including tintinnid ciliates, rotifers and copepod nauplii all declined in 1992 and were scarce thereafter. Mean abundances of post-naupliar copepods and of cladocerans were also lower following the invasion but these changes were not statistically significant ( P > 0.05). Egg ratios and clutch sizes for the dominant cladoceran, Bosmina freyi , were not significantly related to zebra mussels, even though relatively low egg ratios were observed after the invasion.
3. The strong declines in microzooplankton were probably caused by direct zebra mussel predation. Estimated consumption rates by mussels were roughly equivalent to maximum microzooplankton growth rates.
4. The total biomass of zooplankton in the Hudson River declined by more than 70% following the invasion. Annual average zooplankton biomass was correlated with chlorophyll, but biomass per unit chlorophyll in the Hudson River was much lower than in lakes. The present study hypothesizes that this lower biomass reflects limitations by riverine flow and by predation during summer.  相似文献   

10.
1. Suspension feeding by bivalves exceeds that by other planktivores in many North American rivers, and food webs may be altered substantially by differences in feeding patterns between native unionid mussels and invading dreissenid mussels. 2. We conducted an experiment comparing zooplanktivory by one unionid and two dreissenid species that addressed several primary questions. Is benthic planktivory important in this river? Has this linkage been altered substantially by dreissenids? Do the two dreissenid species differ in planktivory, and is this ecologically important if quagga mussels extend their geographical range? 3. Our 12‐day experiment consisted of controls (no mussels) and treatments with unionid (Elliptio complanata), quagga (Dreissena bugensis) or zebra (D. polymorpha) mussels in 3500‐L, 80‐μm mesh enclosures placed in a slackwater area of the St Lawrence River. 4. The density of the most abundant calanoid copepod Eurytemora affinis increased in the presence of dreissenids, probably as an indirect food web response. By day 12, a cumulative effect was shown by the most overwhelmingly abundant rotifer, Polyarthra, whose density declined dramatically in dreissenid enclosures compared with control and unionid enclosures. Rotifer densities in unionid enclosures were not different from controls, nor were dreissenid treatments different from each other. The effects on rotifers were probably from predation, as Chl‐a did not vary among treatments. 5. We conclude that benthic‐pelagic coupling via planktivory is important in slackwater areas. Dreissenids have strengthened this linkage, but range extension of quaggas should not appreciably alter effects produced by a similar biomass of zebra mussels.  相似文献   

11.
The feeding ecology of the green-lipped mussel, Perna canaliculus, was investigated within three intertidal mussel beds along Ninety Mile Beach, northern New Zealand, between August 2000 and March 2001. Adult mussels of different sizes (45-105 mm in shell length) were collected from the intertidal sites about 30 min after being submerged by the incoming tide for gut content analyses. Results of these analyses indicate that mussels consume a variety of phytoplankton, micro- and mesozooplankton, including mussel larvae and post-larvae. Cannibalism of juveniles of up to 620 μm was recorded for intertidal mussels, and conspecifics of up to 2.4 mm were found within the stomachs of additional mussels collected in August 2000 from a nearby subtidal site. For all three intertidal populations, mussel larvae and juveniles contribute about 70% of the food particle consumption during the spawning peak in August, while phytoplankton and other zooplankton constitute the majority of the food source (about 99%) in March, during gametogenesis. Larger intertidal mussels tended to have more food particles in their stomachs than smaller mussels within all three populations. Distinctive differences in food consumption among intertidal populations directly coincide with variations in total particulate matter (TPM), particulate organic matter (POM) and percent organic matter (OM) in the adjacent seawater.Separate experiments designed to test the feeding behavior of mussels feeding at different times during the incoming tide were conducted at one of the intertidal sites during August 2000 and March 2001. Results from these experiments indicate a marked shift in food consumption from bivalves to other mesozooplankton in August, and from phytoplankton to mesozooplankton in March. The observed combination of mussel predatory and grazing behavior over the incoming tide and through the year provides evidence for a strong food-web link between the benthic and pelagic life stages of this species. Furthermore, the high rate of cannibalism during some months of the year suggests that this source of food may significantly contribute to the energy budget of wild populations, with potential implications for evolutionary adaptive success.  相似文献   

12.
Habitat engineering role of the invasive zebra mussel Dreissena polymorpha (Pallas) was studied in the Curonian lagoon, a shallow water body in the SE Baltic. Impacts of live zebra mussel clumps and its shell deposits on benthic biodiversity were differentiated and referred to unmodified (bare) sediments. Zebra mussel bed was distinguished from other habitat types by higher benthic invertebrate biomass, abundance, and species richness. The impact of live mussels on biodiversity was more pronounced than the effect of shell deposits. The structure of macrofaunal community in the habitats with >103 g/m2 of shell deposits devoid of live mussels was similar to that found within the zebra mussel bed. There was a continuous shift in species composition and abundance along the gradient ‘bare sediments—shell deposits—zebra mussel bed’. The engineering impact of zebra mussel on the benthic community became apparent both in individual patches and landscape-level analyses.  相似文献   

13.
We investigated the interaction between two invasive invertebrate species in a shallow Central European flooded sandpit: the epibiosis of Ponto-Caspian zebra mussels Dreissena polymorpha on the American crayfish Orconectes limosus. Between 2004 and 2005, we followed the seasonal variation in number and size of the mussels attached to crayfish bodies, and microhabitats preferred by mussels. The proportion of crayfish colonised by mussels varied seasonally: in spring and early summer it was consistently over 75%, afterwards it dropped temporarily due to loss of bivalves during the crayfish moult, and later increased again due to re-colonisation by often relatively large juvenile mussels. Three different pathways of mussel settlement on crayfish hosts are likely: (1) primary settlement of free-swimming pediveliger larvae; (2) secondary settlement of plantigrade mussels and juveniles; (3) active re-attachment of grown mussels from the substrate to crayfish. This epibiosis was promoted by lack of suitable substrates at the studied locality. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

14.
Enumeration of benthic (bottom dwelling) and epiphytic (attached to plants) zebra and quagga mussels (Dreissena polymorpha and D. bugensis, respectively) at Lake Erie near-shore sites in fall of 2000 revealed an unexpected prevalence of the zebra mussel on submerged plants. Even at Buffalo, New York, USA, where benthic dreissenids have been 92–100% quagga mussel since 1996, zebra mussels constituted 30–61% of epiphytes numerically. This may reflect a partitioning of settling space consistent with interspecific competition. A seasonal epiphytic refugium might allow the zebra mussel to persist even where the benthos is almost exclusively quagga mussel. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
SUMMARY 1. Exotic zebra mussels, Dreissena polymorpha, occur in southern U.S. waterways in high densities, but little is known about the interaction between native fish predators and zebra mussels. Previous studies have suggested that exotic zebra mussels are low profitability prey items and native vertebrate predators are unlikely to reduce zebra mussel densities. We tested these hypotheses by observing prey use of fishes, determining energy content of primary prey species of fishes, and conducting predator exclusion experiments in Lake Dardanelle, Arkansas. 2. Zebra mussels were the primary prey eaten by 52.9% of blue catfish, Ictalurus furcatus; 48.2% of freshwater drum, Aplodinotus grunniens; and 100% of adult redear sunfish, Lepomis microlophus. Blue catfish showed distinct seasonal prey shifts, feeding on zebra mussels in summer and shad, Dorosoma spp., during winter. Energy content (joules g−1) of blue catfish prey (threadfin shad, Dorosoma petenense; gizzard shad, D. cepedianum; zebra mussels; and asiatic clams, Corbicula fluminea) showed a significant species by season interaction, but shad were always significantly greater in energy content than bivalves examined as either ash-free dry mass or whole organism dry mass. Fish predators significantly reduced densities of large zebra mussels (>5 mm length) colonising clay tiles in the summers of 1997 and 1998, but predation effects on small zebra mussels (≤5 mm length) were less clear. 3. Freshwater drum and redear sunfish process bivalve prey by crushing shells and obtain low amounts of higher-energy food (only the flesh), whereas blue catfish lack a shell-crushing apparatus and ingest large amounts of low-energy food per unit time (bivalves with their shells). Blue catfish appeared to select the abundant zebra mussel over the more energetically rich shad during summer, then shifted to shad during winter when shad experienced temperature-dependent stress and mortality. Native fish predators can suppress adult zebra mussel colonisation, but are ultimately unlikely to limit population density because of zebra mussel reproductive potential.  相似文献   

16.
1. We conducted a series of in situ enclosure experiments to assess the impact of zebra mussels ( Dreissena polymorpha ) on the plankton of the Ohio River. Adult mussels were suspended in pelagic enclosures ('potamocorrals') at three densities (0, 1000, 2500 mussels per corral) and incubated for 6 days with daily plankton and physiochemical sampling.
2. The presence of adult zebra mussels was correlated with a shift in composition of the phytoplankton community and a severe reduction in some rotifers. The effects of zebra mussels on the larger zooplankton were taxon-dependent, but bacterial density showed no trend among treatments.
3. Zebra mussels may have significant negative impacts on zooplankton, which may in turn alter riverine food webs.  相似文献   

17.
1. Freshwater mussels (Order Unionoida) are the most imperiled faunal group in North America; 60% of described species are considered endangered or threatened, and 12% are presumed extinct. Widespread habitat degradation (including pollution, siltation, river channelization and impoundment) has been the primary cause of extinction during this century, but a new stress was added in the last decade by the introduction of the Eurasian zebra mussel, Dreissena polymorpha , a biofouling organism that smothers the shells of other molluscs and competes with other suspension feeders for food. Since the early 1990s, it has been spreading throughout the Mississippi River basin, which contains the largest number of endemic freshwater mussels in the world. In this report, we use an exponential decay model based on data from other invaded habitats to predict the long-term impact of D. polymorpha on mussel species richness in the basin.
2. In North American lakes and rivers that support high densities (>3000 m−2) of D. polymorpha , native mussel populations are extirpated within 4–8 years following invasion. Significant local declines in native mussel populations in the Illinois and Ohio rivers, concomitant with the establishment of dense populations of D. polymorpha , suggest that induced mortality is occurring in the Mississippi River basin.
3. A comparison of species loss at various sites before and after invasion indicates that D. polymorpha has accelerated regional extinction rates of North American freshwater mussels by 10-fold. If this trend persists, the regional extinction rate for Mississippi basin species will be 12% per decade. Over 60 endemic mussels in the Mississippi River basin are threatened with global extinction by the combined impacts of the D. polymorpha invasion and environmental degradation.  相似文献   

18.
Many observational studies in North American lakes have documenteddecreases in phytoplankton abundance after the invasion of thezebra mussel (Dreissena polymorpha). However, few field experimentshave examined in detail the effect of zebra mussels on phytoplanktonabundance and species composition over an extended period. Replicatedin situ mesocosms were used to evaluate the impact of naturaldensities of zebra mussels on phytoplankton and ciliate biovolume,and algal species composition over a 5-week period in a habitatthat lacked extant mussel populations. Mussel biomass used inthe experiment was determined using a regression model basedon a data analysis that predicts zebra mussel biomass from totalphosphorus concentration. Within 1 week, zebra mussels decreasedphytoplankton biovolume by 53% and ciliate biovolume by 71%.The effect of zebra mussels on ciliate biovolume was sustainedthroughout the study. However, the effect of zebra mussels onphytoplankton abundance gradually waned over the remaining 4weeks of the experiment, such that the declining effect of zebramussels could not be explained by a shift towards less edibleand/or faster growing algal species. The mussels’ decliningcondition could help to explain the effect observed over thecourse of the experiment.  相似文献   

19.
Few experiments have quantified the effects of invasive zebra mussels (Dreissena polymorpha) on man-made reservoirs relative to other aquatic habitats. Reservoirs, however, are the dominate water body type in many of the states that are at the current front of the zebra mussel invasion into the western United States. The objective of this research, therefore, was to determine how zebra mussels affected phytoplankton, turbidity, and dissolved nutrients in water that was collected from three Kansas reservoirs that varied in trophic state (mesotrophic to hypereutrophic), but all experienced frequent cyanobacterial blooms. Laboratory mesocosm experiments were conducted to document the effects of zebra mussels on cyanobacteria and general water quality characteristics in the reservoir water. Zebra mussels significantly reduced algal biomass, and the total biovolume of cyanobacteria (communities were dominated by Anabaena) in each reservoir experiment. The effects of zebra mussels on other major algal groups (diatoms, flagellates, and green algae) and algal diversity were less consistent and varied between the three reservoir experiments. Similarly, the effects of zebra mussels on nutrient concentrations varied between experiments. Zebra mussels increased dissolved phosphorus concentrations in two of the reservoir experiments, but there was no effect of zebra mussels on dissolved phosphorus in the mesotrophic reservoir experiment. Combined, our results strongly suggest that zebra mussels have the potential to significantly impact reservoirs as they continue to expand throughout the western United States. Moreover, the magnitude of these effects may be context dependent and vary depending on the trophic state and/or resident phytoplankton communities of individual reservoirs as has similarly been reported for natural lakes.  相似文献   

20.
Many coastal habitat restoration projects are focused on restoring the population of a single foundation species to recover an entire ecological community. Estimates of the ecosystem services provided by the restoration project are used to justify, prioritize, and evaluate such projects. However, estimates of ecosystem services provided by a single species may vastly under‐represent true provisioning, as we demonstrate here with an example of oyster reefs, often restored to improve estuarine water quality. In the brackish Chesapeake Bay, the hooked mussel Ischadium recurvum can have greater abundance and biomass than the focal restoration species, the eastern oyster Crassostrea virginica. We measured the temperature‐dependent phytoplankton clearance rates of both bivalves and their filtration efficiency on three size classes of phytoplankton to parameterize an annual model of oyster reef filtration, with and without hooked mussels, for monitored oyster reefs and restoration scenarios in the eastern Chesapeake Bay. The inclusion of filtration by hooked mussels increased the filtration capacity of the habitat greater than 2‐fold. Hooked mussels were also twice as effective as oysters at filtering picoplankton (1.5–3 µm), indicating that they fill a distinct ecological niche by controlling phytoplankton in this size class, which makes up a significant proportion of the phytoplankton load in summer. When mussel and oyster filtration are accounted for in this, albeit simplistic, model, restoration of oyster reefs in a tributary scale restoration is predicted to control 100% of phytoplankton during the summer months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号