首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Biomechanical analysis of the stance phase during barefoot and shod running   总被引:4,自引:0,他引:4  
This study investigated spatio-temporal variables, ground reaction forces and sagittal and frontal plane kinematics during the stance phase of nine trained subjects running barefoot and shod at three different velocities (3.5, 4.5, 5.5 m s(-1)). Differences between conditions were detected with the general linear method (factorial model). Barefoot running is characterized by a significantly larger external loading rate than the shod condition. The flatter foot placement at touchdown is prepared in free flight, implying an actively induced adaptation strategy. In the barefoot condition, plantar pressure measurements reveal a flatter foot placement to correlate with lower peak heel pressures. Therefore, it is assumed that runners adopt this different touchdown geometry in barefoot running in an attempt to limit the local pressure underneath the heel. A significantly higher leg stiffness during the stance phase was found for the barefoot condition. The sagittal kinematic adaptations between conditions were found in the same way for all subjects and at the three running velocities. However, large individual variations were observed between the runners for the rearfoot kinematics.  相似文献   

2.
The effect of stride length on the dynamics of barefoot and shod running   总被引:1,自引:0,他引:1  
A number of interventions and technique changes have been proposed to attempt to improve performance and reduce the number of running related injuries. Running shoes, barefoot running and alterations in spatio-temporal parameters (stride frequency and stride length) have been associated with significant kinematic and kinetic changes, which may have implications for performance and injury prevention. However, because footwear interventions have been shown to also affect spatio-temporal parameters, there is uncertainty regarding the origin of the kinematic and kinetic alterations. Therefore, the purpose of this study was to independently evaluate the effects of shoes and changes in stride length on lower extremity kinetics. Eleven individuals ran over-ground at stride lengths ±5 and 10% of their preferred stride length, in both the barefoot and shod condition. Three-dimensional motion capture and force plate data were captured synchronously and used to compute lower extremity joint moments. We found a significant main effect of stride length on anterior–posterior and vertical GRFs, and sagittal plane knee and ankle moments in both barefoot and shod running. When subjects ran at identical stride lengths in the barefoot and shod conditions we did not observe differences for any of the kinetic variables that were measured. These findings suggest that barefoot running triggers a decrease in stride length, which could lead to a decrease in GRFs and sagittal plane joint moments. When evaluating barefoot running as a potential option to reduce injury, it is important to consider the associated change in stride length.  相似文献   

3.
The purpose of this investigation was to identify whether physiological exercise intensity differed with the use of aquatic training shoes (ATS) during deep-water running (DWR) compared to using a barefoot condition. Eight male intercollegiate (National Collegiate Athletic Association Division III [NCAA III]) varsity distance runners were videotaped from the right sagittal view while running on a treadmill (TR) and while barefoot in deep water at 60-70% of their TR VO2max for 30 minutes. Based on the stride rate of the barefoot DWR trial, a subsequent 30-minute session was completed while wearing ATS. Variables of interest were energy expenditure, oxygen consumption (VO2), heart rate, respiratory exchange ratio (RER), and rating of perceived exertion (RPE). Multivariate omnibus tests revealed statistically significant differences for energy expenditure (p < 0.011), VO2 (p < 0.001), RPE (p < 0.001), and RER (p < 0.002). The post hoc pairwise comparisons revealed significant differences between barefoot and shod DWR conditions for energy expenditure (p < 0.005) and VO2 (p < 0.002), representing a 9 and 7.6% increase in exercise intensity demand while running shod vs. barefoot. These comparisons also revealed significantly higher RPE and RER values while DWR than those found in TR. Wearing the ATS may be recommended as a method of statistically significantly increasing the exercise intensity while running in deep water as compared to not wearing a shoe. Shod compared to TR yields very small differences, which indicates that the shoes may help better match land-based running exercise intensities.  相似文献   

4.
The identification of differences between groups is often important in biomechanics. This paper presents group classification tasks using kinetic and kinematic data from a prospective running injury study. Groups composed of gender, of shod/barefoot running and of runners who developed patellofemoral pain syndrome (PFPS) during the study, and asymptotic runners were classified. The features computed from the biomechanical data were deliberately chosen to be generic. Therefore, they were suited for different biomechanical measurements and classification tasks without adaptation to the input signals. Feature ranking was applied to reveal the relevance of each feature to the classification task. Data from 80 runners were analysed for gender and shod/barefoot classification, while 12 runners were investigated in the injury classification task. Gender groups could be differentiated with 84.7%, shod/barefoot running with 98.3%, and PFPS with 100% classification rate. For the latter group, one single variable could be identified that alone allowed discrimination.  相似文献   

5.
The aim of this study was to provide detailed information on rationales, calculations, and results of common methods used to quantify reproducibility in plantar pressure variables. Recreational runners (N=95) performed multiple barefoot running trials in a laboratory setup, and pressure variables were analyzed in nine distinct subareas of the foot. Reproducibility was assessed by calculating intraclass correlation coefficients (ICC) and the root mean square error (RMSE). Intraclass correlation coefficients ranged from 0.58 to 0.99, depending on the respective variable and type of ICC. Root mean square errors ranged between 2.3 and 3.1% for relative force-time integrals, between 0.07 and 0.23 for maximum force (Fmax), and between 107 and 278 kPa for maximum pressure (Pmax), depending on the subarea of the foot. Force-time integral variables demonstrated the best within-subject reproducibility. Rear-foot data suffered from slightly increased measurement error and reduced reproducibility compared with the forefoot.  相似文献   

6.
7.
Age-related changes in running kinematics have been reported in the literature using classical inferential statistics. However, this approach has been hampered by the increased number of biomechanical gait variables reported and subsequently the lack of differences presented in these studies. Data mining techniques have been applied in recent biomedical studies to solve this problem using a more general approach. In the present work, we re-analyzed lower extremity running kinematic data of 17 young and 17 elderly male runners using the Support Vector Machine (SVM) classification approach. In total, 31 kinematic variables were extracted to train the classification algorithm and test the generalized performance. The results revealed different accuracy rates across three different kernel methods adopted in the classifier, with the linear kernel performing the best. A subsequent forward feature selection algorithm demonstrated that with only six features, the linear kernel SVM achieved 100% classification performance rate, showing that these features provided powerful combined information to distinguish age groups. The results of the present work demonstrate potential in applying this approach to improve knowledge about the age-related differences in running gait biomechanics and encourages the use of the SVM in other clinical contexts.  相似文献   

8.
Animals commonly move over a range of speeds, and encounter considerable variation in habitat structure, such as inclines. Hindlimb kinematics and muscle function in diverse groups of vertebrates are affected by these changes in behavior and habitat structure, providing a fruitful source of variation for studying the integration of kinematics and muscle function. While it has been observed in a variety of vertebrates that muscle length change can be minimal during locomotion, it is unclear how, and to what degree, in vivo muscle length change patterns are integrated with kinematics. We tested the hypothesis that the length of the turkey lateral gastrocnemius (LG), a biarticular muscle that has moments at the ankle and knee, is not solely affected by changes in joint kinematics. We recorded in vivo muscle length changes (using sonomicrometry) and hindlimb movements (using high-speed video) of wild turkeys running on various inclines, and at different speeds. We quantified the relationship between joint angle (knee and ankle separately) and muscle length in freshly euthanized specimens, and then applied an empirically derived correction for changes in pennation angle and tendon strain during locomotion to improve the accuracy of our predicted lengths. We estimated muscle length at four points during each stride and then compared these values with those measured directly. Other than during swing, the predicted changes in muscle length calculated from the changes in joint kinematics did not correspond with our measured values of LG length. Therefore, the lengths at which the LG operates in turkeys are not determined entirely by kinematics. In addition to strain in series elastic components, we hypothesize that heterogeneous strain within muscles, interactions between muscles and muscle pennation angle all contribute to the nonlinear relationship between muscle length changes and kinematics.  相似文献   

9.
10.
Because of the nature of running, the forces encountered require a proper coordination of joint action of the lower extremity to dissipate the ground reaction forces and accelerations through the kinetic chain. Running-related muscle fatigue may reduce the shock absorbing capacity of the lower extremity and alter running kinematics. The purpose of this study was to determine if a bout of exhaustive running at a physiologically determined high intensity, changes running kinematics, impact accelerations, and alters shock attenuating capabilities. It was hypothesized that as a result of fatigue induced by an exhaustive run, running kinematics, impact accelerations at the head and shank, acceleration reduction, and shock attenuation would change. A within-subject, repeated-measures design was used for this study. Twelve healthy, competitive male and female distance runners participated. Subjects performed 2 testing sessions consisting of a VO2max treadmill protocol to determine the heart rate at ventilatory threshold and a fatigue-inducing running bout at the identified ventilatory threshold heart rate. Kinematic data included knee flexion, pronation, time to maximum knee flexion, and time to maximum pronation. Acceleration data included shank acceleration, head acceleration, and shock attenuation. No significant differences resulted for the kinematic or acceleration variables. Although the results of this study do not support the original hypotheses, the influence of running fatigue on kinematics and accelerations remains inconclusive. Future research is necessary to examine fatigue-induced changes in running kinematics and accelerations and to determine the threshold at which point the changes may occur.  相似文献   

11.
Abstract

A 3D anatomically-based finite-element foot model was adopted for predicting von Mises stresses within tibiotalar cartilage following 5?km barefoot running. To compare this predicted stress with T2 maps, magnetic resonance scans of the right ankle and plantar pressure were obtained from ten novices and ten marathon-experienced runners before and after running. Following running, tibiotalar cartilage stress was decreased in experienced runners. This corresponded with T2 values that did not change between pre- and post-running suggesting no increase in cartilage fluid levels. In contrast, novices maintained the same level of von Mises stress and this corresponded with a significant T2 increase in tibiotalar cartilage.  相似文献   

12.
We have combined kinematic and electromyogram (EMG) analysis of running Blaberus discoidalis to examine how middle and hind leg kinematics vary with running speed and how the fast depressor coxa (Df) and fast extensor tibia (FETi) motor neurons affect kinematic parameters. In the range 2.5–10 Hz, B. discoidalis increases step frequency by altering the joint velocity and by reducing the time required for the transition from flexion to extension. For both Df and FETi the timing of recruitment coincides with the maximal frequency seen for the respective slow motor neurons. Df is first recruited at the beginning of coxa-femur (CF) extension. FETi is recruited in the latter half of femur-tibia (FT) extension during stance. Single muscle potentials produced by these fast motor neurons do not have pronounced effects on joint angular velocity during running. The transition from CF flexion to extension was abbreviated in those cycles with a Df potential occurring during the transition. One effect of Df activity during running may be to phase shift the beginning of joint extension so that the transition is sharpened. FETi is associated with greater FT extension at higher running speeds and may be necessary to overcome high joint torques at extended FT joint angles. Accepted: 24 May 1997  相似文献   

13.
Effects of specific versus cross-training on running performance   总被引:1,自引:0,他引:1  
The cross-training (XT) hypothesis suggests that despite the principle of specificity of training, athletes may improve performance in one mode of exercise by training using another mode. To test this hypothesis we studied 30 well-trained individuals (10 men, 20 women) in a randomized longitudinal trail. Subjects were evaluated before and after 8 weeks of enhanced training (+10%/week), accomplished by adding either running (R) or swimming (XT) to baseline running, versus continued baseline running (C). Both R ( – 26.4s) and XT (– 13.2s) improved time trial (3.2 km) performance, whereas C did not (– 5.4s). There were no significant changes during treadmill running in maximum oxygen uptake (O2peak; – 0.2, – 6.0, and + 2.7%), steady state submaximal O2 at 2.68 m · s–1 ( – 1.2, – 3.3 and + 0.2 ml · kg–1 · min–1), velocity at O2peak (+0.05, +0.25 and +0.09 m · s–1) or accumulated O2 deficit (+ 11.2, – 6.1 and + 9.4%) in the R, XT or C groups, respectively. There was a significant increase in velocity associated with a blood lactate concentration of 4 mmol · l–1 in R but not in XT or C ( + 0.32, + 0.07 and + 0.08 m · s–1). There were significant changes in arm crank O2peak ( + 5%) and arm crank O2 at 4 mmol · l–1 ( + 6.4%) in XT. There was no significant changes in arm crank O2peak ( + 1.3 and – 7.7%) or arm crank O2 at 4 mmol · l–1 ( + 0.8 and + 0.4%) in R or C, respectively. The data suggest that muscularly non-similar XT may contribute to improved running performance but not to the same degree as increased specific tranining.  相似文献   

14.
Previous studies investigating the effects of shoe midsole hardness on running kinematics have often used male subjects from within a narrow age range. It is unknown whether shoe midsole hardness has the same kinematic effect on male and female runners as well as runners from different age categories. As sex and age have an effect on running kinematics, it is important to understand if shoe midsole hardness affects the kinematics of these groups in a similar fashion. However, current literature on the effects of sex and age on running kinematics are also limited to a narrow age range distribution in their study population. Therefore, this study tested the influence of three different midsole hardness conditions, sex and age on the lower extremity kinematics during heel-toe running. A comprehensive analysis approach was used to analyze the lower-extremity kinematic gait variables for 93 runners (male and female) aged 16-75 years. Participants ran at 3.33±0.15 m/s on a 30 m-long runway with soft, medium and hard midsoles. A principal component analysis combined with a support vector machine showed that running kinematics based on shoe midsole hardness, sex, and age were separable and classifiable. Shoe midsole hardness demonstrated a subject-independent effect on the kinematics of running. Additionally, it was found that age differences affected the more dominant movement components of running compared to differences due to the sex of a runner.  相似文献   

15.
We investigated the effect of gradual-elastic compression stockings (GCSs) on running economy (RE), kinematics, and performance in endurance runners. Sixteen endurance trained athletes (age: 34.73 ± 6.27 years; VO2max: 62.83 ± 9.03 ml·kg(-1)·min(-1); 38 minutes in 10 km; 1 hour 24 minutes in half marathon) performed in random order 4 bouts of 6 minutes at a recent half-marathon pace on a treadmill to evaluate RE with or without GCSs. Subsequently, 12 athletes were divided into 2 equal groups matched by their VO2max, and they performed a time limit test (T(lim)) on a treadmill at 105% of a recent 10-km pace with or without GCSs for evaluation of physiological responses and running kinematics. There were no significant differences in the RE test in all of the variables analyzed for the conditions, but a moderate reproducibility for some physiological responses was detected in the condition with GCSs. In the T(lim), the group that wore GCSs reached a lower % of maximum heart rate (HRmax) compared with the control group (96.00 ± 2.94 vs. 99.83 ± 0.40) (p = 0.01). Kinematics did not differ between conditions during the T(lim) (p > 0.05). There were improvement trends for time to fatigue (337 vs. 387 seconds; d = 0.32) and a lower VO2peak (≈53 vs. 62 ml·kg(-1)·min(-1); d = 1.19) that were detected with GCSs during the T(lim). These results indicate that GCSs reduce the % of HRmax reached during a test at competition pace. The lower reproducibility of the condition with GCSs perhaps suggests that athletes may possibly need an accommodation period for systematically experiencing the benefits of this garment, but this hypothesis should be further investigated.  相似文献   

16.
17.
The microstructure of tissues and tissue equivalents (TEs) plays a critical role in determining the mechanical properties thereof. One of the key challenges in constitutive modeling of TEs is incorporating the kinematics at both the macroscopic and the microscopic scale. Models of fibrous microstructure commonly assume fibrils to move homogeneously, that is affine with the macroscopic deformation. While intuitive for situations of fibril-matrix load transfer, the relevance of the affine assumption is less clear when primary load transfer is from fibril to fibril. The microstructure of TEs is a hydrated network of collagen fibrils, making its microstructural kinematics an open question. Numerical simulation of uniaxial extensile behavior in planar TE networks was performed with fibril kinematics dictated by the network model and by the affine model. The average fibril orientation evolved similarly with strain for both models. The individual fibril kinematics, however, were markedly different. There was no correlation between fibril strain and orientation in the network model, and fibril strains were contained by extensive reorientation. As a result, the macroscopic stress given by the network model was roughly threefold lower than the affine model. Also, the network model showed a toe region, where fibril reorientation precluded the development of significant fibril strain. We conclude that network fibril kinematics are not governed by affine principles, an important consideration in the understanding of tissue and TE mechanics, especially when load bearing is primarily by an interconnected fibril network.  相似文献   

18.
19.
Some recent analyses modeled the response of collagenous tissues, such as epicardium, using a hypothetical network consisting of interconnected springlike fibers. The fibers in the network were organized such that internal nodes served as the connection point between three such collagen springs. The results for assumed affine and nonaffine deformations are contrasted after a homogeneous deformation at the boundary. Affine deformation provides a stiffer mechanical response than nonaffine deformation. In contrast to nonaffine deformation, affine deformation determines the displacement of internal nodes without imposing detailed force balance, thereby complicating the simplest intuitive notion of stress, one based on free body cuts, at the single node scale. The standard notion of stress may then be recovered via average field theory computations based on large micromesh realizations. An alternative and by all indications complementary viewpoint for the determination of stress in these collagen fiber networks is discussed here, one in which stress is defined using elastic energy storage, a notion which is intuitive at the single node scale. It replaces the average field theory computations by an averaging technique over randomly oriented isolated simple elements. The analytical operations do not require large micromesh realizations, but the tedious nature of the mathematical manipulation is clearly aided by symbolic algebra calculation. For the example case of linear elastic deformation, this results in material stiffnesses that relate the infinitesimal strain and stress. The result that the affine case is stiffer than the nonaffine case is recovered, as would be expected. The energy framework also lends itself to the natural inclusion of changes in mechanical response due to the chemical, electrical, or thermal environment.  相似文献   

20.
We investigated how varying seat tube angle (STA) and hand position affect muscle kinematics and activation patterns during cycling in order to better understand how triathlon-specific bike geometries might mitigate the biomechanical challenges associated with the bike-to-run transition. Whole body motion and lower extremity muscle activities were recorded from 14 triathletes during a series of cycling and treadmill running trials. A total of nine cycling trials were conducted in three hand positions (aero, drops, hoods) and at three STAs (73°, 76°, 79°). Participants also ran on a treadmill at 80, 90, and 100% of their 10-km triathlon race pace. Compared with cycling, running necessitated significantly longer peak musculotendon lengths from the uniarticular hip flexors, knee extensors, ankle plantar flexors and the biarticular hamstrings, rectus femoris, and gastrocnemius muscles. Running also involved significantly longer periods of active muscle lengthening from the quadriceps and ankle plantar flexors. During cycling, increasing the STA alone had no affect on muscle kinematics but did induce significantly greater rectus femoris activity during the upstroke of the crank cycle. Increasing hip extension by varying the hand position induced an increase in hamstring muscle activity, and moved the operating lengths of the uniarticular hip flexor and extensor muscles slightly closer to those seen during running. These combined changes in muscle kinematics and coordination could potentially contribute to the improved running performances that have been previously observed immediately after cycling on a triathlon-specific bicycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号