首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
目的:探讨体外培养条件下糖基化终产物(AGEs)对人肾小球系膜细胞(HRMCs)中糖基化终产物受体(RAGE)、氧化应激及单核细胞趋化因子-1(MCP-1)表达的影响。方法:将HRMCs与不同浓度的糖化牛血清白蛋白(AGE-BSA)和牛血清白蛋白(BSA)共同培养,或与同一质量浓度的AGE-BSA和BSA共同培养不同时间,以中和抗RAGE抗体封闭细胞膜上RAGE;采用细胞免疫化学法检测AGEs对HRMCs中RAGE表达的影响,流式细胞术检测细胞内活性氧(ROS),半定量逆转录-聚合酶链反应(RT-PCR)法检测MCP-1 mRNA的表达。结果:在HRMCs中AGE-BSA能够促进RAGE的表达,并以时间和剂量依赖方式促进HRMCs中ROS及MCP-1的表达;ROS及MCP-1的表达水平在加入不同浓度(50、100、200、400 mg/L)的AGE-BSA作用48 h后以及加入质量浓度为200 mg/L的AGE-BSA作用不同时间(12、24、48、72 h)后,较相应质量浓度或时间的BSA组和对照组均明显升高(P〈0.05);抗RAGE抗体干预后能够部分抑制AGE-BSA诱导ROS及MCP-1的表达,而人IgG没有这种作用。结论:AGEs通过RAGE激活氧化应激效应诱导MCP-1的表达上调,是糖尿病肾病发生发展的可能机制。  相似文献   

2.
目的用人离体中性白细胞研究利多卡因对刺激剂诱导超氧阴离子产生,蛋白质酪氨酸磷酸化和NADPH氧化酶组成因子p47^phox和p67^phox从细胞质向细胞膜移动的影响。方法用细胞色素C还原法测定不同浓度利多卡因对3种刺激剂介导的中性白细胞释放超氧阴离子量。用Western blot检测中性白细胞蛋白质的磷酸化及NADPH氧化酶细胞质因子p47^phox和p67^phox的磷酸化。结果利多卡因可呈浓度依赖性抑制f MLP(N-formyl-methionyl-leucyl-phenylalanine)介导的中性白细胞释放超氧阴离子,而对PMA(phorbol 12-myristate 13-acetate)或AA(arachidonic acid)介导的中性白细胞释放超氧阴离子并无影响。利多卡因呈浓度依赖性抑制f MLP介导的中性白细胞蛋白质(86.0,58.0,45.0 kDa)的磷酸化,与利多卡因对中性白细胞释放超氧阴离子的影响相一致,另外利多卡因还可抑制细胞质因子p47^phox和p67^phox的从细胞质向细胞膜的移动,从而抑制NADPH氧化酶释放超氧阴离子。结论利多卡因呈浓度依赖性抑制f MLP介导的中性白细胞产生超氧阴离子,这一作用与抑制细胞的一些蛋白质磷酸化及p47^phox和p67^phox从细胞质向细胞膜移动有关。  相似文献   

3.
吞噬细胞NADPH氧化酶能生成用于清除病原微生物的活性氧簇 (reactive oxygen species, ROS),在机体的防御体系中起着非常重要的作用。该文利用RT-PCR结合RACE-PCR的方法,对翘嘴鳜 (Siniperca chuatsi) NADPH氧化酶的3个调节亚基p40phox、p47phox和p67phox的cDNA进行了克隆。结果显示p40phox基因cDNA序列全长为1 406 nt,开放阅读框长度为1 050 nt,翻译成349个氨基酸;p47phox 基因cDNA序列全长为1 686 nt,开放阅读框为1 209 nt,翻译成402个氨基酸;p67phox基因cDNA序列全长为2 185 nt,开放阅读框长度为1 488 nt,翻译成495个氨基酸。半定量PCR分析显示在翘嘴鳜血液、脑、鳃、性腺、心脏、头肾、肠、肾、肝、脾、胸腺组织中都能检测到这3个亚基的mRNA表达,然而,它们在不同组织中的表达强度具有差异。经柱状黄杆菌灭活苗FKG4免疫后,p40phox亚基mRNA在翘嘴鳜血液和头肾中的表达量显著上升,p47phox在头肾和脾脏中的表达量显著上升,而p67phox在血液、头肾和脾脏中的表达量均显著上升。由此推断NADPH氧化酶参与了翘嘴鳜机体的抗菌免疫应答。  相似文献   

4.
狼疮性肾炎(lupus nephritis,LN)的病理改变多种多样,硬化性肾小球肾炎是多数LN患者的终末阶段,因此,该研究探讨了肾小球硬化的原因及机制。该研究通过免疫组化技术检测发现,与癌旁远端正常组织相比,LN肾组织晚期糖基化终产物受体(receptor for advanced glycation end products,RAGE)与IV型胶原蛋白(collagen IV,Col IV)的表达水平均明显上调且二者呈明显正相关;ELISA技术检测结果发现,甘草酸及Box A均可抑制由狼疮性肾炎患者置换血浆所诱导的人系膜细胞培养上清中FN蛋白表达的上调;Western blot及IP检测显示,高迁移率组蛋白B1(high mobility group box 1,HMGB1)可与HMC表面的RAGE结合并上调其表达水平。综上所述,研究者推测,HMGB1可能先与系膜细胞表面的RAGE结合,继而诱导系膜细胞细胞外基质沉积,从而参与LN肾损伤的发生。  相似文献   

5.
NADPH氧化酶催化亚基gp91phox(NOX2)及其同源物NOX1、NOX3、NOX4、NOX5、DUOX1和DUOX2统称为NOX家族,它们作为NADPH酶的核心亚基,是该酶发挥作用的关键。NOX家族几乎存在于所有的细胞,吞噬细胞中NADPH氧化酶生成的ROS主要起细胞防御功能,与此不同的是非吞噬细胞中NADPH氧化酶产生的ROS作为信号分子,参与机体内信号转导途径,调节细胞分化、增殖、衰老和凋亡等活动;当NOX家族蛋白异常表达,ROS水平急剧增加时,则能诱导机体内多种疾病的发生。  相似文献   

6.
LOX-1在D-葡萄糖诱导人肾小球系膜细胞表达TGF-β1中的作用   总被引:1,自引:0,他引:1  
目的探讨血凝素样氧化低密度脂蛋白受体1(LOX-1)在D-葡萄糖诱导人肾小球系膜细胞表达转化生长因子β1(TGF-β1)中的作用。方法在体外培养人肾小球系膜细胞,在不同时间加入不同浓度的D-葡萄及LOX-1特异性阻滞剂JTX92,用半定量RT-PCR法检测LOX-1和TGF-β1基因表达的相对含量,用Western blot法检测p38 MAPK蛋白质的相对含量,用酶联免疫吸附法(ELISA)检测细胞培养液中TGF-β1浓度。结果D-葡萄糖以时间和浓度依赖的方式增加细胞内LOX-1和TGF-β1 mRNA表达和培养液中TGF-β1浓度,同时也以时间和浓度依赖的方式增加p38 MAPK的表达,JTX92可以明显抑制LOX-1、TGF-β1和p38 MAPK的表达。结论高浓度D-葡萄糖可能通过上调LOX-1的表达,激活细胞内的p38 MAPK信号传递途径,促使人肾小球系膜细胞合成并分泌大量TGF-β1,参与糖尿病肾病的发生发展。  相似文献   

7.
晚期糖基化终产物受体的结构和功能   总被引:15,自引:0,他引:15  
晚期糖基化终产物受体(RAGE)是一种膜蛋白,属于免疫球蛋白家庭,由400多个氨基酸组成,分子量为35kD,分胞包段、跨膜段和胞内段,在单核巨噬细胞、血管内皮细胞、肾系膜细胞、神经细胞及平滑肌细胞等细胞中普扁表达。RAGE作为信号转导受体介导晚期糖基化终产物(AGE)和其配体在细胞表面结合,激活细胞内多种信号转导机制,在糖尿病慢性并发症、透析相关性淀粉样变(DRA)、阿尔采末病(AD)、动脉粥样硬化等疾病发生中起重要作用。对RAGE结构和功能的认识可能为这些疾病的防治提供新的靶位,因此具有重要意义。  相似文献   

8.
目的观察阿托伐他汀(atorv)对氧化低密度脂蛋白(ox-LDL)诱导的人肾小球系膜细胞(HGMCs)增殖和转化生长因子β1(TGF-β1)mRNA及丝裂原活化蛋白激酶(p38MAPK)蛋白表达的影响。方法在体外培养HG-MCs,用MTT法检测细胞增殖,用半定量RT-PCR法检测细胞TGF-β1 mRNA表达,用Western blot法检测细胞p38MAPK蛋白合成。结果1.Ox-LDL(80μg/ml)刺激系膜细胞增殖;2.Ox-LDL(10μg/ml-80μg/ml)以浓度依赖的方式增加HGMCs TGF-β1 mRNA和p38MAPK蛋白表达,3.Atovastatin(6μg-12μg/ml)抑制系膜细胞增殖,降低ox-LDL引起的TGF-β1 mRNA表达上调,抑制p38MAPK信号途径激活。结论阿托伐他汀可能通过对抗p38MAPK信号通路,减少TGFβ1分泌,抑制ox-LDL引起的肾小球系膜细胞增殖,预防和治疗伴有血脂异常的糖尿病肾脏病变。  相似文献   

9.
吞噬细胞NADPH氧化酶能生成用于清除病原微生物的活性氧(reactive oxygen species, ROS),在机体的防御体系中起着非常重要的作用.本文利用RT-PCR结合RACE-PCR的方法,克隆到翘嘴鳜NADPH氧化酶的催化亚基gp91phox和p22phox的cDNA全长.并研究两者在正常的翘嘴鳜和注射了柱状黄杆菌灭活菌苗(FKG4)的翘嘴鳜组织中的表达模式.结果表明,gp91phox基因cDNA序列全长2 037 nt,开放阅读框长度为1 698 nt,翻译成565个氨基酸;p22phox 基因cDNA序列全长1 296 nt,开放阅读框561 nt,翻译成186个氨基酸.将这2个亚基推导的氨基酸序列与人的对应亚基相比,相似性分别为68.7%和60.8%,且具有相似的结构域和功能域,说明翘嘴鳜与人的NADPH氧化酶具有相似的功能活性.半定量PCR分析显示,在翘嘴鳜血液、脑、心脏、肾、肝、脾、胸腺等11种组织中均能检测到gp91phox和p22phox的基因表达.经FKG4免疫后,gp91phox在翘嘴鳜血液、头肾和脾3种组织中的表达量显著上升,p22phox在头肾和脾2种组织中的表达量显著上升.由此推断,NADPH氧化酶可能参与了机体的抗菌免疫应答.  相似文献   

10.
质膜上的活性氧制造者--NOX家族   总被引:7,自引:0,他引:7  
李玲娜  周崧  易静 《生命科学》2005,17(5):414-418
NADPH氧化酶特异存在于吞噬细胞质膜,能生成用于清除病原微生物的活性氧(reactive oxygen species,ROS)。NOX是NADPH氧化酶催化亚基gp91^phox的同源物,存在于多种非吞噬细胞。目前发现的NOX有NOX1、NOX3、NOX4及NOX5,虽然它们有一定的组织特异性,但与NADPH氧化酶一样均有催化生成ROS的能力。与吞噬细胞中NADPH氧化酶所制造的ROS不同,NOX所产生的ROS并不主要起细胞防御功能,而是作为第二信使,参与细胞增殖、分化、凋亡的调节。此外,NOX对血管生成及骨吸收也有一定的影响,同时还可作为氧感受器调节促红细胞生成素(EPO)的产生。  相似文献   

11.
Despite the effectiveness of renin-angiotensin blockade in retarding diabetic nephropathy progression, a considerable number of patients still develop end-stage renal disease. The present investigation aims to evaluate the protective potential of FPS-ZM1, a selective inhibitor of receptor for advanced glycation end products (RAGE), alone and in combination with valsartan, an angiotensin receptor blocker, against glomerular injury parameters in streptozotocin-induced diabetic rats. FPS-ZM1 at 1 mg/kg (i.p.), valsartan at 100 mg/kg (p.o.), and their combination were administered for 4 weeks, starting 2 months after diabetes induction in rats. Tests for kidney function, glomerular filtration barrier, and podocyte slit diaphragm integrities were performed. Combined FPS-ZM1/valsartan attenuated diabetes-induced elevations in renal levels of RAGE and phosphorylated NF-κB p65 subunit. It ameliorated glomerular injury due to diabetes by increasing glomerular nephrin and synaptopodin expressions, mitigating renal integrin-linked kinase (ILK) levels, and lowering urinary albumin, collagen type IV, and podocin excretions. FPS-ZM1 also improved renal function as demonstrated by decreasing levels of serum cystatin C. Additionally, the combination also alleviated indices of renal inflammation as revealed by decreased renal monocyte chemoattractant protein 1 (MCP-1) and chemokine (C-X-C motif) ligand 12 (CXCL12) expressions, F4/80-positive macrophages, glomerular TUNEL-positive cells, and urinary alpha-1-acid glycoprotein (AGP) levels. These findings underline the benefits of FPS-ZM1 added to valsartan in alleviating renal glomerular injury evoked by diabetes in streptozotocin rats and suggest FPS-ZM1 as a new potential adjunct to the conventional renin-angiotensin blockade.  相似文献   

12.
13.
Diabetes mellitus is an endocrine and metabolic disease characterized by high blood glucose. Diabetic nephropathy (DN) is one of the most typical diabetic complications. Cornus officinalis is a type of traditional Chinese medicine that replenishes the liver and kidney. Morroniside is one of the main characteristic components of C. officinalis. In this study, an in vitro model for simulating DN damage was established by stimulating rat glomerular mesangial cells by the advanced glycation end products. The protective mechanism and effect of morroniside in regulating receptor for advanced glycation end products signaling pathway in DN was investigated to provide experimental evidence for the prevention and treatment of DN.  相似文献   

14.
Advanced glycation end products (AGE) have been implicated in the pathogenesis of glomerulosclerosis in diabetes. However, their involvement in the development of the early phase of diabetic nephropathy has not been fully elucidated. We investigated the effects of AGE on growth and on vascular endothelial growth factor (VEGF) and monocyte chemoattractant protein-1 (MCP-1) expression in human cultured mesangial cells. We prepared three immunochemically distinct AGE by incubating bovine serum albumin (BSA) with glucose, glyceraldehyde, or glycolaldehyde. When human mesangial cells were cultured with various types of AGE-BSA, viable cell numbers as well as DNA syntheses were significantly decreased. All of the AGE-BSA were found to significantly increase p53 and Bax protein accumulations and subsequently induce apoptotic cell death in mesangial cells. An antioxidant, N-acetylcysteine, significantly prevented the AGE-induced apoptotic cell death in mesangial cells. Human mesangial cells stimulated prostacyclin production by co-cultured glomerular endothelial cells. Furthermore, various types of AGE-BSA were found to up-regulate the levels of mRNAs for VEGF and stimulate the secretion of VEGF and MCP-1 proteins in mesangial cells. The results suggest that AGE disturbed glomerular homeostasis by inducing apoptotic cell death in mesangial cells and elicited hyperfiltration and microalbuminuria by stimulating the secretion of VEGF and MCP-1 proteins, thereby being involved in the pathogenesis of the early phase of diabetic nephropathy.  相似文献   

15.
Mesangial cell has several key roles in the control of glomerular function: it participates in the regulation of glomerular filtration rate, macromolecular clearance, and as both a source and target of numerous hormones and autocrines. Many of these insights into mesangial cell function have been obtained by studying mesangial cells in culture. However, no suitable cell lines have been established yet. We here reported the immortalization of rat kidney glomerular mesangial cell by transfection of E6 and E7 genes of human papillomavirus type 16 (HPV-16) via electroporation and lipofection. The results showed that only electroporation could transfect the genes to mesangial cells and the transfected cells maintained the viability for longer than 6 months. Fluorescence microscopic observation showed that cellular contractility and phagocytosis, which are the two main phenotypes of mesangial cells, are well maintained after transfection. The coculture of transfected mesangial cells with rat glomerular epithelial cells showed that the growth of mesangial cells was suppressed by epithelial cell, but the growth of epithelial cells was enhanced by mesangial cells. Moreover, an enhancing effect on the phagocytosis of mesangial cell was also observed in coculture. Such results may imply that the glomerular cell-cell interaction plays an important role in the regulation of cell proliferation and differentiation.  相似文献   

16.
Advanced glycation end products (AGEs) are produced by the non-enzymatic glycation of proteins and lipids. AGE levels are pathologically elevated in a number of inflammatory diseases and in diabetes mellitus. There is evidence that AGEs, acting through the receptor for AGEs, contribute to diabetic complications. Nephropathy is a major complication of diabetes mellitus. However, the initiating molecular events that trigger diabetic renal disease are unknown. Renal mesangial cells produce excess extracellular matrix in response to treatment with transforming growth factor-beta, and excess mesangial cell matrix production, by impairing glomerular filtration, contributes to diabetic nephropathy. AGEs are known to trigger the autocrine production and release of transforming growth factor-beta. However, it is unclear how AGEs signal in mesangial cells. Here we show that treatment of mesangial cells with AGEs and with the receptor for AGEs agonist S100 triggers activation of the extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3'-kinase (PI3K) pathways. AGEs trigger the GTP loading of mesangial cell Ras, and AGE activation of ERK requires Ras. We observe that Ki-Ras, but not Ha-Ras, is the target of AGE action. Surprisingly, inhibition of PI3K blocks both ERK and Ki-Ras activation. We also observe that activation of ERK and the PI3K target kinase protein kinase-B is blocked with free radical scavengers, indicating a role for reactive oxygen species in AGE recruitment of PI3K. Thus, AGEs signal to Ki-Ras and ERK through reactive oxygen species-dependent activation of PI3K.  相似文献   

17.
Diabetic nephropathy (DN) is the leading cause of chronic kidney failure. Moreover, DN is associated with elevated cardiovascular morbidity and mortality. DN is characterized by progressive expansion of the mesangial matrix and thickening of the glomerular basement membrane, resulting in the obliteration of glomerular capillaries. Advanced glycation endproducts (AGEs) produced as the result of hyperglycemia are known to stimulate the production of extracellular matrix (ECM) proteins, resulting in glomerulosclerosis. Exposure of cultured mesangial cells to AGEs results in a receptor-mediated upregulation of mRNA and protein secretion of type IV collagen (Col4), which is a major component of ECM. Here we review recent novel insights into the pathogenesis and diagnosis of DN, with a special emphasis on the emerging concept that diabetic glomerulosclerosis can result from activation of the signaling cascade leading to irreversible ECM overproduction. Finally, we describe signaling pathways involved in the initial change of DN and how these pathways can be manipulated for therapeutic benefit.  相似文献   

18.
Nonenzymatically glycated proteins are preferentially transported across the glomerular filtration barrier, and the glomerular mesangium in diabetes is bathed with serum containing increased concentrations of glycated albumin. We investigated effects of glycated albumin on mesangial cells, which are involved in diabetic nephropathy. [3H]-thymidine incorporation was significantly inhibited when murine mesangial cells were grown in culture media containing human serum that had been nonenzymatically glycated by incubation for 4 days with 28 mM glucose. This inhibition was reversed when monoclonal antibodies that selectively react with Amadori products of glycated albumin were added to the culture media. Purified glycated albumin containing Amadori adducts of the glycation reaction induced significant inhibition of thymidine incorporation and stimulation of Type IV collagen secretion compared with cells cultured in the presence of purified nonglycated albumin. These changes were prevented when monoclonal antibodies specifically reactive with fructosyl-lysine epitopes in glycated albumin were added to the cultures. The antibodies had no effect on growth or collagen production in the presence of nonglycated albumin. The results provide the first evidence directly implicating Amadori adducts in glycated albumin in the pathogenesis of diabetic nephropathy, which is characterized by decreased cellularity in association with expansion of the mesangial matrix.  相似文献   

19.
20.

Aim/Hypothesis

Low-density lipoprotein (LDL) is subjected to glycoxidation in diabetes, and a novel signalling mechanism by which glycoxidised LDL functions in glomerular mesangial cells remains to be ascertained.

Methods

We performed gene expression analysis in mouse glomerular mesangial cells treated with LDL modified by glycation and oxidation (GO-LDL, 100 µg/ml) for 48 h by using DNA microarray analysis and quantitative real-time PCR. We examined the GO-LDL-specific changes in gene and protein expression in mesangial cells and glomeruli of type 2 diabetic Zucker diabetic fatty (ZDF) rats.

Results

By microarray profiling, we noted that GO-LDL treatment increased Axl receptor tyrosine kinase (Axl) mRNA expression (∼2.5-fold, p<0.05) compared with normal LDL (N-LDL) treatment in mesangial cells. Treatment with GO-LDL also increased the protein levels of Axl and its ligand Gas6 as measured by Western blotting. These increases were inhibited by neutralising Axl receptor-specific antibody. Silencing Gas6 by siRNA inhibited GO-LDL-induced Axl expression in mesangial cells. Axl and Gas6 protein were also increased in cells cultured in high glucose (30 mM) or methylglyoxal (200 µM). Gas6 treatment increased the expression and secretion of TGF-β1 protein, a key regulator of extracellular matrix expression in the glomeruli of diabetic kidneys. Immunohistochemical analyses of glomeruli from 20-week-old ZDF rats exhibited increased Axl protein expression. Rottlerin, a selective PKC-δ inhibitor, completely blocked Gas6-induced TGF-β1 expression.

Conclusions/Interpretation

These data suggest that LDL modified by glycoxidation may mediate Axl/Gas6 pathway activation, and this mechanism may play a significant role in the pathogenesis of diabetic nephropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号