首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
目的:观察雷公藤甲素(Triptolide,TRP)对海人藻酸(Kainic acid,KA)海马内注射后大鼠学习记忆的影响及其作用机制。方法:采用Morris水迷宫筛选空间学习记忆能力正常的SD雄性大鼠90只(200~220g)。将实验动物分成3组:右侧海马注射生理盐水后生理盐水灌胃对照组(NS+NS)、右侧海马注射海人藻酸后生理盐水灌胃干预组(KA+NS)、右侧海马注射海人藻酸后雷公藤甲素灌胃干预组(KA+TRP)。动物存活1天,3天,5天,7天,14天,每个时间点6只,处死前分别于各相应时间点用Morris水迷宫检测各组动物空间位置记忆能力;免疫组织化学方法结合图像分析技术检测海马CA1区神经元COX-2的表达。结果:与NS组(NS+NS)比较,KA组(KA+NS)大鼠逃避潜伏期延长(P<0.05),跨越原平台次数减少(P<0.05);海马CA1区的神经元COX-2表达升高(P<0.05);TRP组(TRP+KA)与KA组比较,大鼠的平均逃避潜伏期从第5天起缩短(P<0.05),跨越原平台次数增多(P<0.05),海马CA1区神经元COX-2表达在5天,7天时下调(P<0.05)。结论:KA海马内注射,可以导致大鼠学习记忆功能障碍及上调海马CA1区神经元COX-2表达;雷公藤甲素干预治疗,能够改善动物的学习和记忆能力,能抑制KA诱导的海马CAl区神经元COX-2的表达。  相似文献   

2.

Methamphetamine (meth) use is often comorbid with anxiety disorders, with both conditions predominant during adolescence. Conditioned fear extinction is the most widely used model to study the fear learning and regulation that are relevant for anxiety disorders. The present study investigates how meth binge injections or meth self-administration affect subsequent fear conditioning, extinction and retrieval in adult and adolescent rats. In experiment 1, postnatal day 35 (P35—adolescent) and P70 (adult) rats were intraperitoneally injected with increasing doses of meth across 9 days. At P50 or P85, they underwent fear conditioning followed by extinction and test. In experiments 2a–c, P35 or P70 rats self-administered meth for 11 days then received fear conditioning at P50 or P85, followed by extinction and test. We observed that meth binge exposure caused a significant disruption of extinction retrieval in adult but not adolescent rats. Interestingly, meth self-administration in adolescence or adulthood disrupted acquisition of conditioned freezing in adulthood. Meth self-administration in adolescence did not affect conditioned freezing in adolescence. These results suggest that intraperitoneal injections of high doses of meth and meth self-administration have dissociated effects on fear conditioning and extinction during adulthood, while adolescent fear conditioning and extinction are unaffected.

  相似文献   

3.
尼古丁对学习记忆间接作用的研究鲜有报道。昆明小鼠母鼠受孕后随机分为对照组(CON)和尼古丁组(NIC)。CON组母鼠自由饮水,NIC组母鼠饮水中给予浓度为50μg/mL的尼古丁。子代小鼠60日龄时,进行Morris水迷宫实验,之后在体记录海马区穿通纤维通路(perforant pathway,PP)至齿状回(dentate gyrus,DG)的长时程增强(long-term potentiation,LTP)。结果显示,NIC组仔鼠的逃避潜伏期从第3天开始明显大于CON组,目标象限停留时间所占百分比和穿越平台次数均低于CON组,LTP群峰电位幅值和场兴奋性突触后电位斜率也都显著低于CON组。说明由母体摄入的尼古丁,可经胎盘和乳汁明显作用于其子代,导致子代学习记忆功能的明显损伤,其可能机制是因为海马神经元突触传递可塑性的效率显著降低。  相似文献   

4.
5.
Maternal obesity caused by overnutrition during pregnancy increases susceptibility to metabolic risks in adulthood, such as obesity, insulin resistance, and type 2 diabetes; however, whether and how it affects the cognitive system associated with the brain remains elusive. Here, we report that pregnant obesity induced by exposure to excessive high fatty or highly palatable food specifically impaired reversal learning, a kind of adaptive behavior, while leaving serum metabolic metrics intact in the offspring of rats, suggesting a much earlier functional and structural defects possibly occurred in the central nervous system than in the metabolic system in the offspring born in unfavorable intrauterine nutritional environment. Mechanically, we found that above mentioned cognitive inflexibility might be associated with significant striatal disturbance including impaired dopamine homeostasis and disrupted leptin signaling in the adult offspring. These collective data add a novel perspective of understanding the adverse postnatal sequelae in central nervous system induced by developmental programming and the related molecular mechanism through which priming of risk for developmental disorders may occur during early life.  相似文献   

6.
东莨菪碱慢性给药大鼠作为老龄相关记忆损害模型的探索   总被引:10,自引:1,他引:10  
目的对东莨菪碱慢性给药大鼠能否作为老龄相关记忆损害模型进行探索。方法14只1月龄SD大鼠随机分为对照组和东莨菪碱模型组。东莨菪碱模型组大鼠皮下注射东莨菪碱2mg kg,2次日,正常对照组予等量生理盐水,连续21d。然后利用Morris水迷宫(MWM)参照记忆试验进行行为学测试;神经元的特殊染色及电子显微镜技术,观察大鼠海马CA1、CA3区锥体细胞数、超微结构的改变以及突触可塑性变化。结果东莨菪碱组大鼠隐匿平台搜索实验成绩有一定损害;两组大鼠空间探索次数差异无显著性(P>0.05)。两组间海马CA1、CA3区锥体细胞数差异无显著性(P>0.05)。两组大鼠锥体细胞胞体超微结构无差异,但两组大鼠CA1区神经元突触超微结构有轻微变化。结论东莨菪碱慢性给药对大鼠学习记忆能力有一定损害,但对长时记忆无明显影响;对海马神经元结构无明显损害,对神经元突触可塑性有轻微影响。此种动物模型可能不是理想的老年性痴呆或老年相关记忆损害模型。  相似文献   

7.
Traumatic brain injury (TBI) is ubiquitous and effective treatments for it remain supportive largely due to uncertainty over how endogenous repair occurs. Recently, we demonstrated that hippocampal injury-induced neurogenesis is one mechanism underlying endogenous repair following TBI. Donepezil is associated with increased hippocampal neurogenesis and has long been known to improve certain aspects of cognition following many types of brain injury through unknown mechanisms. By coupling donepezil therapy with temporally regulated ablation of injury-induced neurogenesis using nestin-HSV transgenic mice, we investigated whether the pro-cognitive effects of donepezil following injury might occur through increasing neurogenesis. We demonstrate that donepezil itself enhances neurogenesis and improves cognitive function following TBI, even when injury-induced neurogenesis was inhibited. This suggests that the therapeutic effects of donepezil in TBI occur separately from its effects on neurogenesis.  相似文献   

8.
Mood disorders affect the lives and functioning of millions each year. Epidemiological studies indicate that childhood trauma is predominantly associated with higher rates of both mood and anxiety disorders. Exposure of rats to stress during juvenility (JS) (27–29 days of age) has comparable effects and was suggested as a model of induced predisposition for these disorders. The importance of the environment in the regulation of brain, behavior and physiology has long been recognized in biological, social and medical sciences. Here, we studied the effects of JS on emotional and cognitive aspects of depressive-like behavior in adulthood, on Hypothalamic-Pituitary-Adrenal (HPA) axis reactivity and on the expression of cell adhesion molecule L1 (L1-CAM). Furthermore, we combined it with the examination of potential reversibility by enriched environment (EE) of JS – induced disturbances of emotional and cognitive aspects of behavior in adulthood. Three groups were tested: Juvenile Stress –subjected to Juvenile stress; Enriched Environment – subjected to Juvenile stress and then, from day 30 on to EE; and Naïves. In adulthood, coping and stress responses were examined using the elevated plus-maze, open field, novel setting exploration and two way shuttle avoidance learning. We found that, JS rats showed anxiety- and depressive-like behaviors in adulthood, altered HPA axis activity and altered L1-CAM expression. Increased expression of L1-CAM was evident among JS rats in the basolateral amygdala (BLA) and Thalamus (TL). Furthermore, we found that EE could reverse most of the effects of Juvenile stress, both at the behavioral, endocrine and at the biochemical levels. The interaction between JS and EE resulted in an increased expression of L1-CAM in dorsal cornu ammonis (CA) area 1 (dCA1).  相似文献   

9.
Lead (Pb) is found to impair cognitive function. Synaptic structural plasticity is considered to be the physiological basis of synaptic functional plasticity and has been recently found to play important roles in learning and memory. To study the effect of Pb on spatial learning and memory at different developmental stages, and its relationship with alterations of synaptic structural plasticity, postnatal rats were randomly divided into three groups: Control; Pre-weaning Pb (Parents were exposed to 2 mM PbCl2 3 weeks before mating until weaning of pups); Post-weaning Pb (Weaned pups were exposed to 2 mM PbCl2 for 9 weeks). The spatial learning and memory of rats was measured by Morris water maze (MWM) on PND 85–90. Rat pups in Pre-weaning Pb and Post-weaning Pb groups performed significantly worse than those in Control group (p<0.05). However, there was no significant difference in the performance of MWM between the two Pb-exposure groups. Before MWM (PND 84), the number of neurons and synapses significantly decreased in Pre-weaning Pb group, but not in Post-weaning Pb group. After MWM (PND 91), the number of synapses in Pre-weaning Pb group increased significantly, but it was still less than that of Control group (p<0.05); the number of synapses in Post-weaning Pb group was also less than that of Control group (p<0.05), although the number of synapses has no differences between Post-weaning Pb and Control groups before MWM. In both Pre-weaning Pb and Post-weaning Pb groups, synaptic structural parameters such as thickness of postsynaptic density (PSD), length of synaptic active zone and synaptic curvature increased significantly while width of synaptic cleft decreased significantly compared to Control group (p<0.05). Our data demonstrated that both early and late developmental Pb exposure impaired spatial learning and memory as well as synaptic structural plasticity in Wistar rats.  相似文献   

10.
Several different transgenic APP mice develop learning and memory deficits. In some cases the mice have deficits very early in life, while in other instances the mice exhibit deficits only after they have aged and amyloid deposits have accumulated. In many cases, there is a correlation in individual mice of the same age and genotype between the extent of learning and memory deficits and the amounts of deposited amyloid found in the central nervous system. While superficially this might imply that the deposited material is somehow toxic to cognition, it is likely that deposited amyloid is also an index of the overall rate of amyloid production in each mouse. Rate of production would be expected to modify not only the amounts of deposited amyloid, but also other amyloid pools, including soluble, oligomeric, conjugated (e.g. ADDLs) and intracellular. Thus, the deposited material may be an integrated reflection of total Aß production, in addition to indicating the amounts in fibrillar forms. As such, it is conceivable that other Aß pools may be more directly linked to memory deficits. Thus far, the one manipulation found to mitigate the learning and memory deficits in APP transgenic mice is immunotherapy for Aß, either using active or passive immunization against the peptide. These data together with other findings are leading to a conclusion that the fibrillar Aß deposits are not directly linked to the memory deficits in mice, and that some other Aß pool, more readily diminished by immunotherapy, is more directly linked to the mechanisms leading to poor performance in learning and memory tasks.  相似文献   

11.

Background

Anesthetic exposure early in life affects neural development and long-term cognitive function, but our understanding of the types of memory that are altered is incomplete. Specific cognitive tests in rodents that isolate different memory processes provide a useful approach for gaining insight into this issue.

Methods

Postnatal day 7 (P7) rats were exposed to either desflurane or isoflurane at 1 Minimum Alveolar Concentration for 4 h. Acute neuronal death was assessed 12 h later in the thalamus, CA1-3 regions of hippocampus, and dentate gyrus. In separate behavioral experiments, beginning at P48, subjects were evaluated in a series of object recognition tests relying on associative learning, as well as social recognition.

Results

Exposure to either anesthetic led to a significant increase in neuroapoptosis in each brain region. The extent of neuronal death did not differ between groups. Subjects were unaffected in simple tasks of novel object and object-location recognition. However, anesthetized animals from both groups were impaired in allocentric object-location memory and a more complex task requiring subjects to associate an object with its location and contextual setting. Isoflurane exposure led to additional impairment in object-context association and social memory.

Conclusion

Isoflurane and desflurane exposure during development result in deficits in tasks relying on associative learning and recognition memory. Isoflurane may potentially cause worse impairment than desflurane.  相似文献   

12.
The long-term effects of intermittent ethanol exposure during adolescence (AIE) are of intensive interest and investigation. The effects of AIE on learning and memory and the neural functions that drive them are of particular interest as clinical findings suggest enduring deficits in those cognitive domains in humans after ethanol abuse during adolescence. Although studies of such deficits after AIE hold much promise for identifying mechanisms and therapeutic interventions, the findings are sparse and inconclusive. The present results identify a specific deficit in memory function after AIE and establish a possible neural mechanism of that deficit that may be of translational significance. Male rats (starting at PND-30) received exposure to AIE (5g/kg, i.g.) or vehicle and were allowed to mature into adulthood. At PND-71, one group of animals was assessed using the spatial-temporal object recognition (stOR) test to evaluate memory function. A separate group of animals was used to assess the density of cholinergic neurons in forebrain areas Ch1-4 using immunohistochemistry. AIE exposed animals manifested deficits in the temporal component of the stOR task relative to controls, and a significant decrease in the number of ChAT labeled neurons in forebrain areas Ch1-4. These findings add to the growing literature indicating long-lasting neural and behavioral effects of AIE that persist into adulthood and indicate that memory-related deficits after AIE depend upon the tasks employed, and possibly their degree of complexity. Finally, the parallel finding of diminished cholinergic neuron density suggests a possible mechanism underlying the effects of AIE on memory and hippocampal function as well as possible therapeutic or preventive strategies for AIE.  相似文献   

13.
14.
为观察延衰合剂(Yanshuai mixture,YSM)的延缓衰老作用,采用D-半乳糖连续颈背部皮下注射诱导亚急性衰老小鼠模型,造模同时给予YSM低、中、高剂量灌胃,连续10周。观察小鼠衰老征象,Moriss水迷宫检测学习记忆功能,测定血清及脑组织中总抗氧化能力(T-AOC)、超氧化物歧化酶(SOD)、丙二醛(MDA)。结果显示,与模型组比较,YSM各剂量组均能使小鼠逃避潜伏期明显缩短,原平台象限游泳时间明显延长(P<0.05);YSM高剂量组T-AOC、SOD活性显著升高(P<0.01),MDA水平显著下降(P<0.01)。表明YSM可明显改善衰老小鼠学习记忆功能,提高抗氧化能力,从而可能具有较好的延缓衰老的作用。  相似文献   

15.
王燕  刘军  何晓乐  王捷频 《生物磁学》2013,(27):5271-5274,5278
目的:研究褪黑素(melatonin,MLT)对人脐静脉内皮细胞(HUVECs)损伤的保护作用及其机制探讨。方法:不同浓度的褪黑素作用于体外培养的内皮细胞脂质过氧化损伤模型,实验分为5组,即正常对照组(Ctrl),脂多糖(LPS)氧化损伤组:在培养基中加入2mmol/L的LPS诱导损伤4h;LPS加MLT低剂量(200t~mol/L)组、中剂量(400ixmol/L)组、高剂量(600txmol/L)gai。采用MTT法观察MET对HUVECs活性的影响;用双波长荧光分光光度法测定HUVECs细胞内游离钙离子浓度;检测各组内皮细胞匀浆中丙二醛(MDA)含量及超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH·Px)活性;用ELISA法测定培养的细胞上清液中白细胞介素6(IL.6)表达的变化;并测定细胞凋亡率。结果:①LPS作用后血管内皮细胞损伤明显,细胞增殖减少,细胞培养上清液和细胞匀浆中MDA含量、细胞内钙离子浓度和IL.6均升高,SOD、GSH-Px活性下降,凋亡率可达38.9±1.1%,均与正常对照组有统计学差异(P〈0.01);②加入MET可明显减轻LPS对抗氧化酶SOD、GSH—Px的影响,同时MDA含量、细胞内钙离子浓度和几一6均明显下降,并显著减少凋亡细胞数量,各指标差异有统计学意义(P〈0.01)。结论:褪黑素可保护和修复LPS引起的血管内皮细胞损伤,其作用途径可能与保护细胞的线粒体,提高了该细胞的抗氧化酶活性,降低细胞内钙离子浓度作用有关。  相似文献   

16.
In the present study we investigate the effect of Withania somnifera (WS) root extract and Withanolide A (WA) in restoring spatial memory deficit by inhibiting oxidative stress induced alteration in glutamergic neurotransmission. We demonstrate significant cellular loss in hippocampus of epileptic rats, visualized through decreased TOPRO stained neurons. Impaired spatial memory was observed in epileptic rats after Radial arm maze test. Treatment with WS and WA has resulted in increased number of TOPRO stained neurons. Enhanced performance of epileptic rats treated with WS and WA was observed in Radial arm maze test. The antioxidant activity of WS and WA was studied using superoxide dismutase (SOD) and Catalase (CAT) assays in the hippocampus of experimental rats. The SOD activity and CAT activity decreased significantly in epileptic group, treatment with WS and WA significantly reversed the enzymatic activities to near control. Real time gene expression studies of SOD and GPx showed significant up-regulation in epileptic group compared to control. Treatment with WS and WA showed significant reversal to near control. Lipid peroxidation quantified using TBARS assay, significantly increased in epileptic rats. Treatment with WS and WA showed significant reversal to near control. NMDA receptor expression decreased in epileptic rats. The treatment with WS and WA resulted in physiological expression of NMDA receptors. This data suggests that oxidative stress effects membrane constitution resulting in decreased NMDA receptor density leading to impaired spatial memory. Treatment with WS and WA has ameliorated spatial memory deficits by enhancing antioxidant system and restoring altered NMDA receptor density.  相似文献   

17.
The Morris Water Maze (MWM) was first established by neuroscientist Richard G. Morris in 1981 in order to test hippocampal-dependent learning, including acquisition of spatial memoryand long-term spatial memory 1. The MWM is a relatively simple procedure typically consisting of six day trials, the main advantage being the differentiation between the spatial (hidden-platform) and non-spatial (visible platform) conditions 2-4. In addition, the MWM testing environment reduces odor trail interference 5. This has led the task to be used extensively in the study of the neurobiology and neuropharmacology of spatial learning and memory. The MWM plays an important role in the validation of rodent models for neurocognitive disorders such as Alzheimer’s Disease 6, 7. In this protocol we discussed the typical procedure of MWM for testing learning and memory and data analysis commonly used in Alzheimer’s disease transgenic model mice.  相似文献   

18.

Background

Few studies have investigated the toxicity and genotoxicity of extremely low frequency magnetic fields (ELF-MF) during prenatal and neonatal development. These phases of life are characterized by cell proliferation and differentiation, which might make them sensitive to environmental stressors. Although in vitro evidences suggest that ELF-MF may modify the effects of ionizing radiation, no research has been conducted so far in vivo on the genotoxic effects of ELF-MF combined with X-rays.

Aim and methods

Aim of this study was to investigate in somatic and germ cells the effects of chronic ELF-MF exposure from mid gestation until weaning, and any possible modulation produced by ELF-MF exposure on ionizing radiation-induced damage. Mice were exposed to 50 Hz, 65 μT magnetic field, 24 hours/day, for a total of 30 days, starting from 12 days post-conception. Another group was irradiated with 1 Gy X-rays immediately before ELF-MF exposure, other groups were only X-irradiated or sham-exposed. Micronucleus test on blood erythrocytes was performed at multiple times from 1 to 140 days after birth. Additionally, 42 days after birth, genotoxic and cytotoxic effects on male germ cells were assessed by comet assay and flow cytometric analysis.

Results

ELF-MF exposure had no teratogenic effect and did not affect survival, growth and development. The micronucleus test indicated that ELF-MF induced a slight genotoxic damage only after the maximum exposure time and that this effect faded away in the months following the end of exposure. ELF-MF had no effects on ionizing radiation (IR)-induced genotoxicity in erythrocytes. Differently, ELF–MF appeared to modulate the response of male germ cells to X-rays with an impact on proliferation/differentiation processes. These results point to the importance of tissue specificity and development on the impact of ELF-MF on the early stages of life and indicate the need of further research on the molecular mechanisms underlying ELF-MF biological effects.  相似文献   

19.
Pregnant women with epilepsy have to balance maternal and fetal risks associated with uncontrolled seizures against the potential teratogenic effects from antiepileptic drugs (AEDs). Carbamazepine (CBZ) is among the four most commonly used AEDs for treatment of pregnant epileptic women. We previously reported that new-born children had a decreased head circumference after in utero CBZ exposure. This study investigates how prenatal exposure of CBZ influences the number of neurons in new-born and young mouse hippocampus, amygdala and cortex cerebri. Clinical studies describe inconclusive results on if prenatal CBZ treatment influences cognition. Here we investigate this issue in mice using two well characterized cognitive tasks, the passive avoidance test and the Morris water maze test. Prenatal exposure of CBZ reduced the number of neurons (NeuN-immunoreactive cells) in the new-born mouse hippocampus with 50% compared to non-exposed mice. A reduction of neurons (20%) in hippocampus was still observed when the animals were 5 weeks old. These mice also displayed a 25% reduction of neurons in cortex cerebri. Prenatal CBZ treatment did not significantly impair learning and memory measured in the passive avoidance test and in the Morris water maze. However, these mice displayed a higher degree of thigmotaxic behaviour than the control mice. The body weight of prenatally CBZ exposed five-week old mice were lower compared to control mice not exposed to CBZ (p = 0.001). In conclusion, prenatal exposure to CBZ reduces the number of neurons dramatically in areas important for cognition such as hippocampus and cortex, without severe impairments on learning and memory. These results are in line with some clinical studies, reporting that CBZ has minor negative effects on cognition. The challenge for future studies are to segment out what possible effects a reduction of neurons could have on different types of cognition, like intellectual ability and social interaction.  相似文献   

20.
High concentrations of arsenic, which can be occasionally found in drinking water, have been recognized as a global health problem. Exposure to arsenic can disrupt spatial memory; however, the underlying mechanism remains unclear. In the present study, we tested whether exercise could interfere with the effect of arsenic exposure on the long-term memory (LTM) of object recognition in mice. Arsenic (0, 1, 3, and 10 mg/ kg, i.g.) was administered daily for 12 weeks. We found that arsenic at dosages of 1, 3, and 10 mg/kg decreased body weight and increased the arsenic content in the brain. The object recognition LTM (tested 24 h after training) was disrupted by 3 mg/ kg and 10 mg/ kg, but not 1 mg/ kg arsenic exposure. Swimming exercise also prevented LTM impairment induced by 3 mg/ kg, but not with 10 mg/ kg, of arsenic exposure. The expression of brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP-response element binding protein (pCREB) in the CA1 and dentate gyrus areas (DG) of the dorsal hippocampus were decreased by 3 mg/ kg and 10 mg/ kg, but not by 1 mg/ kg, of arsenic exposure. The decrease in BDNF and pCREB in the CA1 and DG induced by 3 mg/ kg, but not 10 mg/ kg, of arsenic exposure were prevented by swimming exercise. Arsenic exposure did not affect the total CREB expression in the CA1 or DG. Taken together, these results indicated that swimming exercise prevented the impairment of object recognition LTM induced by arsenic exposure, which may be mediated by BDNF and CREB in the dorsal hippocampus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号