共查询到20条相似文献,搜索用时 0 毫秒
1.
Zinc has been shown to increase bone mass and promote bone cell proliferation and differentiation. We, therefore, hypothesized that zinc might be cytoprotective for bone cells during oxidative stress. The cells were divided into H(2)O(2), zinc and zinc+H(2)O(2) groups. In the present study, zinc was found to inhibit H(2)O(2)-induced apoptosis in MC3T3-E1 cells, as shown by analysis of Annexin V/PI double staining. Western blot data showed that in zinc+H(2)O(2)-treated cells, zinc decreased the levels of AIF, Bax and active caspase-9 and -3, which are pro-apoptotic factors. And zinc inhibited release of cytochrome c from mitochondria to cytosol in zinc+H(2)O(2)-treated cells. Further investigation shows that protection is via activation of PI3K/Akt/mTor and MAPK /ERK pathways and inhibition of MAPK/P38 and MAPK/JNK pathways. Protecting osteoblast cells from oxidative damage presents a potential application in the treatment of osteoporosis. 相似文献
2.
Parathyroid hormone (PTH) and PTH-related peptide (PTH-rP) bind to a common receptor and initiate second-messenger cascades that stimulate bone turnover and hypercalcemia. However, PTH is more potent than PTH-rP in inducing bone resorption and coupled bone metabolism in intact tissue, suggesting that these proteins elicit dissimilar postreceptor responses. We compared the effects of PTH and PTH-rP on osteoblastic retraction, an early event that must occur before the osteoclast can achieve access to the underlying bone mineral and begin resorption. MC3T3-E1 mouse osteoblasts were incubated in vehicle or 4.8 n M PTH or PTH-rP with or without 1 m M dibutyryl cAMP (Bt 2cAMP). Morphologic changes were observed from 0 to 120 min. PTH caused marked retraction within minutes, which was not enhanced by Bt 2cAMP. PTH-rP or Bt 2cAMP induced slower, more modest retraction than PTH. The combined effect of PTH-rP plus Bt 2cAMP was greater than that of PTH-rP, but less than that of PTH. PTH-rP and PTH had similar effects on cAMP generation. Thus, compared to PTH, PTH-rP induces less osteoblastic retractile response, exposing less bone surface to osteoclastic resorption. This may account for its lower hypercalcemic potency in vivo and contribute to its relative inability to stimulate coupled bone resorption and formation. 相似文献
3.
Excess fluoride intake could induce apoptosis in the cells. As an essential micronutrient and cytoprotectant, zinc is involved in many types of apoptosis. Here, we studied the effects of zinc and ZIP1 on fluoride-induced apoptosis in mouse MC3T3-E1 cells and examined the underlying molecular mechanisms. Our study found that fluoride not only inhibited cell proliferation and increased the intracellular reactive oxygen species (ROS) but also induced cell apoptosis. Whereas pretreatment with zinc significantly attenuated fluoride-induced ROS production and partly protected cells against fluoride-induced apoptosis through MAPK/ERK signaling pathway. Our study also found that fluoride upregulated the expression of ZIP1 in a time-dependent manner. Moreover, overexpression of ZIP1 also inhibited fluoride-induced apoptosis by activation of PI3K/Akt pathway. This cytoprotective effect of zinc and ZIP1 may be new factors that affect the physiological activity of fluoride and need study further. 相似文献
4.
目的:观察锌协同三羟异黄酮对成骨细胞MC3T3-E1增殖、细胞中碱性磷酸酶(ALP)含量、骨形成蛋白-2(BMP-2)表达的影响,探讨锌协同三羟异黄酮对骨质疏松的防治作用.方法:采用四甲基偶氮噻唑蓝比色法检测(1×10-7)mol/L、(1×10-6)mol/L、(1x 10-5)mol/L、(1×10-4)mol/L的三羟异黄酮以及与(1×10-5)mol/L锌联合作用时对MC3T3-E1增殖的作用;应用Western blot法检测三羟异黄酮与锌联合作用前后,成骨细胞中BMP-2蛋白的表达水平,用比色法检测MC3T3-E1中ALP的含量.结果:锌与三羟异黄酮单独作用或协同作用于MC3T3-E1细胞,其增殖率随着三羟异黄酮浓度的增加和作用时间的延长而升高,(1×10-5)mol/L的三羟异黄酮协同(1×10-5)mol/L的锌作用72h,其细胞增殖率为(160.1±14.3)%.细胞中的LP含量及BMP-2的表达也随着三羟异黄酮浓度的增加及作用时间的延长而增加.三羟异黄酮和锌联合作用后,对ALP活性的增强、BMP-2表达的增加作用均较各自单独作用时更为明显(P<0.05).结论:三羟异黄酮与锌协同作用表现出雌激素效应,可通过促进骨形成蛋白的合成从而促进成骨细胞的增殖、增加骨量. 相似文献
5.
Covalent intermolecular cross-linking of collagen is initiated by the action of lysyl oxidase (LOX) on the telopeptidyl lysine and hydroxylysine residues. Recently, several LOX isoforms, i.e., LOX-like proteins 1-4 (LOXL1-4), have been identified but their specific tissue distribution and functions are still largely unknown. In this study, mRNA expression of LOX and LOXL1-4 in MC3T3-E1 osteoblastic cells was screened by RT-PCR and quantitatively analyzed by real-time PCR during cell differentiation and matrix mineralization. The results demonstrated that LOX and all LOXLs, except LOXL2, were expressed in this cell line and that the expression pattern during cell differentiation and matrix mineralization was distinct from one another. This indicates that the expression of LOX and its isoforms is highly regulated during osteoblast differentiation, suggesting their distinct roles in collagen matrix stabilization and subsequent mineralization. 相似文献
6.
Zinc oxide nanoparticles (ZnO NPs) can be ingested directly when used in food, food packaging, drug delivery, and cosmetics. This study evaluated the cellular effects of ZnO NPs (50 and 100 nm diameter particle sizes) on the function of osteoblastic MC3T3-E1 cells. ZnO NPs showed cytotoxicity at concentrations of above 50 μg/ml, and there was no significant effect of the size on the cytotoxicity of ZnO NPs. Within the testing concentrations of 0.01~1 μg/ml, which did not cause a marked drop in cell viability, ZnO NPs (0.1 μg/ml) caused a significant elevation of alkaline phosphatase activity, collagen synthesis, mineralization, and osteocalcin content in the cells ( P?<?0.05). Moreover, pretreatment with ZnO NPs (0.01~1 μg/ml) significantly reduced antimycin A-induced cell damage by preventing mitochondrial membrane potential dissipation, complex IV inactivation, and ATP loss. Measurement of reactive oxygen species (ROS) indicated decrease in ROS level upon exposure to ZnO nanoparticles (0.01 μg/ml). Hence, our study indicated that ZnO nanoparticles can have protective effects on osteoblasts at low concentrations where there are little or no observable cytotoxic effects. 相似文献
7.
目的研究MC3T3-E1细胞在自组装多肽水凝胶支架上的生长和成骨分化.方法在多肽水凝胶支架RADA16上接种MC3T3-E1细胞,荧光染色观察细胞形态和存活情况;组织化学染色检测MC3T3-E1细胞碱性磷酸酶活性以及细胞外钙质沉积;RT-PCR分析成骨特异性基因的表达.结果 MC3T3-E1细胞在水凝胶支架RADA16上粘附铺展良好,呈纺锤样形态.诱导培养后支架上的细胞有较高水平的碱性磷酸酶表达和矿化基质沉积.此外,骨分化特异性基因骨桥蛋白和骨涎蛋白也有表达,且表达量随培养时间的延长而增多.结论 在自组装水凝胶内MC3T3-E1细胞可向成骨方向分化,并能在凝胶内产生矿化的细胞外基质. 相似文献
8.
Once thought to provide only structural support to tissues by acting as a scaffold to which cells bind, it is now widely recognized that the extracellular matrix (ECM) provides instructive signals that dictate cell behavior. Recently we demonstrated that mechanical cues intrinsic to the ECM directly regulate the behavior of pre-osteoblastic MC3T3-E1 cells. We hypothesized that one possible mechanism by which ECM compliance exerts its influence on osteogenesis is by modulating the mitogen-activated protein kinase (MAPK) pathway. To address this hypothesis, the differentiation of MC3T3-E1 cells cultured on poly(ethylene glycol) (PEG)-based model substrates with tunable mechanical properties was assessed. Alkaline phosphatase (ALP) levels at days 7 and 14 were found to be significantly higher in cells grown on stiffer substrates (423.9 kPa hydrogels and rigid tissue culture polystyrene (TCPS) control) than on a soft hydrogel (13.7 kPa). Osteocalcin (OCN) and bone sialoprotein (BSP) gene expression levels followed a similar trend. In parallel, MAPK activity was significantly higher in cells cultured on stiffer substrates at both time points. Inhibiting this activation pharmacologically, using PD98059, resulted in significantly lower ALP levels, OCN, and BSP gene expression levels on the hydrogels. Interestingly, the effectiveness of PD98059 was itself dependent on substrate stiffness, with marked inhibition of MAPK phosphorylation in cells grown on compliant hydrogels but insignificant reduction in cells grown on TCPS. Together, these data confirm a role for MAPK in the regulation of osteogenic differentiation by ECM compliance. 相似文献
9.
目的:观察甲状旁腺激素(PTH)对成骨细胞中Cl C-3氯通道表达及成骨分化影响,初步探索Cl C-3介导PTH在细胞成骨分化中的作用。方法:采用10-8M、10-9M、10-10M PTH持续刺激和间断刺激MC3T3-E1细胞72 h后,通过CCK-8试剂盒法检测MC3T3-E1细胞的增殖情况,Real-Time PCR法检测MC3T3-E1细胞中Clcn3及成骨相关基因Alp、Runx2的表达情况,免疫荧光法检测10-9M PTH不同给药方式下对Cl C-3蛋白表达的影响。结果 :经不同浓度PTH连续和间断处理72 h后,结果显示10-9 M PTH间断刺激的MC3T3-E1细胞的增殖能力最强,且其Alp、Runx2 m RNA表达均高于10-8 M组和10-10 M组(P<0.05),而相同浓度间断刺激的MC3T3-E1细胞成骨相关基因的表达均高于持续刺激组,以10-9M间断刺激组差异最显著(P<0.05),而10-8 M和10-10M均无统计学差异(P>0.05),10-9 M PTH刺激的MC3T3-E1细胞中Cl C-3蛋白表达也显著增加(P<0.05)。结论 :成骨细胞的Cl C-3氯通道能够响应PTH的刺激发生变化,并伴随着成骨相关基因Alp、Runx2表达的增强。 相似文献
10.
Bone formation involves several tightly regulated gene expression patterns of bone-related proteins. To determine the expression patterns of bone-related proteins during the MC3T3-E1 osteoblast-like cell differentiation, we used Northern blotting, enzymatic assay, and histochemistry. We found that the expression patterns of bone-related proteins were regulated in a temporal manner during the successive developmental stages including proliferation (days 4–10), bone matrix formation/maturation (days 10–16), and mineralization stages (days 16 –30). During the proliferation period (days 4–10), the expression of cell-cycle related genes such as histone H3 and H4, and ribosomal protein S6 was high. During the bone matrix formation/maturation period (days 10–16), type I collagen expression and biosynthesis, fibronectin, TGF-β1 and osteonectin expressions were high and maximal around day 16. During this maturation period, we found that the expression patterns of bone matrix proteins were two types: one is the expression pattern of type I collagen and TGF-β1, which was higher in the maturation period than that in both the proliferation and mineralization periods. The other is the expression pattern of fibronectin and osteonectin, which was higher in the maturation and mineralization periods than in the proliferation period. Alkaline phosphatase activity was high during the early matrix formation/maturation period (day 10) and was followed by a decrease to a level still significantly above the baseline level seen at day 4. During the mineralization period (days 16–30), the number of nodules and the expression of osteocalcin were high. Osteocalcin gene expression was increased up to 28 days. Our results show that the expression patterns of bone-related proteins are temporally regulated during the MC3T3-E1 cell differentiation and their regulations are unique compared with other systems. Thus, this cell line provides a useful in vitro system to study the developmental regulation of bone-related proteins in relation to the different stages during the osteoblast differentiation. © 1996 Wiley-Liss, Inc. 相似文献
12.
This article has no abstract. 相似文献
13.
The receptor activator nuclear factor kappa-B ligand (RANKL) and its decoy receptor, osteoprotegerin (OPG), are important for maintaining the balance between bone formation and resorption. However, the regulation of microelements on these factors remains unclear. In this study, we used murine osteoblast-like MC3T3-E1 cells to examine the impact of sodium fluoride (NaF) and/or sodium selenite (Na2SeO3) on the OPG/RANKL system. MC3T3-E1 cells were treated with OPG or RANKL siRNA (or left untreated), and subsequently divided into a control group and five experimental groups, which were exposed to different concentrations of NaF and/or Na2SeO3, and subsequently analysed at 24?h. In particular, we examined cell viability, OPG and RANKL mRNA and protein expression, caspase-3 activity, and the cell cycle of the various cell groups. In summary, our findings suggest that the administration of NaF and/or Na2SeO3 affects the expression of OPG in osteoblast-like MC3T3-E1 cells, thereby contributing to the proliferation and apoptosis induced by the OPG. 相似文献
14.
目的:观察MC3T3-E1前成骨细胞不同培养时间点矿化结节的形态,探讨一个既节省实验时间与经费,又便于观察矿化结节形态差异的实验方法。方法:将MC3T3-E1前成骨细胞按培养时间分为四组(14、21、28、35天组),各组实验结束时行茜素红染色,光学显微镜下观察矿化结节的形态变化。结果:各组均见红色的矿化结节形成,随培养时间延长,染色面积增大,密度增高,14天时结节轮廓清晰,结节间距较大,21天时结节面积增大,28天时结节边界超出视野,35天时视野内大片深染,结节轮廓不清。结论:在本实验周期内,MC3T3-E1前成骨细胞培养14至21天通过茜素红染色可以较清晰地观察矿化结节,其中培养14天时即可观察到结节大小、数量及形态,考虑到实验时间及经费的因素,我们认为MC3T3-E1前成骨细胞培养14天后行茜素红染色是观察不同因素对其矿化产生影响的适宜时间点。 相似文献
15.
The p38 mitogen activated protein kinase (p38MAPK) pathway is an important signaling cascade involved in cell growth, differentiation and apoptosis. High glucose activates p38MAPK pathway in different cells, including osteoblasts. In the present study, role of p38MAPK in high glucose induced osteoblast apoptosis and potential of RNA interference (RNAi) targeting p38MAPK as a therapy strategy have been reported. Lentiviral-mediated RNAi effectively reduced p38MAPK and p-p38MAPK expressions in osteoblastic cell line (MC3T3-E1) following high glucose (22 mM) induction. Inhibition of p38MAPK activity significantly suppressed high glucose induced apoptosis of MC3T3-E1 cell and was confirmed by flow cytometry and ultra-structural examination by transmission electronic microscope. Inhibition of p38MAPK also significantly attenuates caspase-3 and bax protein expressions, but increased significantly bcl-2 expression as determined by Western blot analysis. The results suggested that p38MAPK mediates high glucose induced osteoblast apoptosis, partly through modulating the expressions of caspase-3, bax and bcl-2. Inhibition of p38MAPK with lentiviral-mediated RNAi or its specific inhibitor provides a new strategy to treat high glucose induced osteoblast apoptosis. 相似文献
16.
Iodine is an important chemical for thyroid hormone synthesis. The association between iodine nutrition status and the risk of disease present U-shaped curve, as either low or high iodine nutrition status will increase the risk of thyroid diseases. Endoplasmic reticulum stress (ER stress), which can induce over expressions of inflammation factors, like monocyte chemo-attractant protein-1 (MCP-1), is related to the pathogenesis of thyroid disease. However, the correlations among iodine, MCP-1 and ER stress are not entirely clear during the pathogenesis of thyroid diseases. Present study aims to investigate how iodine nutrition status influences MCP-1 expression through P38/MAPK pathway as well as the roles of ER stress in this process. Human thyroid cells (Nthy-ori-3-1) was used as a cell model in this study. The expressions of p-P38, PERK, IRE1, ATF6, and MCP-1 were detected after the cells were treated with iodine at different concentrations with or without ER stress inhibitor (4-PBA) or P38/MAPK blocker (SB203580). The expressions of p-P38, PERK, IRE1, ATF6, and MCP-1 in Nthy-ori-3-1 cells treated with iodine at abnormal concentrations were all significantly higher than those in cells treated with iodine at normal concentration. However, addition of ER stress blocker, 4-PBA in the abnormal-iodine treated cells, decreased the expressions of p-P38, PERK, IRE1, ATF6, and MCP-1. Similarly, P38/MAPK activity inhibitor, SB203580, also decreased the expressions of p-P38 and MCP-1. Abnormal iodine nutrition status triggered ER stress and upregulated MCP-1 expression through P38/MAPK signaling pathway in thyrocyte. 相似文献
17.
BackgroundAngiotensin II (AngII) participates in endothelial damage and inflammation, and accelerates atherosclerosis. Endothelial lipase (EL) is involved in the metabolism and clearance of high density lipoproteins (HDL), the serum levels of which correlate negatively with the onset of cardiovascular diseases including atherosclerosis. However, the relationship between AngII and EL is not yet fully understood. In this study, we investigated the effects of AngII on the expression of EL and the signaling pathways that mediate its effects in human umbilical vein endothelial cells (HUVECs). Methods and FindingsHUVECs were cultured in vitro with different treatments as follows: 1) The control group without any treatment; 2) AngII treatment for 0 h, 4 h, 8 h, 12 h and 24 h; 3) NF-κB activation inhibitor pyrrolidine dithiocarbamate (PDTC) pretreatment for 1 h before AngII treatment; and 4) mitogen-activated protein kinase (MAPK) p38 inhibitor (SB203580) pretreatment for 1 h before AngII treatment. EL levels in each group were detected by immunocytochemical staining and western blotting. HUVECs proliferation was detected by MTT and proliferating cell nuclear antigen (PCNA) immunofluorescence staining. NF-kappa B (NF-κB) p65, MAPK p38, c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and phosphorylated extracellular signal-regulated kinase (p-ERK) expression levels were assayed by western blotting. The results showed that the protein levels of EL, NF-κB p65, MAPK p38, JNK, and p-ERK protein levels, in addition to the proliferation of HUVECs, were increased by AngII. Both the NF-kB inhibitor (PDTC) and the MAPK p38 inhibitor (SB203580) partially inhibited the effects of AngII on EL expression. ConclusionAngII may upregulate EL protein expression via the NF-κB and MAPK signaling pathways. 相似文献
19.
The osteoblasts could be lead to the occurrence of apoptosis by oxidative stress. The zinc transporter family SLC30A (ZnTs) plays an important role in the regulation of zinc homeostasis, however, its function in apoptosis of MC3T3-E1 cells remains unknown. This study was aimed to investigate the role of zinc transporters in cell survival, particularly in MC3T3-E1 cells, during oxidative stress, and the molecular mechanism involved. Our study found that hydrogen peroxide can induce zinc-overloaded in the cells. While high concentration of zinc plays an important role in inducing apoptosis of the MC3T3-E1 cells, we demonstrated that ZnT7 can protect MC3T3-E1 cells and reduce the aggregation of intracellular free zinc ions as well as inhibit apoptosis induced by H 2O 2. Moreover, ZnT7 overexpression enhanced the anti-apoptotic effects. Interestingly, suppression of ZnT7 by siRNA could significantly exacerbate apoptosis in MC3T3-E1 cells. We also found that ZnT7 promotes cell survival via two distinct signaling pathways involving activation of the PI3K/Akt-mediated survival pathway and activation of MAPK/ERK pathway. Collectively, these results suggest that ZnT7 overexpression significantly protects osteoblasts cells from apoptosis induced by H 2O 2. This effect is mediated, at least in part, through activation of PI3K/Akt and MAPK/ERK pathways. 相似文献
20.
PHR protein family consists of C. elegan Rpm-1/Drosophila Highwire/Zebrafish Esrom/Mouse Phr-1/Human Pam. Esrom is required for correct neurites exiting the paused state at intermediate targets as well as pteridine synthesis. This study reports the identification and characterization of two novel Esrom splice variants, named splice variants 2 (splicing out 5′ 24 bp of exon 17) and 3 (splicing out 5′ 24 bp of exons 17 and 18). Polypeptides encoded by 5′ 24 bp of exons 17 and 18 are part of basic amino-acid-rich region inside Esrom RCC1-like domain (RLD). These two splice variants maintain the whole protein reading frame and alternative exons usage patterns are conserved with mammal. At different developmental stages and adult zebrafish tissues, abundances of these splice variants are different. Importantly, by yeast two-hybrid screen and confocal colocalization analysis, it was found that alternative splicing of exon 18 regulates Esrom RLD interaction with kinesin family member 22 and G protein beta-subunit 1. Taken together, these results suggest that Esrom RLD functions are regulated by alternative splicing at temporal and spatial-specific manner. 相似文献
|