首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Starch graft poly(methyl acrylate) (S-g-PMA) was prepared by ceric ion initiation of methyl acrylate in an aqueous corn starch slurry (prime starch) which maximized the accessibility of the starch for graft polymerization. A new ceric ion reaction sequence was established as starch-initiator-methyl acrylate followed by addition of a small amount of ceric ion solution when the graft polymerization was almost complete to quench the reaction. As a result of this improved procedure, no unreacted methyl acrylate monomer remained, and thus, essentially no ungrafted poly(methyl acrylate) homopolymer was formed in the final grafted product. Quantities of the high purity S-g-PMA so prepared in pilot scale were converted to resin pellets and loose-fill foam by single screw and twin screw extrusion. The use of prime starch significantly improved the physical properties of the final loose-fill foam, in comparison to foam produced from regular dry corn starch. The S-g-PMA loose-fill foam had compressive strength and resiliency comparable to expanded polystyrene but higher bulk density. The S-g-PMA loose-fill foam also had better moisture and water resistance than other competitive starch-based materials. Studies indicated that the starch portion in S-g-PMA loose-fill foam biodegraded rapidly, whereas poly(methyl acrylate) remained relatively stable under natural environmental conditions.  相似文献   

2.
Production of sago starch-based foam involved mixing of sago starch with polyvinyl alcohol (PVA) or polyvinyl pyrrolidone (PVP) followed by preparation of electron beam irradiated sago starch/PVA and sago starch/PVP sheets and expanding them in a microwave. The results revealed that good foams with high linear expansion and closed cell structure can be produced from 25:15 of sago starch:PVA and 30:10 of sago starch:PVA blends prepared at 80 °C and electron beam irradiated at 15 kGy or 10 kGy for the cross-linking process. An increment of sago starch in the blends enhanced the linear expansion of the foams produced. Change in the blend morphology was observed when it was exposed to higher irradiation doses as electron beam irradiation induced the cross-linking in PVA and PVP, and leaching of amylose and amylopectin from the starch granules. Sago starch/PVA blend is more suitable for foam production because it produced flexible and glossy foam as compared to sago starch/PVP blend which produced very rigid foam.  相似文献   

3.
Wang T  Zhang L  Li D  Yin J  Wu S  Mao Z 《Bioresource technology》2008,99(7):2265-2268
Corn stover was liquefied by using ethylene carbonate (EC) as liquefying solvent and 97% sulfur acid as catalyst at 170 degrees C for 90 min. Polyurethane (PU) foams were prepared from liquefied corn stover (LCS) with variable amount of polymethylene polyphenylisocyanate (PAPI) by one-shot method, with water as blowing agent, silicone as surfactant and triethylamine and dibutyltine dilaurate as co-catalyst. The mechanical properties of LCS-PU foam with different [NCO]/[OH] ratio were studied on a universal tensile tester. With the increase of [NCO]/[OH] ratio from 0.4 to 1.0, the tensile strength and Young's modulus of the LCS-PU foam first raised, reached their maximum values at [NCO]/[OH] ratio of 0.8, and then declined; while the elongation at break decreased from 117% to 3.6%. The results indicated that by changing the [NCO]/[OH] ratio, mechanical properties of LCS-PU foams could be adjusted for various end uses.  相似文献   

4.
Poly(lactic acid) (PLA) was foamed with an endothermic chemical foaming agent (CFA) through an extrusion process. The effects of polymer melt flow index, CFA content, and processing speed on the cellular structures, void fraction, and cell-population density of foamed PLA were investigated. The apparent melt viscosity of PLA was measured to understand the effect of melt index on the cell morphology of foamed PLA samples. The void fraction was strongly dependent on the PLA melt index. It increased with increasing melt index, reaching a maximum value, after which it decreased. Melt index showed no significant effect on the cell-population density of foamed samples within the narrow range studied. A gas containment limit was observed in PLA foamed with CFA. Both the void fraction and cell-population density increased with an initial increase in CFA content, reached a maximum value, and then decreased as CFA content continued to increase. The processing speed also affected the morphology of PLA foams. The void fraction reached a maximum value as the extruder’s screw speed increased to 40 rpm and a further increase in the processing speed tended to reduce the void fraction of foamed samples. By contrast, cell-population density increased one order of magnitude by increasing the screw speed from 20 to 120 rpm. The experimental results indicate that a homogeneous and finer cellular morphology could be successfully achieved in PLA foamed in an extrusion process with a proper combination of polymer melt flow index, CFA content, and processing speed.  相似文献   

5.
Starch trays and plates were prepared from native corn starch and corn starch cross-linked with glyoxal at different concentrations (0.126, 0.269, 0.271, 0.468 g/kg) using a foam baking process. The effect of cross-linking on baking parameters, including density, colour, water absorption, and tensile and flexural properties, was determined. Also, the morphologies of the trays were examined using a scanning electron microscope. Cross-linking considerably reduced the baking time, density and water absorption of the trays. Trays made from starch cross-linked with 0.126 and 0.269 g/kg glyoxal presented the best properties, with a homogenous microstructure and smooth surface quality. These trays had the lowest density (0.27 g/cm3) and had approximately 53% reduction in water absorption. Moreover, both the tensile and flexural strain of these foams was significantly higher than other foams.  相似文献   

6.
Inulin, a polydisperse reserve polysaccharide from chicory, was chemically modified via alkoxylation using ethylene oxide, in a water free medium. The reaction resulted in a range of products with very distinct properties, such as a highly increased water solubility, moderate surface-active properties and high cloud points in electrolyte media. Because of the unique characteristics of inulin, such as its molecular weight range, and because of the high water solubility of the ethoxylates, the products were evaluated as additive in water-blown polyurethane foams. The addition of inulin ethoxylates resulted in an increased foam hardness and density, the latter in fact being unwanted. The foam properties were evaluated based on the indentation test, the foam density, the SAG factor, and the hysteresis curves of standard cubes. Based on these parameters inulin ethoxylates were shown to have a beneficial effect on the foam properties. The inulin ethoxylate with a theoretical degree of substitution of 0.5 proved to be the best derivative, since the increase in hardness was the highest, while the increase in density was negligible.  相似文献   

7.
Ferrous iron bio‐oxidation by Acidithiobacillus ferrooxidans immobilized on polyurethane foam was investigated. Cells were immobilized on foams by placing them in a growth environment and fully bacterially activated polyurethane foams (BAPUFs) were prepared by serial subculturing in batches with partially bacterially activated foam (pBAPUFs). The dependence of foam density on cell immobilization process, the effect of pH and BAPUF loading on ferrous oxidation were studied to choose operating parameters for continuous operations. With an objective to have high cell densities both in foam and the liquid phase, pretreated foams of density 50 kg/m3 as cell support and ferrous oxidation at pH 1.5 to moderate the ferric precipitation were preferred. A novel basket‐type bioreactor for continuous ferrous iron oxidation, which features a multiple effect of stirred tank in combination with recirculation, was designed and operated. The results were compared with that of a free cell and a sheet‐type foam immobilized reactors. A fivefold increase in ferric iron productivity at 33.02 g/h/L of free volume in foam was achieved using basket‐type bioreactor when compared to a free cell continuous system. A mathematical model for ferrous iron oxidation by Acidithiobacillus ferrooxidans cells immobilized on polyurethane foam was developed with cell growth in foam accounted by an effectiveness factor. The basic parameters of simulation were estimated using the experimental data on free cell growth as well as from cell attachment to foam under nongrowing conditions. The model predicted the phase of both oxidation of ferrous in shake flasks by pBAPUFs as well as by fully activated BAPUFs for different cell loadings in foam. Model for stirred tank basket bioreactor predicted within 5% both transient and steady state of the experiments closely for the simulated dilution rates. Bio‐oxidation at high Fe2+ concentrations were simulated with experiments when substrate and product inhibition coefficients were factored into cell growth kinetics. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

8.
Field trials have demonstrated that foamed gel is a very cost-effective technology for profile modification and water shut-off. However, the mechanisms of profile modification and flow behavior of foamed gel in non-homogeneous porous media are not yet well understood. In order to investigate these mechanisms and the interactions between foamed gel and oil in porous media, coreflooding and pore-scale visualization waterflooding experiments were performed in the laboratory. The results of the coreflooding experiment in non-homogeneous porous media showed that the displacement efficiency improved by approximately 30% after injecting a 0.3 pore volume of foamed gel, and was proportional to the pore volumes of the injected foamed gel. Additionally, the mid-high permeability zone can be selectively plugged by foamed gel, and then oil located in the low permeability zone will be displaced. The visualization images demonstrated that the amoeba effect and Jamin effect are the main mechanisms for enhancing oil recovery by foamed gel. Compared with conventional gel, a unique benefit of foamed gel is that it can pass through micropores by transforming into arbitrary shapes without rupturing, this phenomenon has been named the amoeba effect. Additionally, the stability of foam in the presence of crude oil also was investigated. Image and statistical analysis showed that these foams boast excellent oil resistance and elasticity, which allows them to work deep within formations.  相似文献   

9.
Four, open-cell, ester-base polyurethane foams were examined for their effect on growth of fuel-utilizing organisms in jet fuel-water systems. Three foams contained a potential biocide, tetraethylthiuram E (0.66%), sodium omadine (0.07%), or zinc omadine (0.07%), all w/v. These were compared with a control foam which did not contain an additive. Each foam was examined in fuel-water systems containing JP-4 fuel, JP-4 fuel plus 0.1% anti-icing additive (AIA), or JP-5 fuel. Pure cultures of a fuel-grown bacterium, Pseudomonas aeruginosa, and of a fuel-grown fungus, Hormodendrum (Cladosporium) sp., served as test organisms. In control cultures without foam and in cultures containing control foam, P. aeruginosa achieved maximum stationary-phase populations of approximately 108 viable cells per ml, and Hormodendrum sp. produced an extensive mycelial mat. In the three fuel systems examined, tetraethylthiuram E- and sodium omadine-containing foams had little effect on growth of the bacterium; foam with zinc omadine decreased the rate of bacterial growth but had little effect on total populations. Tetraethylthiuram E decreased the rate of fungal growth and showed its greatest effect in JP-4 plus AIA. Foam with sodium omadine or zinc omadine markedly decreased fungal growth in all three fuel systems. The data suggest that either sodium omadine or zinc omadine in polyurethane foam may be a useful antifungal agent; and that tetraethylthiuram E and AIA could exert a synergistic effect, particularly at AIA concentrations which have been reported to occur in some field situations.  相似文献   

10.
Variables Affecting the Foam Separation of Escherichia coli   总被引:2,自引:1,他引:1       下载免费PDF全文
The removal of washed and standardized Escherichia coli from distilled-water suspension by foam separation with nitrogen gas and 30 μg/ml of ethylhexadecyldimethylammonium bromide surfactant was increased by increasing the gas rate from 4.3 to 9.3 liters per min and by lowering the port level at which foam was removed from 60.4 to 20.4 cm, but with concomitant increases in foam volumes. The concentrations of cells and of surfactant in the residual suspensions were related to foam volumes; a given number of cells adsorbed a constant amount of surfactant. The addition of from 10 to 500 μg/ml of inorganic salts decreased the total cell removal, with magnesium sulfate producing an anomalously large effect. The addition of surfactant in several doses (compared with a single dose) together with an increase in foaming time from 10 to 24 min produced residual suspensions with lower cell concentrations, and, when salts were present in the initial suspensions, produced lower foam volumes and more concentrated foams.  相似文献   

11.
Summary A simple method was developed for evaluating foam stability. The influence of KCl and MgSO4 on foam stability of bovine serum albumin foams was investigated. These salts increase foaminess, but diminish foam stability by the same degree. Thus there is little overall.  相似文献   

12.
The aim of this work was to evaluate the physicochemical properties of fresh foams based on egg white proteins, xanthan gum and gum Arabic. The distributions of the size of gas bubbles suspended in liquid were determined, as well as density and volume fraction of gas phase of the generated foams. Additionally, the viscoelastic properties in the linear range were measured, and the results were analyzed with the use of the fractional Zener model. It was shown, that foam supplementation with hydrocolloids considerably decreased their volume fraction of gas phase in comparison to pure egg white protein-based foams. Application of gum Arabic did not cause an increase in the size of foam bubbles when compared to pure white egg foam, whereas application of xanthan gum significantly decreased the size of the bubbles. Application of the fractional Zener model allowed to determine the relaxation times, their intensity in analyzed suspensions and also equilibrium module (G e ). The increase in the concentration of xanthan gum resulted in the prolongation of the relaxation time and increased its intensity. Gum Arabic, when added, weakened the viscoelastic properties of the mixture as a viscoelastic solid.  相似文献   

13.
Summary The possibility of using polyurethane foam as a support for the immobilization ofZymomonas mobilis cells to carry out sucrose conversion to ethanol was investigated. Sucrose hydrolysis efficiencies of 90% and higher, volumetric reactor productivity of 20 gL–1h–1 and final ethanol concentration of 6.3% (v/v) at a dilution rate of 0.4 h–1 show the good performance of polyurethane foams for whole cell immobilization.  相似文献   

14.
Saponins from various botanical origins highly differ in molecular structure. Little is known of the influence of structural differences between the different saponins on interfacial tension, short-term adsorption and foam properties at the air-water interface (a/w). In this study five triterpenoid saponins, with three of these being monodesmosidic and two bidesmosidic as well as one steroid saponin, were analyzed. Interfacial tension isotherms were measured using a tensiometer with a Wilhelmy plate and were fitted using the modified Frumkin model. For characterization of the short-term adsorption at the a/w-interface, two-fluid needle experiments were performed. Foaming, foam stability and foam structure were analyzed using a foaming device. A new method for semi-quantitative analysis of different foam structures was established. Additionally the impact of pH and ionic strength (addition of NaCl) on interfacial tension and foam properties were determined. The short-term adsorption of all saponins was limited by an additional barrier and was not diffusion-limited. Extracts from Quillaja saponaria Molina (QS), Gypsophila (GYP), Camellia oleifera Abel (TS) and Aesculus hippocastanum (ESC) lowered the interfacial tension to 37–42 mN/m and produced stable foams. The steroid saponin from Tribulus terrestris (TT) and the monodesmosidic saponin from Glycyrrhiza glabra (GA) had only poor interfacial and foam properties. Foams made from QS and GYP were only little affected by changes in pH and ionic strength. A reduction of the pH from 5 to 3 increased stability of foams made from GA significantly. Foams made from ESC and TS were negatively affected by increasing ionic strength.  相似文献   

15.

Background

This study examines the effects of adding gelatin to a starch-chitosan composite foam, focusing on the altered structural and biological properties. The compressive modulus of foams containing different gelatin concentrations was tested in dry, wet, and lyophilized states. MC3T3 mouse osteoblast cells were used to test the composite’s ability to support cell growth. The stability of the foams in α-MEM culture media with and without cells was also examined.

Results

It was found that for dry foams, the compressive modulus increased with increasing gelatin content. For foams tested in wet and lyophilized states, the compressive modulus peaked at a gelatin concentration of 2.5% and 5%, respectively. The growth of MC3T3 mouse osteoblast cells was tested on the foams with different gelatin concentrations. The addition of gelatin had a positive effect on the cell growth and proliferation.

Conclusion

The composite foam containing gelatin improved cell growth and is only dissolved by the growing cells at a rate influenced by the initial concentration of gelatin added to the foam.
  相似文献   

16.

Background

Foams are high porosity and low density materials. In nature, they are a common architecture. Some of their relevant technological applications include heat and sound insulation, lightweight materials, and tissue engineering scaffolds. Foams derived from natural polymers are particularly attractive for tissue culture due to their biodegradability and bio-compatibility. Here, the foaming potential of an extensive list of materials was assayed, including slabs elaborated from whole flour, the starch component only, or the protein fraction only of maize seeds.

Methodology/Principal Findings

We used supercritical CO2 to produce foams from thermoplasticized maize derived materials. Polyethylene-glycol, sorbitol/glycerol, or urea/formamide were used as plasticizers. We report expansion ratios, porosities, average pore sizes, pore morphologies, and pore size distributions for these materials. High porosity foams were obtained from zein thermoplasticized with polyethylene glycol, and from starch thermoplasticized with urea/formamide. Zein foams had a higher porosity than starch foams (88% and 85%, respectively) and a narrower and more evenly distributed pore size. Starch foams exhibited a wider span of pore sizes and a larger average pore size than zein (208.84 vs. 55.43 μm2, respectively). Proof-of-concept cell culture experiments confirmed that mouse fibroblasts (NIH 3T3) and two different prostate cancer cell lines (22RV1, DU145) attached to and proliferated on zein foams.

Conclusions/Significance

We conducted screening and proof-of-concept experiments on the fabrication of foams from cereal-based bioplastics. We propose that a key indicator of foamability is the strain at break of the materials to be foamed (as calculated from stress vs. strain rate curves). Zein foams exhibit attractive properties (average pore size, pore size distribution, and porosity) for cell culture applications; we were able to establish and sustain mammalian cell cultures on zein foams for extended time periods.  相似文献   

17.
This Article reports the influence of the protein network structure on the mechanical properties of foams produced from commercial wheat gluten using freeze-drying. Foams were produced from alkaline aqueous solutions at various gluten concentrations with or without glycerol, modified with bacterial cellulose nanosized fibers, or both. The results showed that 20 wt % glycerol was sufficient for plasticization, yielding foams with low modulus and high strain recovery. It was found that when fibers were mixed into the foams, a small but insignificant increase in elastic modulus was achieved, and the foam structure became more homogeneous. SEM indicated that the compatibility between the fibers and the matrix was good, with fibers acting as bridges in the cell walls. IR spectroscopy and SE-HPLC revealed a relatively low degree of aggregation, which was highest in the presence of glycerol. Confocal laser scanning microscopy revealed distinct differences in HMW-glutenin subunits and gliadin distributions for all of the different samples.  相似文献   

18.
Genipin gel dosimeters are hydrogels infused with a radiation-sensitive material which yield dosimetric information in three dimensions (3D). The effect of inorganic salts and glucose on the visible absorption dose–response, melting points and mass density of genipin gel dosimeters has been experimentally evaluated using 6-MV LINAC photons. As a result, the addition of glucose with optimum concentration of 10% (w/w) was found to improve the thermal stability of the genipin gel and increase its melting point (Tm) by 6 °C accompanied by a slight decrease of dose–response. Furthermore, glucose helps to adjust the gel mass density to obtain the desired tissue-equivalent properties. A drop of Tm was observed when salts were used as additives. As the salt concentration increased, gel Tm decreased. The mass density and melting point of the genipin gel could be adjusted using different amounts of glucose that improved the genipin gel suitability for 3D dose measurements without introducing additional toxicity to the final gel.  相似文献   

19.
In this article the effect of variations in the fatty acid chain of oligofructose fatty acid esters (OFAE) on foamability and foam stability is described. First, oligofructose (OF) mono-esters containing saturated fatty acid chains ranging between C4 and C18 were studied. Additionally, a mono-ester containing a C16 mono-unsaturated fatty acid chain and a C12 di-ester were studied. Finally, to investigate the influence of the size of the hydrophilic group, commercially available sucrose esters were studied. The surface tension and surface rheological properties of air/water interfaces stabilized by the esters were determined, as well as the foaming properties of the esters, at a bulk concentration of 0.2 % (w/v). OF mono-esters with intermediate fatty acid chain lengths (C10-C16) were able to migrate quickly to the interface producing foams with small bubbles (0.4 mm), a relatively narrow bubble size distribution, and a high stability. For oligofructose mono-esters containing fatty acids C4 and C8, the bulk concentration of 0.2 % (w/v) was below the CMC, resulting in insufficient surface coverage, and low foamability and foam stability. The OF C18 mono-ester and the OF C12 di-ester were slow to migrate to the interface resulting in low foamability. Despite similar surface tension values, the foam half-life time of OFAE was higher than of the corresponding sucrose esters. OFAE gave higher surface dilatational moduli compared to sucrose esters. Based on the frequency dependence of the modulus and analysis of Lissajous plots, we propose that OFAE may be forming a soft glass at the interface.  相似文献   

20.
Flotation or cell recovery in foams (proportion of the total cells in the medium transferred to the foam) and flotation efficiency (proportion of the cells transferred from an initial volume of medium equal to the residual volume after flotation) are functions of time, aeration rate, initial volume of medium, and initial concentration of cells. Cell recovery reached constant values (around 96.4 ± 6.3%) and flotation efficiency decreased (owing to increases in the liquid content of the foam), with increases in air flow rate (above 6–7 ml air s–1) and volumes of medium (above 11 ml) added to the column. Increases in concentration of cells in the medium led to increases in the concentration of cells in the foam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号