首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Many organs express the extracellular 3',5'-cAMP-adenosine pathway (conversion of extracellular 3',5'-cAMP to 5'-AMP and 5'-AMP to adenosine). Some organs release 2',3'-cAMP (isomer of 3',5'-cAMP) and convert extracellular 2',3'-cAMP to 2'- and 3'-AMP and convert these AMPs to adenosine (extracellular 2',3'-cAMP-adenosine pathway). As astrocytes and microglia are important participants in the response to brain injury and adenosine is an endogenous neuroprotectant, we investigated whether these extracellular cAMP-adenosine pathways exist in these cell types. 2',3'-, 3',5'-cAMP, 5'-, 3'-, and 2'-AMP were incubated with mouse primary astrocytes or primary microglia for 1 h and purine metabolites were measured in the medium by mass spectrometry. There was little evidence of a 3',5'-cAMP-adenosine pathway in either astrocytes or microglia. In contrast, both cell types converted 2',3'-cAMP to 2'- and 3'-AMP (with 2'-AMP being the predominant product). Although both cell types converted 2'- and 3'-AMP to adenosine, microglia were five- and sevenfold, respectively, more efficient than astrocytes in this regard. Inhibitor studies indicated that the conversion of 2',3'-cAMP to 2'-AMP was mediated by a different ecto-enzyme than that involved in the metabolism of 2',3'-cAMP to 3'-AMP and that although CD73 mediates the conversion of 5'-AMP to adenosine, an alternative ecto-enzyme metabolizes 2'- or 3'-AMP to adenosine.  相似文献   

2.
Although multiple biochemical pathways produce adenosine, studies suggest that the 2',3'-cAMP-adenosine pathway (2',3'-cAMP→2'-AMP/3'-AMP→adenosine) contributes to adenosine production in some cells/tissues/organs. To determine whether the 2',3'-cAMP-adenosine pathway exists in vivo in the brain, we delivered to the brain (gray matter and white matter separately) via the inflow perfusate of a microdialysis probe either 2',3'-cAMP, 3',5'-cAMP, 2'-AMP, 3'-AMP, or 5'-AMP and measured the recovered metabolites in the microdialysis outflow perfusate with mass spectrometry. In both gray and white matter, 2',3'-cAMP increased 2'-AMP, 3'-AMP and adenosine, and 3',5'-cAMP increased 5'-AMP and adenosine. In both brain regions, 2'-AMP, 3-AMP and 5'-AMP were converted to adenosine. Microdialysis experiments in 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNPase) wild-type mice demonstrated that traumatic brain injury (controlled cortical impact model) activated the brain 2',3'-cAMP-adenosine pathway; similar experiments in CNPase knockout mice indicated that CNPase was involved in the metabolism of endogenous 2',3'-cAMP to 2'-AMP and to adenosine. In CSF from traumatic brain injury patients, 2',3'-cAMP was significantly increased in the initial 12 h after injury and strongly correlated with CSF levels of 2'-AMP, 3'-AMP, adenosine and inosine. We conclude that in vivo, 2',3'-cAMP is converted to 2'-AMP/3'-AMP, and these AMPs are metabolized to adenosine. This pathway exists endogenously in both mice and humans.  相似文献   

3.
    
BACKGROUND: In pregnant women, antiretroviral drugs improve maternal health and reduce vertical transmission of human immunodeficiency virus to the infant. However, few nonclinical studies have examined the potential for adverse drug interactions. METHODS: On gestational days (GD) 6-16, mice were dosed with vehicle, ddI (360, 1440, or 2,880 mg/kg/day, p.o.), d4T (60, 240, or 480), or ddI/d4T combinations (360/60, 1,440/240, or 2,880/480). Daily doses were divided into two equal parts that were administered >or=6-hr apart. Body weight, clinical signs, and feed consumption were monitored. Pregnancies (22-24/group) were confirmed at necropsy. Maternal liver and gravid uterine weights (GUW), uterine implants (resorption, live or dead fetus), fetal body weight, gender, and morphologic anomalies (external, visceral, skeletal) were recorded. RESULTS: Maternal body weight, clinical signs, and GUW were unaffected. Maternal weight change corrected for GUW was greater than controls at 60 and 480 d4T. Relative feed consumption during treatment was increased relative to controls at 1,440 and 2,880 ddI and 2,880/480 ddI/d4T. Relative maternal liver weight was elevated above controls at 240 and 480 d4T and 2,880/480 ddI/d4T, and above the constituent dose of ddI at 1,440/240 and 2,880/480 ddI/d4T. Liver weight was not affected by ddI and there was no significant drug interaction. Prenatal mortality and morphologic anomalies were not increased. Fetal body weight showed only a decreasing trend for ddI/d4T, no effect for ddI or d4T, and no statistically significant drug interaction. CONCLUSIONS: In pregnant mice, ddI/d4T combinations were not associated with well-defined developmental toxicity or adverse drug interactions.  相似文献   

4.
    
The crystal structures of bovine pancreatic ribonuclease A (RNase A) in complex with 3',5'-ADP, 2',5'-ADP, 5'-ADP, U-2'-p and U-3'-p have been determined at high resolution. The structures reveal that each inhibitor binds differently in the RNase A active site by anchoring a phosphate group in subsite P1. The most potent inhibitor of all five, 5'-ADP (Ki = 1.2 microM), adopts a syn conformation (in contrast to 3',5'-ADP and 2',5'-ADP, which adopt an anti), and it is the beta- rather than the alpha-phosphate group that binds to P1. 3',5'-ADP binds with the 5'-phosphate group in P1 and the adenosine in the B2 pocket. Two different binding modes are observed in the two RNase A molecules of the asymmetric unit for 2',5'-ADP. This inhibitor binds with either the 3' or the 5' phosphate groups in subsite P1, and in each case, the adenosine binds in two different positions within the B2 subsite. The two uridilyl inhibitors bind similarly with the uridine moiety in the B1 subsite but the placement of a different phosphate group in P1 (2' versus 3') has significant implications on their potency against RNase A. Comparative structural analysis of the RNase A, eosinophil-derived neurotoxin (EDN), eosinophil cationic protein (ECP), and human angiogenin (Ang) complexes with these and other phosphonucleotide inhibitors provides a wealth of information for structure-based design of inhibitors specific for each RNase. These inhibitors could be developed to therapeutic agents that could control the biological activities of EDN, ECP, and ANG, which play key roles in human pathologies.  相似文献   

5.
A pterocarpan and two isoflavans from alfalfa   总被引:4,自引:0,他引:4  
(−)6aR,11aR-Dihydro-3-hydroxy-9,10-dimethoxy-6H-benzofuro[3,2c] [1]-benzopyran (10-methoxymedicarpin), (+)-(2,3,4,-trimethoxyphenyl)-2,3-dihydro-7-hydroxy-4H-1-benzopyran (7-hydroxy-2′,3′,4′-trimethoxyisoflavan) and (+)-(2,3,4-trimethoxy-5-hydroxyphenyl)-2,3-dihydro-7-hydroxy-4H-1-benzopyran (7,5′-dihydroxy-2′,3′,4′-trimethoxyisoflavan) were isolated for the first time from dried Medicago sativa hay. Structural assignments were based on 1H NMR and mass spectra, X-ray crystallography, and optical rotations.  相似文献   

6.
A crtD (1-HO carotenoid 3,4-dehydrogenase gene) homolog from marine bacterium strain P99-3 included in the gene cluster for the biosynthesis of myxol (3,4-didehydro-1,2-dihydro-β,ψ-carotene-3,1,2-triol) was functionally identified. The P99-3 CrtD was phylogenetically distant from the other CrtDs. A catalytic feature was its high activity for the monocyclic carotenoid conversion: 1-HO-torulene (3,4-didehydro-1,2-dihydro-β,ψ-caroten-1-ol) was prominently formed from 1-HO-γ-carotene (1,2-dihydro-β,ψ-caroten-1-ol) in Escherichia coli with P99-3 CrtD, indicating that this enzyme has been highly adapted to myxol biosynthesis. This unique type of crtD is a valuable tool for obtaining 1-HO-3,4-didehydro monocyclic carotenoids in a heterologous carotenoid production system.  相似文献   

7.
    
The oxysterol 7beta-hydroxycholesterol (7beta-OH) has been shown to induce apoptosis in a number of cell lines. Though not fully elucidated, the mechanism through which this oxysterol induces cell death is thought to involve the generation of an oxidative stress leading to perturbation of the mitochondrion and release of cytochrome c into the cytosol. Cytochrome c together with Apaf-1 causes activation of the initiator caspase, caspase-9, which in turn activates caspase-3 ultimately leading to the degradation of poly(ADP-ribose) polymerase (PARP). The objective of the present study was to investigate the signalling pathway in 7beta-OH-induced apoptosis in U937 cells, a human monocytic blood cell line known to undergo apoptosis upon treatment with 7beta-OH, over a time course of 48 h. Apoptosis was evident after 24 h incubation. Glutathione levels were decreased after 6 h and this was coupled with an increase in SOD activity. Through western blot analysis we examined expression of caspase-3, -8, and -9 and cleavage of the caspase-3 substrate PARP. The sequence proceeded with activation of caspase-9 after 9 h, caspase-3 at the 12 h timepoint, and cleavage of PARP after 24 h treatment with 7beta-OH. Caspase-8 did not appear to play a major role in this particular apoptotic pathway.  相似文献   

8.
    
As a first step towards a viable prodrug strategy for short oligoribonucleotides, such as 2–5A and its congeners, adenylyl‐2′,5′‐adenosines bearing a 3‐(acetyloxy)‐2,2‐bis(ethoxycarbonyl)propyl group at the phosphate moiety, and an (acetyloxy)methyl‐ or a (pivaloyloxy)methyl‐protected 3′‐OH group of the 2′‐linked nucleoside have been prepared. The enzyme‐triggered removal of these protecting groups by hog liver carboxyesterase at pH 7.5 and 37° has been studied. The (acetyloxy)methyl group turned out to be too labile for the 3′‐O‐protection, being removed faster than the phosphate‐protecting group, which results in 2′,5′‐ to 3′,5′‐isomerization of the internucleosidic phosphoester linkage. In addition, the starting material was unexpectedly converted to the 5′‐O‐acetylated derivative. (Pivaloyloxy)methyl group appears more appropriate for the purpose. The fully deprotected 2′,5′‐ApA was accumulated as a main product, although, even in this case, the isomerization of the starting material takes place.  相似文献   

9.
    
The combination of 2'-deoxyadenosine and 2'-deoxycoformycin is toxic for the human colon carcinoma cell line LoVo. In this study we investigated the mode of action of the two compounds and have found that they promote apoptosis. The examination by fluorescence microscopy of the cells treated with the combination revealed the characteristic morphology associated with apoptosis, such as chromatin condensation and nuclear fragmentation. The occurrence of apoptosis was also confirmed by the release of cytochrome c and the proteolytic processing of procaspase-3 in cells subjected to the treatment. To exert its triggering action on the apoptotic process, 2'-deoxyadenosine enters the cells through an equilibrative nitrobenzyl-thioinosine-insensitive carrier, and must be phosphorylated by intracellular kinases. Indeed, in the present work we demonstrate by analysis of the intracellular metabolic derivatives of 2'-deoxyadenosine that, as suggested by our previous findings, in the incubation performed with 2'-deoxyadenosine and 2'-deoxycoformycin, an appreciable amount of dATP was formed. Conversely, when also an inhibitor of adenosine kinase was added to the incubation mixture, dATP was not formed, and the toxic and apoptotic effect of the combination was completely reverted.  相似文献   

10.
The levels of a (2'-5')An-dependent endonuclease (RNase L) were determined in extracts prepared from murine L cells and Ehrlich ascites tumor (EAT) cells by measuring specific binding of protein to a labeled derivative of (2'-5')An, (2'-5')A3[32P]pCp. RNase L levels were found to depend both on interferon (IFN) treatment and on cell growth conditions. Treatment of murine L cells and EAT cells with 100-2,000 IRU IFN beta or IFN gamma resulted in a similar 2-4-fold increase in the levels of RNase L when cells were present at low density. The levels of RNase L were also shown to increase 2-3-fold as cells approached saturation density. Serum-starved cells also displayed relatively high levels of RNase L. RNase L levels in cells maintained at high cell density did not change appreciably following treatment with IFN beta or IFN gamma. Regulation of RNase L levels by cell growth conditions as well as by IFN beta or IFN gamma treatment suggests that RNase L may play an important role in regulating the levels of cellular mRNAs as well as acting to degrade viral RNAs.  相似文献   

11.
12.
    
Sulfation is a widely observed biological reaction conserved from bacterium to human that plays a key role in various biological processes such as growth, development, and defense against adversities. Deficiencies due to the lack of the ubiquitous sulfate donor 3'-phosphoadenosine-5'-phosphosulfate (PAPS) are lethal in humans. A large group of enzymes called sulfotransferases catalyze the transfer reaction of sulfuryl group of PAPS to the acceptor group of numerous biochemical and xenochemical substrates. Four X-ray crystal structures of sulfotransferases have now been determined: cytosolic estrogen, hydroxysteroid, aryl sulfotransferases, and a sulfotransferase domain of the Golgi-membrane heparan sulfate N-deacetylase/N-sulfotransferase 1. These have revealed the conserved core structure of the PAPS binding site, a common reaction mechanism, and some information concerning the substrate specificity. These crystal structures introduce a new era of the study of the sulfotransferases.  相似文献   

13.
  总被引:1,自引:0,他引:1  
A preparative high-speed counter-current chromatography (HSCCC) method for the isolation and purification of 1'-O-glucosylcimifugin (1), 4'-O-beta-d-glucosyl-5-O-methylvisamminol (2), cimifugin (3) and 3'-O-glucosylhamaudol (4) from the Chinese medicinal herb radix saposhnikoviae has been successfully developed. A sample of 300 mg of crude extract was separated using ethyl acetate:n-butanol:1% aqueous acetic acid (1:4:5, v/v) as the two-phase solvent system and yielded 102.4 mg of 1 and 81.6 mg of 2. During this separation 3 and 4 remained in the stationary phase, which was collected, evaporated to dryness and separated with another two-phase solvent system involving ethyl acetate:n-butanol:1% aqueous acetic acid (5:0.5:5, v/v) to yield 31.4 mg of 3 and 12.7 mg of 4. The purities of compounds 1-4 were 98.4, 98.7, 99.3 and 98.2%, respectively, as determined by HPLC. The chemical structures of these components were established by (1)H-NMR and (13)C-NMR.  相似文献   

14.
    
Full-length cDNAs encoding three forms of vitellogenin (Vg) were obtained from a liver cDNA library of estrogen-treated red seabream, Pagrus major. Two of the three Vg sequences had high homology with type-A and -B Vgs (VgA and VgB) of other teleosts. The third red seabream Vg was classified as a type-C or phosvitinless (Pvl) Vg due to its lack of a phosvitin (Pv) domain. Two Vg preparations (610 and 340 kDa) from blood serum of estradiol-treated fish were biochemically characterized. Analyses of precursor-product relationships by examination of N-terminal amino acid sequences verified cleavage of the 610 kDa Vg into a 540 kDa lipovitellin (Lv) and a 32 kDa beta'-component. Each of these yolk preparations comprising both VgA- and VgB-derived polypeptides. The 340 kDa Vg, which was immunologically verified to be a PvlVg, was accumulated by vitellogenic oocytes with no alterations to its native molecular mass. During oocyte maturation, the VgA- and VgB-derived yolk proteins were differentially processed, presumably to generate a pool of free amino acids for oocyte hydration or for allocation of specific types of nutrients, amino acids, and proteins, to the developing embryo. Conversely, the 340 kDa Vg-derived yolk protein is unlikely to contribute to oocyte hydration or diffusible nutrients since the molecule underwent only minor proteolytic nicking during oogenesis. The present study elucidates for the first time specific functions of three different forms of Vg and their product yolk proteins in a higher taxonomic group of marine teleosts that spawn pelagic eggs.  相似文献   

15.
    
Two new compounds, 14-methyl stigmast-9(11)-en-3alpha-ol-3beta-D-glucopyranoside (1) and cholest-11-en-3beta, 6beta, 7alpha, 22beta-tetraol-24-one-3beta-palmitoleate (2), along with the known compound beta-sitosteryl-3beta-D-glucopyranosyl-6'-linoleiate (3), were isolated from the methanolic extract of rice (Oryza sativa) hulls. The structures of the two new compounds were elucidated using one- and two-dimensional NMR in combination with IR, EI/MS, FAB/MS, HR-EI/MS and HR-FAB/MS. In bioassays with blue-green algae, Microcystis aeruginosa UTEX 2388 and duckweed, Lemna paucicostata Hegelm 381, the efficacy of bioactivity of the two new compounds linearly increased as the concentration increased from 0.3 to 300 IgM. Compared with momilactone A, compounds 1 and 2 showed similar and higher inhibitory activities against the growth of M. aeruginosa at a concentration of 300 microM. However, compound 2 was similar to momilactone A in inhibiting L. paucicostata growth at a concentration of 300 microM. As a result, compound 2 appears to have a strong potential for the environmentally friendly control of weed and algae that are harmful to water-logged rice.  相似文献   

16.
    
Shi M  Wang CJ 《Chirality》2002,14(5):412-416
Axially dissymmetric chiral diimine ligand 2 was prepared from the reaction of (R)-(+)-5,5',6,6',7,7',8,8'-octahydro-[1,1']binaphthyl-2,2'-diamine 1 with 2,6-dichlorobenzaldehyde. The catalytic asymmetric aziridination of alkenes was examined using this novel chiral ligand. Excellent enantioselective aziridination of cinnamates was achieved using C(2)-symmetric chiral ligand 2.  相似文献   

17.
    
  相似文献   

18.
The question raised in the title was answered. (3R, 3'S)-meso-Zeaxanthin was submitted to iodine catalyzed photochemical stereoisomerisation. The enantiomeric (9Z) and (9'Z) geometrical isomers were isolated by semipreparative HPLC and separated as diastereomeric dicarbamates on a chiral column only. Cleavage of the carbamate could not be effected. CD-Spectra of (1"S, 1"S)- and (1"R, 1"R)-dicarbamates of geometrical isomers of (3R, 3'R)- and (3R, 3'S)-meso-zeaxanthin were systematically studied and the contribution from the carbamate moieties revealed. It was concluded that (9Z, 3R, 3'S)-"meso"-zeaxanthin, in spite of having no symmetry elements, is optically inactive. The result has been rationalised in line with the current hypothesis on the origin of carotenoid CD spectra.  相似文献   

19.
  总被引:1,自引:0,他引:1  
Hepatic stellate cells (HSCs) are the major site of retinol (ROH) metabolism and storage. GRX is a permanent murine myofibroblastic cell line, derived from HSCs, which can be induced to display the fat-storing phenotype by treatment with retinoids. Little is known about hepatic or serum homeostasis of beta-carotene and retinoic acid (RA), although the direct biogenesis of RA from beta-carotene has been described in enterocytes. The aim of this study was to identify the uptake, metabolism, storage, and release of beta-carotene in HSCs. GRX cells were plated in 25 cm(2) tissue culture flasks, treated during 10 days with 3 micromol/L beta-carotene and subsequently transferred into the standard culture medium. beta-Carotene induced a full cell conversion into the fat-storing phenotype after 10 days. The total cell extracts, cell fractions, and culture medium were analyzed by reverse phase high-performance liquid chromatography for beta-carotene and retinoids. Cells accumulated 27.48 +/- 6.5 pmol/L beta-carotene/10(6) cells, but could not convert it to ROH nor produced retinyl esters (RE). beta-Carotene was directly converted to RA, which was found in total cell extracts and in the nuclear fraction (10.15 +/- 1.23 pmol/L/10(6) cells), promoting the phenotype conversion. After 24-h chase, cells contained 20.15 +/- 1.12 pmol/L beta-carotene/10(6) cells and steadily released beta-carotene into the medium (6.69 +/- 1.75 pmol/ml). We conclude that HSC are the site of the liver beta-carotene storage and release, which can be used for RA production as well as for maintenance of the homeostasis of circulating carotenoids in periods of low dietary uptake.  相似文献   

20.
  总被引:2,自引:0,他引:2  
Benzoyl peroxide is a free-radical generating compound widely used in the polymer industry and also in pharmaceuticals as antimicrobial agent to treat acne. However, benzoyl peroxide causes irritation and contact dermatitis in about 1% of patients. Concern over the use of this compound is motivated by the demonstration that it can also act as skin tumor promoter in mice. In addition, benzoyl peroxide induces DNA strand breaks in many cells, including keratinocytes. Benzoyl peroxide toxicity is presumably mediated by the formation of reactive free radicals and by the consumption of intracellular antioxidants.In this work we investigated the effect of both the lipophilic antioxidant alpha-tocopherol and the hydrophilic thiol donor N-acetylcysteine (NAC) in human keratinocyte line HaCaT exposed to benzoyl peroxide. A protective effect against benzoyl peroxide cytotoxicity was achieved when cells were grown on a alpha-tocopherol layer. On the contrary, the addition of alpha-tocopherol dissolved in ethanol had a pro-oxidant effect, leading to an enhancement of benzoyl peroxide toxicity. Cytotoxicity was also reduced adding NAC to the culture medium; the presence of both NAC and alpha-tocopherol exerts a synergistic cytoprotection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号