共查询到20条相似文献,搜索用时 0 毫秒
1.
昆虫细胞免疫反应中的吞噬、集结和包囊作用 总被引:2,自引:0,他引:2
细胞免疫是昆虫天生免疫系统中很重要的部分, 包括了由血细胞介导的一系列吞噬、 集结和包囊等作用。本文讨论了近年来在昆虫细胞免疫方面的研究进展, 包括参与昆虫细胞免疫的血细胞类型, 识别外来异物的受体因子, 影响免疫活性的一些酶和化学物质等。另外还就吞噬模式, 以及集结和包囊过程中粘附态细胞的形成等加以讨论。 相似文献
2.
Wolbachia symbiosis and insect immune response 总被引:1,自引:0,他引:1
Stefanos Siozios Panagiotis Sapountzis Panagiotis Ioannidis Kostas Bourtzis 《Insect Science》2008,15(1):89-100
Bacterial intraceUular symbiosis is very common in insects, having significant consequences in promoting the evolution of life and biodiversity. The bacterial group that has recently attracted particular attention is Wolbachia pipientis which probably represents the most ubiquitous endosymbiont on the planet. W. pipientis is a Gram-negative obligatory intracellular and maternally transmitted a-proteobacterium, that is able to establish symbiotic associations with arthropods and nematodes. In arthropods, Wolbachia pipientis infections have been described in Arachnida, in Isopoda and mainly in Insecta. They have been reported in almost all major insect orders including Diptera, Coleoptera, Hemiptera, Hymenoptera, Orthoptera and Lepidoptera. To enhance its transmission, W. pipientis can manipulate host reproduction by inducing parthenogenesis, feminization, male killing and cytoplasmic incompatibility. Several polymerase chain reaction surveys have indicated that up to 70% of all insect species may be infected with W. pipientis. How does W. pipientis manage to get established in diverse insect host species? How is this intracellular bacterial symbiont species so successful in escaping the host immune response? The present review presents recent advances and ongoing scientific efforts in the field. The current body of knowledge in the field is summarized, revelations from the available genomic information are presented and as yet unanswered questions are discussed in an attempt to present a comprehensive picture of the unique ability of W. pipientis to establish symbiosis and to manipulate reproduction while evading the host's immune system. 相似文献
3.
In most Lepidoptera, plasmatocytes and granulocytes are the two hemocyte classes capable of adhering to foreign targets. Previously, we identified plasmatocyte spreading peptide (PSP1) from the moth Pseudoplusia includens and reported that it induced plasmatocytes to rapidly spread on foreign surfaces. Here we examine whether the response of plasmatocytes to PSP1 was influenced by cell density or culture conditions, and whether PSP1 affected the adhesive state of granulocytes. Plasmatocyte spreading rates were clearly affected by cell density in the absence of PSP1 but spreading was density independent in the presence of PSP1. PSP1 also induced plasmatocytes in agarose-coated culture wells to form homotypic aggregations rather than spread on the surface of culture wells. In contrast, granulocytes rapidly spread in a density independent manner in the absence of PSP1, but were dose-dependently inhibited from spreading by the addition of peptide. An anti-PSP1 polyclonal antibody neutralized the spreading activity of synthetic PSP1. This antibody also neutralized the plasmatocyte spreading activity of granulocyte-conditioned medium, and significantly delayed plasmatocyte spreading when cells were cultured at a high density in unconditioned medium. These results suggested that the spreading activity derived from granulocytes is due in part to PSP1. Pretreatment of plasmatocytes with trypsin had no effect on PSP1-induced aggregation but PSP1-induced aggregations were readily dissociated by trypsin. This suggested that PSP1 is not an adhesion factor but induces adhesion by stimulating a change in the cell surface of plasmatocytes. Synthetic PSP1 also induced aggregation of plasmatocytes from other Lepidoptera indicating that regulation of hemocyte activity by PSP1-related peptides may be widespread. Arch. 相似文献
4.
Most multicellular organisms show a physiological decline in immune function with age. However, little is known about the mechanisms underlying these changes. We examined Drosophila melanogaster, an important model for identifying genes affecting innate immunity and senescence, to explore the role of phagocytosis in age‐related immune dysfunction. We characterized the localized response of immune cells at the dorsal vessel to bacterial infection in 1‐week‐ and 5‐week‐old flies. We developed a quantitative phagocytosis assay for adult Drosophila and utilized this to characterize the effect of age on phagocytosis in transgenic and natural variant lines. We showed that genes necessary for bacterial engulfment in other contexts are also required in adult flies. We found that blood cells from young and old flies initially engulf bacteria equally well, while cells from older flies accumulate phagocytic vesicles and thus are less capable of destroying pathogens. Our results have broad implications for understanding how the breakdown in cellular processes influences immune function with age. 相似文献
5.
Daniele Bruno Aurora Montali Marzia Gariboldi Anna Katarzyna Wrońska Agata Kaczmarek Amr Mohamed Ling Tian Morena Casartelli Gianluca Tettamanti 《Insect Science》2023,30(4):912-932
In insects, the cell-mediated immune response involves an active role of hemocytes in phagocytosis, nodulation, and encapsulation. Although these processes have been well documented in multiple species belonging to different insect orders, information concerning the immune response, particularly the hemocyte types and their specific function in the black soldier fly Hermetia illucens, is still limited. This is a serious gap in knowledge given the high economic relevance of H. illucens larvae in waste management strategies and considering that the saprophagous feeding habits of this dipteran species have likely shaped its immune system to efficiently respond to infections. The present study represents the first detailed characterization of black soldier fly hemocytes and provides new insights into the cell-mediated immune response of this insect. In particular, in addition to prohemocytes, we identified five hemocyte types that mount the immune response in the larva, and analyzed their behavior, role, and morphofunctional changes in response to bacterial infection and injection of chromatographic beads. Our results demonstrate that the circulating phagocytes in black soldier fly larvae are plasmatocytes. These cells also take part in nodulation and encapsulation with granulocytes and lamellocyte-like cells, developing a starting core for nodule/capsule formation to remove/encapsulate large bacterial aggregates/pathogens from the hemolymph, respectively. These processes are supported by the release of melanin precursors from crystal cells and likely by mobilizing nutrient reserves in newly circulating adipohemocytes, which could thus trophically support other hemocytes during the immune response. Finally, the regulation of the cell-mediated immune response by eicosanoids was investigated. 相似文献
6.
Hang‐Yu Tian Yan Hu Pan Zhang Wen‐Xi Xing Cuixian Xu Dan Yu Yang Yang Kaijun Luo Ming Li 《Archives of insect biochemistry and physiology》2019,100(3)
Microplitis bicoloratus bracovirus (MbBV) is a polydnavirus found in the parasitic wasp M. bicoloratus. Although MbBV is a known inducer of apoptosis in host hemocytes, the mechanism by which this occurs remains elusive. In this study, we found that expression of cyclophilin A (CypA) was significantly upregulated in Spodoptera litura hemocytes at 6‐day post‐parasitization. Similar results were reported in High Five cells (Hi5 cells) infected by MbBV, suggesting that the upregulation of CypA is linked to MbBV infection in insect cells. cDNA encoding CypA was cloned from parasitized hemocytes of S. litura, and bioinformatic analyses showed that S. litura CypA belongs to the cyclophilin family of proteins. Overexpression of S. litura CypA in Hi5 cells revealed that the protein promotes MbBV‐induced apoptosis in vitro. Conversely, suppression of the expression and activity of CypA protein significantly rescued the apoptotic phenotype observed in MbBV‐infected Hi5 cells, suggesting that it plays a key role in this process. MbBV infection also promoted the cytoplasmic‐nuclear translocation of CypA in Hi5 cells. Taken together, these results suggest that MbBV infection upregulates the expression of CypA, which is required for MbBV‐mediated apoptosis. Our findings provide insight into the role that CypA plays in insect cellular immune response. 相似文献
7.
果蝇作为一种模式昆虫,为研究昆虫和人类的先天免疫发挥了重要作用。目前对果蝇体内免疫诱导产生的抗微生物肽多基因家族在分子进化、抗菌功能的分子特征和免疫诱导表达的信号传递机制等方面的研究进展,进一步加深了人们对昆虫乃至其他动物和人类先天免疫模式的认识,为研究其他昆虫特别是作为主要农林害虫的鳞翅目昆虫的先天免疫机制发挥了重要作用。本文集中对黑腹果蝇Drosophila melanogaster抗微生物肽及其免疫模式的研究结果和最新进展进行了介绍,其中包括作者近几年的研究结果。 相似文献
8.
【目的】明确白蛾周氏啮小蜂Chouioia cunea毒液对其寄主美国白蛾Hyphantria cunea蛹细胞免疫的影响。【方法】采用Na_2-EDTA分离美国白蛾蛹颗粒细胞,尼龙毛法分离浆血细胞,再利用细胞离体培养法,测评了白蛾周氏啮小蜂毒液对寄主美国白蛾两种血细胞包囊作用和吞噬作用的影响。【结果】美国白蛾颗粒细胞的包囊指数强于浆血细胞。白蛾周氏啮小蜂毒液对颗粒细胞和浆血细胞的包囊指数均有明显的抑制作用,毒液浓度越大,抑制作用越强,两种血细胞的包囊作用均呈先增长后降低的趋势。在所有浓度毒液处理下,颗粒细胞的包囊指数在12 h时最强。未经小蜂毒液处理的浆血细胞包囊指数在15 h时达到最强,但经浓度为0.01~0.03 VRE/μL的毒液处理后浆血细胞的包囊指数在12 h时达到最强,而经浓度为0.04~0.10 VRE/μL的毒液处理后包囊指数在9 h时最强。白蛾周氏啮小蜂毒液对美国白蛾蛹颗粒细胞的吞噬作用强于浆血细胞。毒液对两种血细胞的吞噬能力均有明显的抑制作用,但毒液处理对浆血细胞的吞噬作用影响较小。【结论】白蛾周氏啮小蜂毒液可以抑制美国白蛾蛹颗粒细胞和浆血细胞的包囊作用和吞噬作用,且随着毒液浓度的增加,两种血细胞的免疫作用显著下降。 相似文献
9.
Fiolka MJ 《Journal of invertebrate pathology》2008,98(3):287-292
Cyclosporin A suppressed humoral immune response of Galleria mellonella larvae. Insects were immunized with LPS Pseudomonas aeruginosa and then injected with cyclosporin A. Immunosuppressive effects were expressed both, in larvae treated with cyclosporin A at the initial phase of immune response and at the effector phase of antibacterial immunity. Cyclosporin A moderately decreased lysozyme activity and significantly decreased antibacterial activity peptides against Escherichia coli. Immunosuppressive effects of cyclosporin A were observed after immunoblotting with antibodies anti-G. mellonella lysozyme. Tricine SDS/PAGE shown that synthesis of antibacterial peptides of larvae treated with cyclosporin A was considerably inhibited. Insects of impaired immune response by cyclosporin A action lost protective immunity to insect bacterial pathogen P. aeruginosa. 相似文献
10.
We have investigated the blood cell types present in Drosophila at postembryonic stages and have analysed their modifications during development and under immune conditions. The anterior lobes of the larval hematopoietic organ or lymph gland contain numerous active secretory cells, plasmatocytes, few crystal cells, and a number of undifferentiated prohemocytes. The posterior lobes contain essentially prohemocytes. The blood cell population in larval hemolymph differs and consists mainly of plasmatocytes which are phagocytes, and of a low percentage of crystal cells which reportedly play a role in humoral melanisation. We show that the cells in the lymph gland can differentiate into a given blood cell lineage when solicited. Under normal nonimmune conditions, we observe a massive differentiation into active macrophages at the onset of metamorphosis in all lobes. Simultaneously, circulating plasmatocytes modify their adhesion and phagocytic properties to become pupal macrophages. All phagocytic cells participate in metamorphosis by ingesting doomed larval tissues. The most dramatic effect on larval hematopoiesis was observed following infestation by a parasitoid wasp. Cells within all lymph gland lobes, including prohemocytes from posterior lobes, massively differentiate into a new cell type specifically devoted to encapsulation, the lamellocyte. 相似文献
11.
12.
Zhang XW Wang XW Sun C Zhao XF Wang JX 《Archives of insect biochemistry and physiology》2011,76(3):168-184
Lectins are potential immune recognition proteins. In this study, a novel C-type lectin (Pc-Lec1) is reported in freshwater crayfish Procambarus clarkii. Pc-Lec1 encodes a protein of 163 amino acids with a putative signal peptide and a single carbohydrate recognition domain. It was constitutively expressed in various tissues of a normal crayfish, especially in the hepatopancreas and gills. Expressions of Pc-Lec1 were up-regulated in the hepatopancreas and gills of crayfish challenged with Vibrio anguillarum, Staphylococcus aureus, or the white spot syndrome virus. Recombinant mature Pc-Lec1 bound bacteria and polysaccharides (peptidoglycan, lipoteichoic acid, and lipopolysaccharide) but did not agglutinate bacteria. Pc-Lec1 enhanced hemocyte encapsulation of the sepharose beads in vitro, and the blocking of beads by a polyclonal antibody inhibited encapsulation. Pc-Lec1 promoted clearance of V. anguillarum in vivo. These results suggest that Pc-Lec1 is a pattern recognition receptor and participates in cellular immune response. Pc-Lec1 performs its function as an opsonin by enhancing the encapsulation or clearance of pathogenic bacteria. 相似文献
13.
Eicosanoid actions in insect cellular immune functions 总被引:1,自引:0,他引:1
Insects are more or less constantly challenged with a daunting array of pathogenic organisms, including viruses, bacteria, fungi, protozoans as well as various metazoan parasites and parasitoids. At the first level of defense, the pathogens are rebuffed by physical barriers, including the cuticle and peritrophic membrane. Upon breaching these barriers, pathogens meet with an arsenal of robust and efficacious immune defense mechanisms. Two general categories of defenses are typically recognized, humoral defenses and hemocytic or cellular defenses. The former involves induced synthesis of various antibacterial proteins and peptides, such as cecropins and lysozyme. Cellular defense mechanisms are characterized by direct interactions between circulating hemocytes and the invaders. These include phagocytosis, microaggregation, nodulation, and encapsulation. Microaggregation is a step in the nodulation process, which is responsible for clearing the bulk of bacterial infections from circulation. Coordinated cellular actions lead to encapsulation of invaders, such as parasitoid eggs, that are very much larger than individual hemocytes. While the defense mechanisms are broadly appreciated, less is known about the biochemical signals responsible for mediating and coordinating the cellular actions. We now know eicosanoids mediate phagocytosis, microaggregation, and nodulation reactions to immune challenge, as well as cell spreading, a specific step in nodulation. We have several goals in this mini review. We provide a brief background on cellular immunity, outline eicosanoid biosynthesis, and review eicosanoid actions in cellular immunity in insects. Recent work indicates some pathogens have usurped eicosanoid‐mediated immunity; they disable insect immunity by inhibiting eicosanoid biosynthesis. We interpret these findings and their significance with respect to the biological control of insects. We also present preliminary work designed to test hypotheses on how eicosanoids exert their actions. We address shortcomings in our knowledge on eicosanoids in insect biology. 相似文献
14.
A plant pathogen modulates the effects of secondary metabolites on the performance and immune function of an insect herbivore 下载免费PDF全文
Host plant chemical composition critically shapes the performance of insect herbivores feeding on them. Some insects have become specialized on plant secondary metabolites, and even use them to their own advantage such as defense against predators. However, infection by plant pathogens can seriously alter the interaction between herbivores and their host plants. We tested whether the effects of the plant secondary metabolites, iridoid glycosides (IGs), on the performance and immune response of an insect herbivore are modulated by a plant pathogen. We used the IG‐specialized Glanville fritillary butterfly Melitaea cinxia, its host plant Plantago lanceolata, and the naturally occurring plant pathogen, powdery mildew Podosphaera plantaginis, as model system. Pre‐diapause larvae were fed on P. lanceolata host plants selected to contain either high or low IGs, in the presence or absence of powdery mildew. Larval performance was measured by growth rate, survival until diapause, and by investment in immunity. We assessed immunity after a bacterial challenge in terms of phenoloxidase (PO) activity and the expression of seven pre‐selected insect immune genes (qPCR). We found that the beneficial effects of constitutive leaf IGs, that improved larval growth, were significantly reduced by mildew infection. Moreover, mildew presence downregulated one component of larval immune response (PO activity), suggesting a physiological cost of investment in immunity under suboptimal conditions. Yet, feeding on mildew‐infected leaves caused an upregulation of two immune genes, lysozyme and prophenoloxidase. Our findings indicate that a plant pathogen can significantly modulate the effects of secondary metabolites on the growth of an insect herbivore. Furthermore, we show that a plant pathogen can induce contrasting effects on insect immune function. We suspect that the activation of the immune system toward a plant pathogen infection may be maladaptive, but the actual infectivity on the larvae should be tested. 相似文献
15.
为鉴定新的参与黑腹果蝇(Drosophila melanogaster)天然免疫信号通路调控的分子及作用机制,应用果蝇的Gal4/UAS系统敲低54个蛋白质激酶编码基因,分别利用革兰氏阳性菌(Enterococcus faecalis, E.faecalis)或革兰氏阴性菌(Erwinia carototovovora carototovovora 15, Ecc15)感染基因敲低果蝇,筛选参与果蝇天然免疫反应的蛋白质激酶。结果显示,全身性敲低蛋白质激酶Pitslre的果蝇感染E.faecalis或Ecc15 后,生存率降低,半致死时间LT50分别降低为对照组的66.7%和28.6%。相应的,Pitslre功能缺失导致革兰氏阳性菌和阴性菌分别感染后,Toll及IMD通路下游抗菌肽Drosomycin和Diptercin表达水平明显下降。在脂肪体和血淋巴细胞中特异性敲低Pitslre基因,导致革兰氏阳性菌及阴性菌感染后的果蝇半致死时间LT50分别缩短75%和90%,细菌载量分别升高约10倍。在果蝇S2细胞中,敲低Pitslre基因,导致细胞的抗菌肽Drosomycin、Attacin和Diptercin表达水平分别降低约50%。此外,通过免疫共沉淀实验检测Pitslre与预测存在相互作用的蛋白质TSC1、Rcd5和pbl之间的相互作用。综上所述,蛋白质激酶Pitslre参与果蝇天然免疫反应,在正向调控果蝇天然免疫Toll和IMD通路中发挥重要作用。 相似文献
16.
为鉴定新的参与黑腹果蝇(Drosophila melanogaster)天然免疫信号通路调控的分子及作用机制,应用果蝇的Gal4/UAS系统敲低54个蛋白质激酶编码基因,分别利用革兰氏阳性菌(Enterococcus faecalis, E.faecalis)或革兰氏阴性菌(Erwinia carototovovora carototovovora 15, Ecc15)感染基因敲低果蝇,筛选参与果蝇天然免疫反应的蛋白质激酶。结果显示,全身性敲低蛋白质激酶Pitslre的果蝇感染E.faecalis或Ecc15 后,生存率降低,半致死时间LT50分别降低为对照组的66.7%和28.6%。相应的,Pitslre功能缺失导致革兰氏阳性菌和阴性菌分别感染后,Toll及IMD通路下游抗菌肽Drosomycin和Diptercin表达水平明显下降。在脂肪体和血淋巴细胞中特异性敲低Pitslre基因,导致革兰氏阳性菌及阴性菌感染后的果蝇半致死时间LT50分别缩短75%和90%,细菌载量分别升高约10倍。在果蝇S2细胞中,敲低Pitslre基因,导致细胞的抗菌肽Drosomycin、Attacin和Diptercin表达水平分别降低约50%。此外,通过免疫共沉淀实验检测Pitslre与预测存在相互作用的蛋白质TSC1、Rcd5和pbl之间的相互作用。综上所述,蛋白质激酶Pitslre参与果蝇天然免疫反应,在正向调控果蝇天然免疫Toll和IMD通路中发挥重要作用。 相似文献
17.
Mohammad Rahnamaeian Ma?gorzata Cytryńska Agnieszka Zdybicka-Barabas Kristin Dobslaff Jochen Wiesner Richard M. Twyman Thole Zuchner Ben M. Sadd Roland R. Regoes Paul Schmid-Hempel Andreas Vilcinskas 《Proceedings. Biological sciences / The Royal Society》2015,282(1806)
Antimicrobial peptides (AMPs) and proteins are important components of innateimmunity against pathogens in insects. The production of AMPs is costly owing toresource-based trade-offs, and strategies maximizing the efficacy of AMPs at lowconcentrations are therefore likely to be advantageous. Here, we show thepotentiating functional interaction of co-occurring insect AMPs (the bumblebeelinear peptides hymenoptaecin and abaecin) resulting in more potentantimicrobial effects at low concentrations. Abaecin displayed no detectableactivity against Escherichia coli when tested alone atconcentrations of up to 200 μM, whereas hymenoptaecin affected bacterialcell growth and viability but only at concentrations greater than 2 μM.In combination, as little as 1.25 μM abaecin enhanced the bactericidaleffects of hymenoptaecin. To understand these potentiating functionalinteractions, we investigated their mechanisms of action using atomic forcemicroscopy and fluorescence resonance energy transfer-based quenching assays.Abaecin was found to reduce the minimal inhibitory concentration ofhymenoptaecin and to interact with the bacterial chaperone DnaK (anevolutionarily conserved central organizer of the bacterial chaperone network)when the membrane was compromised by hymenoptaecin. These naturally occurringpotentiating interactions suggest that combinations of AMPs could be usedtherapeutically against Gram-negative bacterial pathogens that have acquiredresistance to common antibiotics. 相似文献
18.
19.
We report on a secretory phospholipase A2 (sPLA2) associated with membrane-enriched fractions prepared from hemocytes of the tobacco hornworms, Manduca sexta. Virtually no PLA2 activity was detected in serum of immunologically naive or bacterially challenged hornworms. PLA2 activity was detected in cytosolic and membrane-enriched fractions prepared from hemocytes. PLA2 activity in the cytosolic fraction (1.2 pmol/mg/h) was approximately 4-fold greater than in the membrane-enriched fraction. The cytosol-associated PLA2 activity was strongly inhibited in reactions conducted in the presence of the specific cytosolic PLA2 inhibitor methylarachidonyl fluorophosphate (MAFP) but not in the presence of the sPLA2 inhibitor p-bromophenacyl bromide (BPB). Conversely, the membrane-associated PLA2 activity was inhibited in reactions conducted in the presence of BPB but not in the presence of MAFP. While the cytosol-associated PLA2 was independent of calcium, the membrane-associated sPLA2 required calcium for full catalytic activity. Hornworms treated with either BPB, MAFP or the glucocorticosteroid dexamethasone were severely impaired (by 50 to 80% relative to controls) in their ability to form nodules in reaction to bacterial challenge. However, the immune-impairing influence of the inhibitors was reversed by treating larvae with arachidonic acid, a precursor for eicosanoid biosynthesis. We infer that the biological significance of the sPLA2 (as well as the previously characterized cytosolic PLA2) relates to hydrolysis of polyunsaturated fatty acids from cellular phospholipids. Moreover, this enzyme may be the target of immunity-impairing factors from the bacterium Xenorhabdus nematophila. The fatty acids serve as precursors for the generation of eicosanoids responsible for mediating and coordinating cellular immune reactions to infection. 相似文献