首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An up-flow immobilized cell bioreactor was developed using a microbial consortium, consisting of Bacillus sp., Alcaligenes sp. and Aeromonas sp., immobilized on refractory brick pieces as immobilization support. malachite green, a model triphenylmethane dye was decolourized by more than 93% within 48 h (operating conditions: initial dye concentration 30 mg l−1; flow rate 6 ml h−1). The analytical studies based on TLC and 1H NMR showed degradation of the aromatic rings of the malachite green into simpler metabolic intermediates.  相似文献   

2.
Bacterial consortium-AIE2 with a capability of contemporaneous Cr(VI) reduction and azo dye RV5 decolourization was developed from industrial wastewaters by enrichment culture technique. The 16S rRNA gene based molecular analyses revealed that the consortium bacterial community structure consisted of four bacterial strains namely, Alcaligenes sp. DMA, Bacillus sp. DMB, Stenotrophomonas sp. DMS and Enterococcus sp. DME. Cumulative mechanism of Cr(VI) reduction by the consortium was determined using in vitro Cr(VI) reduction assays. Similarly, the complete degradation of Reactive Violet 5 (RV5) dye was confirmed by FTIR spectroscopic analysis. Consortium-AIE2 exhibited simultaneous bioremediation efficiencies of (97.8 ± 1.4) % and (74.1 ± 1.2) % in treatment of both 50 mg l−1 Cr(VI) and RV5 dye concentrations within 48 h of incubation at pH 7 and 37°C in batch systems. Continuous bioreactor systems achieved simultaneous bioremediation efficiencies of (98.4 ± 1.5) % and (97.5 ± 1.4) % after the onset of steady-state at 50 mg l−1 input Cr(VI) and 25 mg l−1 input RV5 concentrations, respectively, at medium dilution rate (D) of 0.014 h−1. The 16S rRNA gene copy numbers in the continuous bioreactor as determined by real-time PCR assay indicated that Alcaligenes sp. DMA and Bacillus sp. DMB dominated consortium bacterial community during the active continuous bioremediation process.  相似文献   

3.
Abstract

Azo dyes are recalcitrant compounds used as a colorant in various industries. The pollution caused by their extensive usage has adversely affected the environment for years. The existing physicochemical methods for dye pollution remediation are rather inefficient and hence there is a dearth of low-cost, potential systems capable of dye degradation. The current research studies the biodegradation potential of immobilized bacterial cells against azo dyes Reactive Orange 16 (RO-16) and Reactive Blue 250 (RB-250). Two indigenous dye degrading bacteria Bacillus sp. VITAKB20 and Lysinibacillus sp. KPB6 was isolated from textile sludge sample. Free cells of Bacillus. sp. VITAKB20 degraded 92.38% of RO-16 and that of Lysinibacillus sp. KPB6 degraded 95.36% of RB-250 within 72?h under static conditions. Upon immobilization with calcium alginate, dye degradation occurred rapidly. Bacillus. sp. VITAKB20 degraded 97.5% of RO-16 and Lysinibacillus sp. KPB6 degraded 98.2% of RB-250 within 48?h under shaking conditions. Further, the nature of dye decolorization was biodegradation as evident by high-performance liquid chromatography (HPLC), and Fourier-transform infrared spectroscopy (FTIR) results. Phytotoxicity and biotoxicity assays revealed that the degraded dye products were less toxic in nature than the pure dyes. Thus, immobilization proved to be a highly likely alternative treatment for dye removal.  相似文献   

4.
A continuous treatment system combining a packed-bed column and a two-phase partitioning bioreactor has been designed to treat high-concentration benzene-containing gas streams. 1-Octadecene was used in a closed loop as an absorbant to scrub benzene in the counter-current column, after which it was transferred to the two-phase partitioning bioreactor to partition benzene into the 1 l aqueous phase for degradation by Klebsiella sp. The solvent was then recirculated back to the absorber. A gas stream containing 20 mg l–1 benzene at a flow rate of 60 l h–1 was introduced to the system, and the benzene was degraded at a biological removal efficiency of 87% at steady state.  相似文献   

5.
The production of manganese-dependent peroxidase (MnP) and lignin peroxidase (LiP) by the fungus Phanerochaete chrysosporium (ATCC 24725) in a new bioreactor, the Immersion Bioreactor, which grows cells under solid-state conditions, was studied. Maximum MnP and LiP activities were 987 U l–1 and 356 U l–1, respectively. The polymeric dye, Poly R-478, was degraded at 2.4 mg l–1 min–1 using the extracellular culture filtrate.  相似文献   

6.
A dye-decolorizing bacterium was isolated from a coconut coir sample and identified as a new genus Kerstersia sp. by various biochemical tests and 16S rRNA gene sequencing. This bacterium was capable of degrading sulfonated azo dye Amaranth aerobically at 40?°C and pH 7.0. Tests conducted on intracellular crude enzyme extract identified an oxygen insensitive azoreductase. The optimum dye-decolorizing activity at pH 7.0 and 40?°C for the decolorization of dye was 0.091?U mL?1 (μmax 0.522?mg h?1). The Ks 104.51?μM?1 has been evaluated by plotting Lineweaver–Burk plot for the Amaranth dye. The dye degraded products were extracted and characterized by TLC, diazotization and Carbylamines test, which indicated that Amaranth was biotransformed into non-toxic aromatic metabolite without amine group.  相似文献   

7.
Biodegradation of nonylphenol in a continuous packed-bed bioreactor   总被引:1,自引:0,他引:1  
A packed bed bioreactor, with 170 ml glass bead carriers and 130 ml medium, was tested for the removal of the endocrine disrupter, nonylphenol, with a Sphingomonas sp. The bioreactor was first continuously fed with medium saturated with nonylphenol in an attempt to simulate groundwater pollution. At best, nonylphenol was degraded by 99.5% at a feeding rate of 69 ml h–1 and a removal rate of 4.3 mg nonylphenol day–1, resulting in a 7.5-fold decrease in effluent toxicity according to the Microtox. The bioreactor was then fed with soil leachates at 69 ml h–1 from artificially contaminated soil (1 g nonylphenol kg–1 soil) and a real contaminated soil (0.19 g nonylphenol kg–1 soil). Nonylphenol was always completely removed from the leachates of the two soils. It was removed by 99% from the artificial soil but only 62% from real contaminated soil after 18 and 20 d of treatment, respectively, showing limitation due to nonylphenol adsorption.  相似文献   

8.
Effects of low temperature and low oxygen partial pressure on theoccurrence and activity of 2,3,4,6-tetrachlorophenol degrading bacteria in a boreal chlorophenol contaminated groundwater and a full-scale fluidized-bed bioreactor were studied using four polychlorophenol degrading bacterial isolates of different phylogenetic backgrounds. These included an -proteobacterial Sphingomonas sp. strain MT1 isolated from the full-scale bioreactor and three isolates from the contaminated groundwater whichwere identified as -proteobacterial Herbaspirillum sp. K1,a Gram-positive bacterium with high G + C content Nocardioides sp. K44 and an -proteobacterialSphingomonas sp. K74. The Sphingomonasstrains K74 and MT1 and Nocardioides sp. K44 degraded2,4,6-trichlorophenol and 2,3,4,6-tetrachlorophenol as the solecarbon and energy sources. Close to stoichiometric inorganic chloride release with the 2,3,4,6-tetrachlorophenol removal andthe absence of methylation products indicated mineralization. Tetrachlorophenol degradation by the Herbaspirillum sp. K1 was enhanced by yeast extract, malate, glutamate, pyruvate, peptone and casitone. At 8 °C, Sphingomonas sp. K74 had the highest specific degradation rate(max = 4.9 × 10-12 mg h-1 cell-1) for 2,3,4,6-tetrachlorophenol. The Nocardioides strain K44 had the highest affinity (Ks = 0.46 mg l-1) for tetrachlorophenol. K1 and MT1 grew microaerophilically in semisolid glucose medium. Furthermore, the growth of MT1 was inhibited in liquidglucose medium at high oxygen partial pressure indicating sensitivity to accumulating toxic oxygen species. On the other hand, trichlorophenol degradation was not affected by oxygen concentration (2–21%). The isolates K44, K74 and MT1, with optimum growth temperaturesbetween 23 and 25 °C, degraded tetrachlorophenol faster at 8 °C than at room temperature indicating distinctly different temperature optima for chlorophenol degradation and growthon complex media. These results show efficient polychlorophenol degradation by the isolates at the boreal groundwater conditions, i.e., at low temperature and low oxygen concentrations. Differences in chlorophenol degradation and sensitivities to chlorophenols and oxygen among the isolates indicate that the phylogenetically different chlorophenol degraders have found different niches in the contaminated groundwater and thus potential for contaminantdegradation under a variety of saturated subsurface conditions.  相似文献   

9.
A novel bioreactor with an internal adsorbent was developed for the simultaneous fermentation and recovery of prodigiosin-like pigment produced from Serratia sp. KH-95 as a model product in one bioreactor. The pigment concentration recovered in the internal adsorbent was 13.1 g l–1, which was 1.8-fold higher than that obtained in a bioreactor with an external adsorbent.  相似文献   

10.
Soil and sediment samples obtained from Orange MR dye contaminated habitat were screened for heterotrophic bacterial population. The heterotrophic bacterial density of dye-contaminated soil was 2.14 × 106 CFU/g. The generic composition of heterotrophic bacterial population was primarily composed of 10% of Proteus sp., 15% Aeromonas sp., 20% Bacillus sp., 25% Pseudomonas sp. and 30% Micrococcus sp. The bacterial strain that decolorized the azo dye Orange MR up to 900 ppm was identified as Micrococcus sp. The optimum inoculum load, pH and temperature were found to be 5%, 6 and 35°C, respectively. The rate of decolorization was assessed using spectrophotometer at 530 nm and the percentage of decolorization was ascertained. The autochthonous bacterial isolate was able to utilize the dye as both nitrogen and carbon source.  相似文献   

11.
A high-rate fluidized-bed bioreactor has been treating polychlorophenol-contaminated groundwater in southern Finland at 5 to 8°C for over 6 years. We examined the microbial diversity of the bioreactor using three 16S ribosomal DNA (rDNA)-based methods: denaturing gradient gel electrophoresis, length heterogeneity-PCR analysis, and restriction fragment length polymorphism analysis. The molecular study revealed that the process was dependent on a stable bacterial community with low species diversity. The dominant organism, Novosphingobium sp. strain MT1, was isolated and characterized. Novosphingobium sp. strain MT1 degraded the main contaminants of the groundwater, 2,4,6-trichlorophenol, 2,3,4,6-tetrachlorophenol, and pentachlorophenol, at 8°C. The strain carried a homolog of the pcpB gene, coding for the pentachlorophenol-4-monooxygenase in Sphingobium chlorophenolicum. Spontaneous deletion of the pcpB gene homolog resulted in the loss of degradation ability. Phenotypic dimorphism (planktonic and sessile phenotypes), low growth rate (0.14 to 0.15 h−1), and low-copy-number 16S rDNA genes (single copy) were characteristic of strain MT1 and other MT1-like organisms isolated from the bioreactor.  相似文献   

12.
Oily sludge degradation by bacteria from Ankleshwar, India   总被引:7,自引:0,他引:7  
Three bacterial strains, Bacillus sp. SV9, Acinetobacter sp. SV4 and Pseudomonas sp., SV17 from contaminated soil in Ankleshwar, India were tested for their ability to degrade the complex mixture of petroleum hydrocarbons (such as alkanes, aromatics, resins and asphaltenes), sediments, heavy metals and water known as oily sludge. Gravimetric analysis showed that Bacillus sp. SV9 degraded approx. 59% of the oily sludge in 5 days at 30 °C whereas Acinetobacter sp. SV4 and Pseudomonas sp. SV17 degraded 37% and 35%. Capillary gas chromatographic analysis revealed that after 5 days the Bacillus strain was able to degrade oily sludge components of chain length C12–C30 and aromatics more effectively than the other two strains. Maximum drop in surface tension (from 70 to 28.4 mN/m) was accompanied by maximum biosurfactant production (6.7 g l−1) in Bacillus sp. SV9 after 72 h, these results collectively indicating that this bacterial strain has considerable potential for bioremediation of oily sludge.  相似文献   

13.
A novel bacterial species identified as Exiguobacterium sp. RD3 degraded the diazo dye reactive yellow 84A (50 mg l−1) within 48 h at static condition, at 30°C and pH 7. Lower salinity conditions were found to be favorable for growth and decolorization. Enzymatic activities of an H2O2 independent oxidase along with laccase and an azoreductase suggest their prominent role during the decolorization of reactive yellow 84A. Presence of an H2O2 independent oxidase in Exiguobacterium sp. RD3 was confirmed and hydrogen peroxide produced was detected by a coupled iodometric assay. Azoreductase activity was prominent in presence of cofactors NADH and NADP in mineral salt medium. Considerable depletion of COD of the dye solution during degradation of dye was indicative of conversion of complex dye into simple oxidizable products. Products of degradation were analyzed by HPLC, FTIR and GCMS. A possible product of the degradation was identified by GCMS. Degradation of dye resulted with significant reduction of phytotoxicity, confirming the environmentally safe nature of the degradation metabolites.  相似文献   

14.
Pseudomonas sp. 42A2 when incubated for 36 h with oleic acid (20 g l–1) in a stirred bioreactor, accumulated 10-hydroxy-8E-octadecenoic acid. Production in a 2 l bioreactor with 1.4 l of working volume, was increased from 0.65 g l–1 to 7.4 g l–1 with K L a values ranging between 15 and 200 h–1. A linear relationship was found between volumetric productivity and oxygen transfer rates and an exponential relation between the specific rate of product formation and specific growth rate.  相似文献   

15.
Biosorption is an eco-friendly and cost-effective method for treating the dye house effluents. Aspergillus niger and Trichoderma sp. were cultivated in bulk and biomasses used as biosorbents for the biosorption of an azo dye Orange G. Batch biosorption studies were performed for the removal of Orange G from aqueous solutions by varying the parameters like initial aqueous phase pH, biomass dosage, and initial dye concentration. It was found that the maximum biosorption was occurred at pH 2. Experimental data were analyzed by model equations such as Langmuir and Freundlich isotherms, and it was found that both the isotherm models best fitted the adsorption data. The monolayer saturation capacity was 0.48 mg/g for Aspergillus niger and 0.45 mg/g for Trichoderma sp. biomasses. The biosorption kinetic data were tested with pseudo first-order and pseudo second-order rate equations, and it was found that the pseudo second-order model fitted the data well for both the biomasses. The rate constant for the pseudo second-order model was found to be 10–0.8 (g/mg min−1) for Aspergillus niger and 8–0.4 (g/mg min−1) for Trichoderma sp. by varying the initial dye concentrations from 5 to 25 mg/l. It was found that the biomass obtained from Aspergillus niger was a better biosorbent for the biosorption of Orange G dye when compared to Trichoderma sp.  相似文献   

16.
Summary The present paper studies the production of laccase by Trametes hirsuta immobilized into alginate beads in an airlift bioreactor. In order to enhance laccase production fresh ammonium chloride was added, which led to the production, of high laccase activities (around 1000 U l−1). The bioreactor operated for 40 days without operational problems and the bioparticles maintained their shape throughout fermentation. Dye decolorization was performed at bioreactor scale operating in the batch mode. High decolorization percentages were obtained in a short time (96% for indigo carmine and 69% for phenol red in 24 h), indicating the suitability of this process for application to synthetic dye decolorization. On the other hand, in vitro decolorization of several industrial azo dyes by crude laccase produced in the above bioreactor was also performed. It was found that some of the dyes needed the addition of 1-hydroxybenzotriazole for their decolorization.  相似文献   

17.
Mycobacterium sp. PYR‐1, which was previously shown to mineralize several individual polycyclic aromatic hydrocarbons (PAHs), simultaneously degraded phenanthrene, anthracene, fluoranthene, pyrene and benzo[a]pyrene in a six‐component synthetic mixture. Chrysene was not degraded significantly. When provided with a complex carbon source, Mycobacterium sp. PYR‐1 degraded greater than 74% of the total PAH mixture during 6 d of incubation. Mycobacterium sp. PYR‐1 appeared to preferentially degrade phenanthrene. No significant difference in degradation rates was observed between fluoranthene and pyrene. Anthracene degradation was slightly delayed but, once initiated, proceeded at a constant rate. Benzo[a]pyrene was degraded slowly. Degradation of a crude mixture of benzene‐soluble PAHs from contaminated sediments resulted in a 47% reduction of the material in 6 d compared with that of autoclaved controls. Experiments using an environmental microcosm test system indicated that mineralization rates of individual 14C‐labeled compounds were significantly lower in the mixtures than in equivalent doses of these compounds alone. Mineralization of the complete mixture was estimated conservatively to be between 49.7 and 53.6% and was nearly 50% in 30 d of incubation when all compounds were radiolabeled. These results strengthen the argument for the potential application of Mycobacterium sp. PYR‐1 for bioremediation of PAH‐contaminated wastes.  相似文献   

18.
Coprinus cinereus, which was able to decolorize the anthraquinone dye Cibacron Blue 3G-A (CB) enzymatically, was used as a biocatalyst for the decolorization of synthetic solutions containing this reactive dye. Coprinus cinereus was immobilized in both calcium alginate and polyacrylamide gels, and was used for the decolorization of CB from synthetic water by using a fluidized bed bioreactor. The highest specific decolorization rate was obtained when Coprinus cinereus was entrapped in calcium alginate beads, and was of about 3.84 mg g−1 h−1 with a 50% conversion time (t 1/2) of about 2.60 h. Moreover, immobilized fungal biomass in calcium alginate continuously decolorized CB even after 7 repeated experiments without significant loss of activity, while polyacrylamide-immobilized fungal biomass retained only 67% of its original activity. The effects of some physicochemical parameters such as temperature, pH and dye concentration on decolorization performance of isolated fungal strain were also investigated.  相似文献   

19.
The 16S rRNA sequence and biochemical characteristics revealed the isolated organism as Pseudomonas sp. SU-EBT. This strain showed 97 and 90% decolorization of a recalcitrant dye, Congo red (100 mg l−1) and textile industry effluent with 50% reduction in COD within 12 and 60 h, respectively. The optimum pH and temperature for the decolorization was 8.0 and 40°C, respectively. Pseudomonas sp. SU-EBT was found to tolerate the dye concentration up to 1.0 g l−1. Significant induction in the activity of intracellular laccase suggested its involvement in the decolorization of Congo red. The metabolites formed after decolorization of Congo red, such as p-dihydroxy biphenyl, 8-amino naphthol 3-sulfonic acid and 3-hydroperoxy 8-nitrosonaphthol were characterized using FTIR and GC–MS. Phytotoxicity study revealed nontoxic nature of the degradation metabolites to Sorghum bicolor, Vigna radiata, Lens culinaris and Oryza sativa plants as compared to Congo red and textile industry effluent. Pseudomonas sp. SU-EBT decolorized several individual textile dyes, dye mixtures and textile industry effluent, thus it is a useful strain for the development of effluent treatment methods in textile processing industries.  相似文献   

20.
Crystal Violet (BV3), a typical triphenylmethane dye, was degraded by growing cells of Nocardia corallina IAM 12121, although their growth was inhibited at the initial stage of incubation. The dye was degraded at a low concentration, below 5 mol dm–3. The growth of the cells was completely inhibited at a dye concentration of 7 mol dm–3. A degradation product of BV3 was identified as 4,4-bis(dimethylamino) benzophenone (Michler's ketone; MK) by gas chromatography-mass spectrometry. The product was obtained in a reasonable yield since it was not further metabolized by N. corallina IAM 12121. Correspondence to: C. Yatome  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号