首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
AIMS: To develop a cost effective and efficient biological treatment process for small scale textile processing industries (TPI) releasing untreated effluents containing intense coloured Acid violet-17 (AV-17), a triphenyl methane (TPM) group textile dye. METHODS AND RESULTS: The samples collected from effluent disposal sites of TPI were used for selective enrichment of microbial populations capable of degrading/decolourizing AV-17. A consortium of five bacterial isolates was used to develop an up-flow immobilized cell bioreactor for treatment of feed containing AV-17. The bioreactor, operating at a flow rate of 6 ml x h(-1), resulted in 91% decolourization of 30 mg AV-17/l with 94.3 and 95.7% removal of biochemical oxygen demand and chemical oxygen demand of the feed. Comparison of the input and output of the bioreactor by UV-visible, thin layer chromatography and (1)H-nuclear magnetic resonance spectroscopy indicates conversion of the parent dye into unrelated metabolic intermediates. SIGNIFICANCE: These results will form a basis for developing 'on-site' treatment system for TPI effluents to achieve decolourization and degradation of residual dyes.  相似文献   

2.
Aerobic mixed bacterial culture comprised of five isolates (Bacillus vallismortis, B. pumilus, B. cereus, B. subtilis and B. megaterium) identified by 16srDNA analysis was developed from wastewater samples from the aeration tank of an effluent treatment plant of a textile and dyeing industry and evaluated for its ability to decolorize azo dye Direct Red 28 in an up-flow immobilized packed bed bioreactor using marble chips as support matrix. The bioreactor was operated under two parameters: an aeration rate of 0.4 and 0.6 mmol/min at a flow rate of 60, 90 and 120 ml/h, respectively. At a constant aeration rate of 0.4 mmol/min and with flow rates of 60, 90 and 120 ml/h, optimum decolorization of 91, 75 and 72% was observed, while at an aeration rate of 0.6 mmol/min and flow rates of 60, 90 and 120 ml/h, optimum decolorization of 93, 78 and 72% was observed over 10 days. The study concluded that across the two aeration rates and the respective flow rates, the higher aeration rate of 0.6 mmol/min along with a flow rate of 60 ml/h was best suited to decolorize Direct Red 28 in the packed bed bioreactor. Spectral changes of the input and output of the bioreactor by UV–visible spectroscopy indicated decolorization of the dye solution by degradation in addition to the visual observation of the biosorption process.  相似文献   

3.
Much attention has been devoted recently to the fate of pharmaceutically active compounds such as tetracycline antibiotics in soil and water. Tetracycline (TC) biodegradability by activated sludge derived from membrane bioreactor (MBR) treating swine wastewater via CO2-evolution was evaluated by means of modified Sturm test, which was also used to evaluate its toxicity on carbon degradation. The impact of tetracycline on a semi-industrial MBR process was also examined and confronted to lab-scale experiments. After tetracycline injection in the pilot, no disturbance was detected on the elimination of organic matters and ammonium (nitrification), reaching after injection 88% and 99% respectively; only denitrification was slightly affected. Confirming the ruggedness and the superiority of membrane bioreactors over conventional bioreactors, no toxicity was observed at the considered level of TC in the pilot (20 mg TOC L−1), while at lab-scale sodium benzoate biodegradation was completely inhibited from 10 mg TOC L−1 TC. The origin of the activated sludge showed a significant impact on the performances, since the ultimate biodegradation was in the range −50% to −53% for TC concentrations in the range 10–20 mg TOC L−1 with conventional bioreactor sludge and increased to 18% for 40 mg TOC L−1 of TC with activated sludge derived from the MBR pilot. This confirmed the higher resistance of activated sludge arising from membrane bioreactor.  相似文献   

4.
Chromate reduction was studied in a membrane bioreactor under action of Pseudomonas bacteria immobilized in agar–agar films on the surface of synthetic membrane. Immobilized cells are protected from the excessive toxic action at high chromate concentration that improves cell activity compared with free cells. Almost complete chromate reduction was observed at stepwise introducing of chromate in feed solution allowing maintenance of optimal chromate concentration. Reduction is suppressed by high metabolite concentrations, which reached on the sixth step of chromate adding in studied system. Cell ability to reduce chromate is restored after changing of feed and receiving solutions allowing remediation of Cr(VI)-contaminated water in semi-batch operation of membrane bioreactor.  相似文献   

5.
This follow-up study provided an evaluation on threshold operation criteria of biostimulation in immobilized cell systems (ICSs) with Aeromonas hydrophila onto packing materials Porites corals. Essential nutrients in appropriate flow rate for biostimulation were inevitably required to maintain maximum attached cell population for cost-effective biodecolorization. With the method of “graphical reconstruction”, the most economically feasible strategy of medium stimulation for color removal was quantitatively revealed. Our findings pointed out no matter what operation mode of reactor was (e.g., suspended batch cultures or ICS) color removal efficiency for A. hydrophila still strongly depended upon intrinsic kinetics and chemical reactivities of azo dyes. Mass transport effects in ICS might not play most significant roles to limit dye biodecolorization of A. hydrophila (except Reactive red 198, Reactive green 19), as relative rankings of color removal rates of various dyes were almost in parallel with those in suspended batch cultures.  相似文献   

6.
Triphenylmethane dyes belong to the most important group of synthetic colorants and are used extensively in the textile industries for dying cotton, wool, silk, nylon, etc. They are generally considered as the xenobiotic compounds, which are very recalcitrant to biodegradation. Sphingomonas paucimobilis, was isolated from the soil sample collected from contaminated sites of textile industry located in KsarHellal, Tunisia, and it was able to decolorize Malachite Green (MG) dye (50 mg/l) within 4 h under shaking condition (pH 9 and temperature 25°C). The effect of inoculum size, dye concentration, temperature and initial pH of the solution were studied. The results obtained from the batch experiments revealed the ability of the tested bacteria to remove dye. UV–Vis spectroscopy and FTIR analysis of samples before and after decolorization confirmed the ability of the tested strain to decolorize MG. In addition, the phytotoxicity study revealed the degradation of MG into non-toxic product by S. paucimobilis.  相似文献   

7.
Continuous propionic acid fermentations of lactate by Propionibacterium acidipropionici were studied in spiral wound fibrous bed bioreactors. Cells were imobilized by natural attachment to fiber surfaces and entrapment in the void volume within the fibrous matrix. A high cell density of approximately 37 g/L was attained in the reactor and the reactor productivity was approximately 4 times higher than that from a conventional batch fermentation. The bioreactor was able to operate continuously for 4 months without encountering any clogging, degeneration, or contamination problems. Also, the reactor could accept low-nutrient and low-pH feed without sacrificing much in reactor productivity. This new type of immobilized cell bioreactor is scalable and thus is suitable for industrial production of propionate. (c) 1992 John Wiley & Sons, Inc.  相似文献   

8.
The filamentous cyanobacterium,Scytonema sp. TISTR 8208, which produces a cyclic peptide antibiotic, was cultivated for 20 d in a seaweed-type bioreactor containing anchored polyurethan foam strips. Cells immobilized onto the foam strips produced the antibiotic for only several days, and the secreted antibiotic disappeared very rapidly from the medium. Cells accumulated the antibiotic intracellularly in a growth-related manner, and secreted it in the stationary phase. Since the antibiotic has a stable physico-chemical nature, the cells seem to take it up and metabolize it. When continuous cultivation was attempted, stable production of the antibiotic was maintained in the bioreactor for 16 d at a dilution rate of 0.01 h–1. Three times more antibiotic was produced in the continuous culture than in the batch culture by the 16th day.  相似文献   

9.
The in vivo biodegradation of the diazo dye Reactive Black 5 (RB5) by Phanerochaete chrysosporium immobilised on cubes of nylon sponge and on sunflower-seed shells (SS) in laboratory-scale bioreactors was investigated. The SS cultivation led to the best results with a decolouration percentage of 90.3% in 72 h for an initial RB5 concentration of 100 mg/L. It was found that the addition of 0.4 mM veratryl alcohol (VA) into the medium considerably increased the decolouration rate in SS cultivation. However, the addition of VA had no effect in the nylon cultivation. Thin layer chromatography (TLC) revealed that RB5 was transformed into one metabolite after 24 h. UV-vis spectroscopy and Fourier Transform Infrared (FT-IR) also confirmed the biodegradation of RB5. Toxicity of RB5 solutions before and after fungal treatment was assayed using Sinorhizobium meliloti as a sensitive soil microorganism. P. chrysosporium transformed the toxic dye RB5 into a non-toxic product.  相似文献   

10.
Repeated fed‐batch fermentation of glucose by Clostridium tyrobutyricum immobilized in a fibrous bed bioreactor (FBB) was successfully employed to produce butyric acid at a high final concentration as well as to adapt a butyric‐acid‐tolerant strain. At the end of the eighth fed‐batch fermentation, the butyric acid concentration reached 86.9 ± 2.17 g/L, which to our knowledge is the highest butyric acid concentration ever produced in the traditional fermentation process. To understand the mechanism and factors contributing to the improved butyric acid production and enhanced acid tolerance, adapted strains were harvested from the FBB and characterized for their physiological properties, including specific growth rate, acid‐forming enzymes, intracellular pH, membrane‐bound ATPase and cell morphology. Compared with the original culture used to seed the bioreactor, the adapted culture showed significantly reduced inhibition effects of butyric acid on specific growth rate, cellular activities of butyric‐acid‐forming enzyme phosphotransbutyrylase (PTB) and ATPase, together with elevated intracellular pH, and elongated rod morphology. Biotechnol. Bioeng. 2011; 108:31–40. © 2010 Wiley Periodicals, Inc.  相似文献   

11.
White-rot fungi are considered to be promising biotechnological tools to complement or replace the current technologies for the treatment of effluents from textile production plants. The aim of this work was to investigate the decolorization capacity of Ganoderma weberianum B-18 in solid state fermentation with sugarcane bagasse as a substrate and ligninolytic inducer as well as to decolorize and detoxify industrial effluents by this strain in a laboratory scale packed-bed bio-reactor. The results demonstrated that G. weberianum B-18 indeed showed to possess decolorization capacity in solid state fermentation with sugarcane bagasse supplemented with synthetic dyes. Moreover, fungal biomass of G. weberianum B-18 immobilized in sugarcane bagasse in a packed-bed bioreactor was shown to efficiently decolorize and detoxify different dyes and authentic industrial effluents in semi-continuous conditions. In this decolorization process, laccase enzymes secreted by the fungus played the main role. Hence, a packed-bed reactor with G. weberianum B-18 immobilized in sugarcane bagasse seems to be a suitable system for the further development of an efficient bioprocess for large-scale treatment of dye-containing wastewaters.  相似文献   

12.
Recently, an increasing application of so called advanced oxidation processes (AOPs) to industrial wastewater has been observed. In particular, an integrated approach of biological and chemical treatment of wastewater is advantageous conceptually. The subject of our study was synthetic wastewater, simulating effluents from knitting industry. The wastewater contained components that are very often used in Polish textile industry: an anionic detergent Awiwaz KG conc., a softening agent Tetrapol CLB and an anthraquinone dyestuff-Acid Blue 40, CI 2125. The toxicity of the detergents and the dye was determined in terms of effective concentration EC50 using mixed cultures of activated sludge as well as pure culture of luminescent bacteria Vibrio fischerii NRRLB-11177. The dye did not undergo biodegradation without AOPs pretreatment, therefore a degree of its removal (decolourisation) by the AOPs has been determined and its bio-sorption properties on the flocks of activated sludge have been studied. The dye adsorption onto flocks of activated sludge was described by Henry's isotherm. Our investigations focussed on the influence of various oxidants like O3, H2O2 and UV light on biodegradation of single components aqueous solution as well as of the whole textile wastewater. The results of kinetic measurements of the biodegradation (by means of acclimated activated sludge) was described by Monod type of kinetic equation. The experimental evidence of the positive effect of chemical oxidation pretreatment on the biodegradation of recalcitrant compounds was quantified by estimation of the kinetic parameters of the Monod equation. Due to the AOPs pretreatment a decrease of the Monod constant and an increase of maximal specific growth rate was observed. The activity of degradative enzymes of activated sludge was assayed by the methods of 2-[4-iodophenyl]-3-[4-nitrophenyl]-5-phenyltetrazolium chloride test.  相似文献   

13.
An up-flow immobilized cell bioreactor was developed using a microbial consortium, consisting of Bacillus sp., Alcaligenes sp. and Aeromonas sp., immobilized on refractory brick pieces as immobilization support. malachite green, a model triphenylmethane dye was decolourized by more than 93% within 48 h (operating conditions: initial dye concentration 30 mg l−1; flow rate 6 ml h−1). The analytical studies based on TLC and 1H NMR showed degradation of the aromatic rings of the malachite green into simpler metabolic intermediates.  相似文献   

14.
Huang J  Cai J  Wang J  Zhu X  Huang L  Yang ST  Xu Z 《Bioresource technology》2011,102(4):3923-3926
Butyric acid is an important specialty chemical with wide industrial applications. The feasible large-scale fermentation for the economical production of butyric acid requires low-cost substrate and efficient process. In the present study, butyric acid production by immobilized Clostridium tyrobutyricum was successfully performed in a fibrous-bed bioreactor using Jerusalem artichoke as the substrate. Repeated-batch fermentation was carried out to produce butyric acid with a high butyrate yield (0.44 g/g), high productivity (2.75 g/L/h) and a butyrate concentration of 27.5 g/L. Furthermore, fed-batch fermentation using sulfuric acid pretreated Jerusalem artichoke hydrolysate resulted in a high butyric acid concentration of 60.4 g/L, with the yield of 0.38 g/g and the selectivity of ∼85.1 (85.1 g butyric acid/g acetic acid). Thus, the production of butyric acid from Jerusalem artichoke on a commercial scale could be achieved based on the system developed in this work.  相似文献   

15.
本文对影响酵母菌生物合成L-PAC的主要因素进行了研究.结果表明酵母菌株Sc-5按2g鲜细胞/3.2%50ml海藻酸钠凝胶固定化后,所获固定化凝胶珠置于装有4倍体积反应液的容器中,在振荡频率220转/分、温度28-30℃、添加0.2%的Vc时,枇次生物合成L-PAC产量最高,达2.0g/L.  相似文献   

16.
In this article, cell growth in a novel micro hollow fiberbioreactor was compared to that in a T-flask and theAcuSyst-Maximizer®, a large scale industrial hollowfiber bioreactor system. In T-flasks, there was relativelylittle difference in the growth rates of one murine hybridomacultured in three different media and for three other murinehybridomas cultured in one medium. However, substantialdifferences were seen in the growth rates of cells in themicro bioreactor under these same conditions. These differencecorrelated well with the corresponding rates of initial cellexpansion in the Maximizer. Quantitative prediction of thesteady-state antibody production rate in the Maximizer was moreproblematic. However, conditions which lead to faster initialcell growth and higher viable cell densities in the microbioreactor correlated with better performance of a cell line inthe Maximizer. These results demonstrate that the microbioreactor is more useful than a T-flask for determining optimalconditions for cell growth in a large scale hollow fiberbioreactor system.  相似文献   

17.
Summary Soil samples collected from contaminated sites of Vatva, Gujarat, India were studied for screening and isolation of organisms capable of decolourizing textile dyes. A bacterial consortium RVM 11.1 was selected on the basis of rapid dye decolourization. Reactive Violet 5 (RV 5) was used as model dye. The consortium exhibited 94% decolourization ability within 37 h under a wide pH range from 6.5 to 8.5 and temperature ranging from 25 to 40 °C. The bacterial consortium was able to grow and decolourize RV5 under static conditions in the presence of glucose and yeast extract and also showed an ability to decolourize in the presence of starch in place of glucose. Maximum decolourization efficiency was observed at 200 ppm (mg/l) concentration of RV 5. Bacterial consortium RVM11.1 had the ability to decolourize 10 different dyes tested. The transformation and degradation products after decolourization were examined by HPTLC.  相似文献   

18.
In this work, the heterotrophic cultivation of bacterium Paracoccus denitrificans has been studied in a horizontal rotating tubular bioreactor (HRTB). After development of a microbial biofilm on the inner surface of the HRTB, conditions for one-step removal of acetate and ammonium ion were created. The effect of bioreactor process parameters [medium inflow rate (F) and bioreactor rotation speed (n)] on the bioprocess dynamics in the HRTB was studied. Nitrite and nitrogen oxides (NO and N2O) were detected as intermediates of ammonium ion degradation. The biofilm thickness and the nitrite concentration were gradually reduced with increase of bioreactor rotation speed when the medium inflow rate was in the range of 0.5–1.5 l h−1. Further increase of inflow rate (2.0–2.5 l h−1) did not have a significant effect on the biofilm thickness and nitrite concentration along the HRTB. Complete acetate consumption was observed when the inflow rate was in the range of 0.5–1.5 l h−1 at all bioreactor rotation speeds. Significant pH gradient (cca 1 pH unit) along the HRTB was only observed at the highest inflow rate (2.5 l h−1). The results have clearly shown that acetate and ammonium ion removal by P. denitificans can be successfully conducted in a HRTB as a one-step process.  相似文献   

19.
A method is described for estimating recombinant Chinese hamster ovary (rCHO) cell density in a packed-bed bioreactor by lactate production rate. The lactate production rate, which depended on both the cell numbers and cell growth rate, was modeled by segregating the cell population into two parts: one growing at a maximum specific growth rate and another non-growing. The individual cell in each part had the same lactate production rate. The established rate equation of lactate production matched the experimental data reasonably well and could be used to estimate the cell growth in the batch culture with microcarriers. Furthermore, in the perfusion culture of rCHO cells in a packed-bed bioreactor, the final cell density, 1.3×1010 cells l–1, estimated by lactate production rate, was comparable to the direct sample counting of 1.2×1010 cells l–1, showing that lactate production rate method would be useful in tracing the cell growth in packed-bed bioreactors.  相似文献   

20.
The sulfonated azo dye Reactive Orange 16 is the commonly used representative of reactive dyes, but is hard to be degraded by some conventional treatment methods. In order to develop more efficient and more cost-effective treatment methods for degrading this recalcitrant dye, the capability of the white-rot fungus Ganoderma sp. En3 isolated by our laboratory to decolorize and detoxify Reactive Orange 16 was investigated in this study. Ganoderma sp. En3 had a strong ability to decolorize high concentrations of Reactive Orange 16 and simulated textile wastewater containing Reactive Orange 16 in submerged cultures. Decolorization of Reactive Orange 16 and its simulated dye effluents by this fungus resulted in the decrease of phytotoxicity. Ganoderma sp. En3 had strong adaptability and tolerance to high concentrations of Reactive Orange 16. Compared with some previous research, Ganoderma sp. En3 was superior to some other fungal strains reported previously in the rate and extent of decolorizing Reactive Orange 16. It was also found that the real textile wastewater could be efficiently decolorized by Ganoderma sp. En3 in submerged cultures. The crude enzyme produced by Ganoderma sp. En3 could also efficiently decolorize Reactive Orange 16 and simulated textile wastewater under in vitro conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号