首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rapid light-response curves (RLC) of variable chlorophyll fluorescence were measured on estuarine benthic microalgae with the purpose of characterising its response to changes in ambient light, and of investigating the relationship to steady-state light-response curves (LC). The response of RLCs to changes in ambient light (E, defined as the irradiance level to which a sample is acclimated to prior to the start of the RLC) was characterised by constructing light-response curves for the RLC parameters α RLC, the initial slope, ETRm,RLC, the maximum relative electron transport rate, and E k,RLC, the light-saturation parameter. Measurements were carried out on diatom-dominated suspensions of benthic microalgae and RLC and LC parameters were compared for a wide range of ambient light conditions, time of day, season and sample taxonomic composition. The photoresponse of RLC parameters was typically bi-phasic, consisting of an initial increase of all parameters under low ambient light (E < 21–181 μmol m−2 s−1), and of a phase during which α RLC decreased significantly with E, and the increase of ETRm,RLC and E k,RLC was attenuated. The relationship between RLC and LC parameters was dependent on ambient irradiance, with significant correlations being found between α RLC and α, and between ETRm,RLC and ETRm, for samples acclimated to low and to high ambient irradiances, respectively. The decline of α RLC under high light (Δα RLC) was strongly correlated (P < 0.001 in all cases) with the level of non-photochemical quenching (NPQ) measured before each RLC. These results indicate the possibility of using RLCs to characterise the steady-state photoacclimation status of a sample, by estimating the LC parameter E k, and to trace short-term changes in NPQ levels without dark incubation.  相似文献   

2.
The response of rapid light–response curves (RLCs) of variable fluorescence to changes in short- and long-term photoacclimation status was studied in an estuarine benthic diatom. The diatom Nitzschia palea was grown under low- (LL, 20 μmol m−2 s−1) and high-light (HL, 400 μmol m−2 s−1) conditions, with the purpose of characterising the effects of long-term photoacclimation on (i) steady-state light–response curves (LC) of relative electron transport rate, rETR, (ii) the response of RLCs to changes in ambient irradiance (E, the irradiance to which the sample is acclimated to immediately before the RLCs), (iii) the relationship of RLCs to LC parameters and non-photochemical quenching (NPQ). Photoacclimation to LL and HL conditions induced distinct light–response patterns of rETR and NPQ. Higher growth light resulted in rETR vs. E curves with lower initial slopes (α, 0.591 μmol−1 m2 s vs. 0.661 μmol−1 m2 s, for HL and LL, respectively) and markedly higher maximum rates (rETRm, 95.9 vs. 29.3), reached under higher E levels (higher light-saturation coefficient, Ek: 162.4 μmol m−2 s−1 vs. 44.3 μmol m−2 s−1). Acclimation to HL induced bi-phasic NPQ vs. E curves, with minimum values reached under low E levels (15–25 μmol m−2 s−1) and not on dark-acclimated samples. The response of RLCs to changes in ambient irradiance varied with the long-term photoacclimation status of the samples. The initial slope, αRLC, decreased monotonically with E in LL cultures, from 0.68 to 0.25 μmol−1 m2 s, while varied bi-phasically in HL-acclimated samples. Typically, αRLC of HL cultures increased under low E, reaching a maximum of 0.61 μmol−1 m2 s under 25–55 μmol m−2 s−1, and decreased gradually under higher E levels to 0.25 μmol−1 m2 s. RLC maximum rETR, rETRm,RLC, and saturation coefficient Ek,RLC, increased with E following a saturation-like pattern, with the HL cultures presenting markedly higher values for all the E range (maximum rETRm,RLC values were 108.6 and 33.4 for HL and LL cultures, respectively). An inverse relationship was consistently found between αRLC and NPQ, both on LL and HL cultures, causing strong correlations (P < 0.001 in all cases) between NPQ and the high light-induced decrease of αRLC, ΔαRLC. RLCs were confirmed to also provide information on the long-term photoacclimation status, as significant correlations (P < 0.001 both for HL and LL cultures) were verified between Ek and an index based on RLC parameters, Êk, both for LL and HL cultures. These results reinforce the usefulness of RLCs as a tool for inferring on the short- and long-term photoacclimation status of samples with different long-term light histories, through the estimation of LC parameters and the monitoring of NPQ levels.  相似文献   

3.
Acclimation to fluctuating light environment with short (lasting 20?s, at 650 or 1,250?μmol photons m(-2)?s(-1), every 6 or 12?min) or long (for 40?min at 650?μmol photons m(-2)?s(-1), once a day at midday) sunflecks was studied in Arabidopsis thaliana. The sunfleck treatments were applied in the background daytime light intensity of 50?μmol photons m(-2)?s(-1). In order to distinguish the effects of sunflecks from those of increased daily irradiance, constant light treatments at 85 and 120?μmol photons m(-2)?s(-1), which gave the same photosynthetically active radiation (PAR) per day as the different sunfleck treatments, were also included in the experiments. The increased daily total PAR in the two higher constant light treatments enhanced photosystem II electron transport and starch accumulation in mature leaves and promoted expansion of young leaves in Columbia-0 plants during the 7-day treatments. Compared to the plants remaining under 50?μmol photons m(-2)?s(-1), application of long sunflecks caused upregulation of electron transport without affecting carbon gain in the form of starch accumulation and leaf growth or the capacity of non-photochemical quenching (NPQ). Mature leaves showed marked enhancement of the NPQ capacity under the conditions with short sunflecks, which preceded recovery and upregulation of electron transport, demonstrating the initial priority of photoprotection. The distinct acclimatory responses to constant PAR, long sunflecks, and different combinations of short sunflecks are consistent with acclimatory adjustment of the processes in photoprotection and carbon gain, depending on the duration, frequency, and intensity of light fluctuations. While the responses of leaf expansion to short sunflecks differed among the seven Arabidopsis accessions examined, all plants showed NPQ upregulation, suggesting limited ability of this species to utilize short sunflecks. The increase in the NPQ capacity was accompanied by reduced chlorophyll contents, higher levels of the xanthophyll-cycle pigments, faster light-induced de-epoxidation of violaxanthin to zeaxanthin and antheraxanthin, increased amounts of PsbS protein, as well as enhanced activity of superoxide dismutase. These acclimatory mechanisms, involving reorganization of pigment-protein complexes and upregulation of other photoprotective reactions, are probably essential for Arabidopsis plants to cope with photo-oxidative stress induced by short sunflecks without suffering from severe photoinhibition and lipid peroxidation.  相似文献   

4.
A lichen growing in a continental Antarctic region with low temperatures and strong irradiance in summer was investigated for evidence of photoinhibition. Field experiments with Umbilicaria aprina from a sheltered site with heavy snowpack showed no effects of photoinhibition when the lichen was exposed to strong sun irradiance for nearly 11 h a day. This was evident from CO2 exchange and simultaneous chlorophyll a fluorescence measurements. CO2 exchange was also not affected if quartz glass allowing greater UV penetration, was used as a lid for the cuvette. The dependency of net photosynthesis on photosynthetic photon flux density suggests that the lichen is photophilous. Received: 2 April 1997 / Accepted: 11 August 1997  相似文献   

5.
J. READ 《Austral ecology》1985,10(3):327-334
Seedlings of the cool temperate rainforest tree species, Nothofagus cunninghamii, Atherosperma moschatum, Eucryphia lucida, Phyllocladus aspleniifolius, Lagarostrobos franklinii and Athrotaxis selaginoides, were grown in various light regimes and their instantaneous lightdependence curves and relative growth rates were measured. A. moschatum had the highest relative growth rate of all species in heavy shade, and its light-dependence curves were also characteristic of a relatively shade-tolerant species. A. selaginoides and L. franklinii seedlings raised in heavy shade had low instantaneous light compensation points but their growth rates were not distinct from that of N. cunninghamii. The maximum relative growth rate of the gymnosperms was low due to a low specific leaf area and leaf area ratio, although the maximum rates of photosynthesis on a leaf area basis were similar to N. cunninghamii and E. lucida. The low leaf area ratio and specific leaf area affected both the relative growth rate and the growth light compensation point. Although in the heaviest shade treatment there was no difference in growth rate between N. cunninghamii, E. lucida, L. franklinii and A. selaginoides, in moderate shade treatments N. cunninghamii had a higher relative growth rate than the gymnosperms and a higher maximum rate of photosynthesis on a leaf dry weight basis than all species when raised in semi-shaded natural light conditions. These species commonly occur in mixture in Tasmanian cool temperate rainforest and these results are discussed in terms of forest dynamics.  相似文献   

6.
The photosynthetic performance of mangrove Rhizophora mucronata seedlings grown under seasonally full light (HL), 50 % shade (ML), and 80 % shade (LL) conditions was characterized by gas exchange, and chlorophyll fluorescence. The carboxylation efficiency significantly affected the seasonal change of the photosynthetic capacity. Temperature and light might have synergic effect on the carboxylation efficiency. The photosynthetic rate (PN) of R. mucronata seedlings under shade regimes, however, could not be attributed to variability in chlorophyll, C i , ΦPSII, ETR or qP values but more to differences in carboxylation efficiency, g max, and E max. HL and ML plants had higher PN, g s and E than the LL ones. Nevertheless, LL leaves exhibited low photoinhibition susceptibility. The high non-photochemical quenching in HL leaves may show that applied light intensity probably exceeded the photosynthetic capability. The findings indicate that ML treatments provided the best condition to obtain such carbon fixation capacity.  相似文献   

7.
Continuous light can be used as a tool to understand the diurnal rhythm of plants and it can also be used to increase the plant production. In the present research, we aimed to investigate the photosynthetic performance of V. radiata under continuous light as compared with the plants grown under normal light duration. Chlorophyll a fluorescence transient (OJIP test) technique was used to understand the effect on various stages of photosynthesis and their consequences under continuous light condition. Various Chl a Fluorescence kinetic parameters such as Specific energy fluxes (per QA-reducing PSII reaction center (RC)) (ABS /RC; TR0/RC; ET0/RC; DI0/RC), phenomenological fluxes, leaf model, (ABS/CSm; TR/CSm; ETo/CSm), Quantum yields and efficiencies (φPo; φEo; Ψo) and Performance index (PIabs) was extracted and analysed in our investigation. Conclusively, our study has revealed that continuous light alters the photosynthetic performance of V. radiata at a different point but also improve plant productivity.  相似文献   

8.
蛋白核小球藻光驯化的快速光曲线变化   总被引:1,自引:0,他引:1  
通过测量快速光曲线研究了强光和弱光驯化对蛋白核小球藻(Chlorella pyrenoidosa)光合作用的影响。弱光驯化后的初始斜率α高于强光驯化后,而半饱和光强Ik明显低于强光驯化后,表明弱光驯化提高了蛋白核小球藻的捕光能力。强光驯化后最大光合速率Pm高于弱光驯化后,而光抑制参数β小于弱光驯化后,表明强光驯化提高了蛋白核小球藻的光合能力和对强光的耐受性。  相似文献   

9.
Accurate estimation of terrestrial gross primary productivity (GPP) remains a challenge despite its importance in the global carbon cycle. Chlorophyll fluorescence (ChlF) has been recently adopted to understand photosynthesis and its response to the environment, particularly with remote sensing data. However, it remains unclear how ChlF and photosynthesis are linked at different spatial scales across the growing season. We examined seasonal relationships between ChlF and photosynthesis at the leaf, canopy, and ecosystem scales and explored how leaf‐level ChlF was linked with canopy‐scale solar‐induced chlorophyll fluorescence (SIF) in a temperate deciduous forest at Harvard Forest, Massachusetts, USA. Our results show that ChlF captured the seasonal variations of photosynthesis with significant linear relationships between ChlF and photosynthesis across the growing season over different spatial scales (R= 0.73, 0.77, and 0.86 at leaf, canopy, and satellite scales, respectively; P < 0.0001). We developed a model to estimate GPP from the tower‐based measurement of SIF and leaf‐level ChlF parameters. The estimation of GPP from this model agreed well with flux tower observations of GPP (R= 0.68; P < 0.0001), demonstrating the potential of SIF for modeling GPP. At the leaf scale, we found that leaf Fq/Fm, the fraction of absorbed photons that are used for photochemistry for a light‐adapted measurement from a pulse amplitude modulation fluorometer, was the best leaf fluorescence parameter to correlate with canopy SIF yield (SIF/APAR, R= 0.79; P < 0.0001). We also found that canopy SIF and SIF‐derived GPP (GPPSIF) were strongly correlated to leaf‐level biochemistry and canopy structure, including chlorophyll content (R= 0.65 for canopy GPPSIF and chlorophyll content; P < 0.0001), leaf area index (LAI) (R= 0.35 for canopy GPPSIF and LAI; P < 0.0001), and normalized difference vegetation index (NDVI) (R= 0.36 for canopy GPPSIF and NDVI; P < 0.0001). Our results suggest that ChlF can be a powerful tool to track photosynthetic rates at leaf, canopy, and ecosystem scales.  相似文献   

10.
One broad-leaved pioneer tree, Alnus formosana, two broad-leaved understory shrubs, Ardisia crenata and Ardisia cornudentata, and four ferns with different light adaptation capabilities (ranked from high to low, Pyrrosia lingus, Asplenium antiquum, Diplazium donianum, Archangiopteris somai) were used to elucidate the light responses of photosynthetic rate and electron transport rate (ETR). Pot-grown materials received up to 3 levels of light intensity, i.e., 100%, 50% and 10% sunlight. Both gas exchange and chlorophyll (Chl) fluorescence were measured simultaneously by an equipment under constant temperature and 7 levels (0?C2,000 ??mol m?2 s?1) of photosynthetic photon flux density (PPFD). Plants adapted to-or acclimated to high light always had higher light-saturation point and maximal photosynthetic rate. Even materials had a broad range of photosynthetic capacity [maximal photosynthetic rate ranging from 2 to 23 ??mol(CO2) m?2 s?1], the ratio of ETR to gross photosynthetic rate (P G) was close for A. formosana and the 4 fern species when measured under constant temperature, but the PPFD varied. In addition, P. lingus and A. formosana grown under 100% sunlight and measured at different seasonal temperatures (15, 20, 25, and 30°C) showed increased ETR/P G ratio with increasing temperature and could be fitted by first- and second-order equations, respectively. With this equation, estimated and measured P G were closely correlated (r 2 = 0.916 and r 2 = 0.964 for P. lingus and A. formosana, respectively, p<0.001). These equations contain only the 2 easily obtained dynamic indicators, ETR and leaf temperature. Therefore, for some species with near ETR/P G ratio in differential levels of PPFD, these equations could be used to simulate dynamic variation of leaf scale photosynthetic rate under different temperature and PPFD conditions.  相似文献   

11.
The effects of pulsed light based-LEDs at eleven frequencies (0.1, 1, 10, 50, 100, 500 Hz, 1, 5, 10, 50 and 100 kHz) programmed at 50 % duty cycle were analyzed, obtaining important parameters of the fluorescence emission of chlorophyll such as: maximum fluorescence (Fm′), minimum fluorescence, the fluorescence emission in steady state, maximum efficiency of PSII (Fv′/Fm′), the fraction of PSII centers that are open, photochemical quenching, nonphotochemical quenching (NPQ), quantum efficiency of photosystem II (ΦPSII), electron transport rate (ETR) and quantum yield of CO2 assimilation (?CO2). For the study and validation of the results obtained in the experiments, the analysis of variance (ANOVA) was applied 0for each parameter with confidence intervals of 95 %. The results show that the frequencies of pulsed light had positive and negative effects on the fluorescence parameters with respect to the control treatment (continuous light). The frequencies that generated the best performance of Fv′/Fm′, NPQ, ΦPSII, ETR, ?CO2 in tomato plants were 0.1, 1, 100 Hz, and 1 kHz. The increase obtained in these parameters can represent an optimal growth and productivity conditions for optimal energy consumption.  相似文献   

12.
Leaf carbon gain simulation was performed forQuercus serrata seedlings with previously reported 6 day photosynthetic photon flux density (PPFD) histograms from 20 understorey microsites of a pine forest (Washitani & Tang 1991). This simulation was performed with or without an assumption of the acclimatization of photosynthetic capacity (Pmax) to microsite light availability. A constant ratio of respiration rate to Pmax, within, the range of 0.07–0.1, was assumed as a constraint. In relatively well illuminated microsites with a diffuse site factor above 0.1, predicted optimal Pmax was about 5 μmol m−2 s−1, with the predicted mean daily net carbon gain being about 50 mmol m−2 day−1. Each of the predicted optimal Pmax and the simulated mean daily net carbon gains with a constant Pmax (5 μmol m−2 s−1) or the predicted optimal Pmax was linearly related to the microsite light availability index, diffuse site factor. Simulated net carbon gain was negative at diffuse site factors below 0.04, if the constant of Pmax was assumed. The predicted linear relationship between net carbon gain and diffuse site factor could provide an ecophysiological basis for the observed linear dependency of the relative growth rate of biomass ofQ. serrata seedlings on the microsite diffuse site factor (Washitani & Tang 1991).  相似文献   

13.
Abstract A close, immediate and precise relationship between chlorophyll a fluorescence and photosynthetic carbon assimilation in vivo is demonstrated. The examples discussed include kinetics displayed during dark to light transitions plus oscillations and transients observed during changes in the gas phase surrounding the leaf. Remaining uncertainties surrounding the relationship between chlorophyll fluorescence and photosynthesis are attributed to the underlying complexity of the regulatory mechanisms involved. Examples are also given that show how multiple simultaneous measurements of different aspects of the photosynthetic process may contribute to the resolution of these uncertainties. The practical relevance of these matters is also discussed, particularly in relation to the limitations of the photosynthetic process and to the use of chlorophyll fluorescence as a diagnostic probe of chemical and genetic manipulation and stress.  相似文献   

14.
Alhagi sparsifolia Shap. is exposed to a high-irradiance environment as the main vegetation found in the forelands of the Taklamakan Desert. We investigated chlorophyll a fluorescence emission of A. sparsifolia seedlings grown under ambient (HL) and shade (LL) conditions. Our results indicated that the fluorescence intensity in the leaves was significantly higher for LL-grown plants than that under HL. High values of the maximum quantum yield of PSII for primary photochemistry (φPo) and the quantum yield that an electron moves further than QA - (φEo) in the plants under LL conditions suggested that the electron flow from QA - (primary quinone electron acceptors of PSII) to QB (secondary quinone acceptor of PSII) or QB - was enhanced at LL compared to natural HL conditions. The efficiency/probability with which an electron from the intersystem electron carriers was transferred to reduce end electron acceptors at the PSI acceptor side and the quantum yield for the reduction of end electron acceptors at the PSI acceptor side were opposite to φPo, and φEo. Thus, we concluded that the electron transport on the donor side of PSII was blocked under LL conditions, while acceptor side was inhibited at the HL conditions. The PSII activity of electron transport in the plants grown in shade was enhanced, while the energy transport from PSII to PSI was blocked compared to the plants grown at HL conditions. Furthermore, PSII activity under HL was seriously affected in midday, while the plants grown in shade enhanced their energy transport.  相似文献   

15.
Photosynthetic responses to variable light were compared for species from habitats differing in light availability and dynamics. Plants were grown under the same controlled conditions and were analysed for the kinetics of photosynthetic induction when photon flux density (PFD) was increased from 25 to 800 mol m-2s-1. Gas exchange techniques were used to analyse the two principal components of induction, opening of stomata and activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). On average, 90% of the final photosynthetic rate was attained after 7 min for obligate shade plants (two species), 18 min for fast-growing sun plants (seven species from productive habitats) and 32 min for slow-growing sun plants (nine species from unproductive habitats). The rapidity of response of the shade plants was explained by stomata remaining more open in the low-light period prior to induction. This was also observed in two species of deciduous trees, which therefore resembled shade plants rather than other fast-growing sun plants. The slow response of the slow-growing sun plants was the result of lower rates of both Rubisco activation and stomatal opening, the latter being more important for the final phase of induction. The lower rate of Rubisco activation was confirmed by direct, enzymatic measurements of representative plants. With increasing leaf age, the rate of stomatal opening appeared to decrease but the rate of Rubisco activation was largely conserved. Representative species were also compared with respect to the efficiency of using light-flecks relative to continuously high light. The shade plants and the slow-growing sun plants had a higher efficiency than the fast-growing sun plants. This could be related to the presence of a higher electron transport capacity relative to carboxylation capacity in the former group, which seems to be associated with their lower photosynthetic capacities. Representative species were also compared with respect to the ability to maintain the various induction components through periods of low light. Generally, the fast-growing sun plants were less able than the other two categories to maintain the rapidly reversible component. Thus, although the rate of induction appears to be related to the ecology of the plant, other aspects of photosynthetic dynamics, such as the efficiency of using lightflecks and the ability to maintain the rapidly reversible component, seem rather to be inversely related to the photosynthetic capacity.  相似文献   

16.
The olive tree (Olea europaea L.) is commonly grown in the Mediterranean area, where it is adapted to resist periods characterized by severe drought and high irradiance levels. Photosynthetic efficiency (in terms of Fv/Fm and ΦPSII), photochemical (qP) and nonphotochemical quenching (NPQ) were determined in two-year-old olive plants (cultivars Coratina and Biancolilla) grown under two different light levels (exposed plants, EP, and shaded plants, SP) during a 21-day controlled water deficit. After reaching the maximum level of drought stress, plants were rewatered for 23 days. During the experimental period, measurements of gas exchange and chlorophyll (Chl) fluorescence were carried out to study the photosynthetic performance of olive plants. The synergical effect of drought stress and high irradiance levels caused a reduction of gas exchange and photosynthetic efficiency and these decreases were more marked in EP. EP showed a higher degree of photoinhibition, a higher NPQ and a lower qP if compared to SP. Coratina was more sensitive to high light and drought stress but also showed a slower recovery during rewatering, whereas Biancolilla showed a less marked photosynthesis depression during drought and a considerable resilience during rewatering. The results confirm that photoinhibition due to high light intensity and water deficit can be an important factor that affects photosynthetic productivity in this species.  相似文献   

17.
The theoretical and applied aspects of in vivo chlorophyll fluorescenceare reviewed for aquatic biologists who use fluorescence inestimating standing stocks and photosynthetic activity. Themajor advantage of using fluorescence is that the measurementis easy to make. However, despite some sound theoretical modelsdescribing variable fluorescence there are many environmentalfactors influencing fluorescence about which little is known.Much more basic research on fluorescence-photosynthesis relationshipsneeds to be done before fluorescence per se can replace current14C or O2 methods for measuring primary productivity. *This paper is the result of a study made at the Group for AquaticPrimary Productivity (GAP), Second International Workshop heldat the National Oceanographic Institute, Haifa, Israel in April–May1984.  相似文献   

18.
19.
20.
Chlorophyll a fluorescence is a non-invasive tool widely used in photosynthesis research. According to the dominant interpretation, based on the model proposed by Duysens and Sweers (1963, Special Issue of Plant and Cell Physiology, pp 353–372), the fluorescence changes reflect primarily changes in the redox state of QA, the primary quinone electron acceptor of photosystem II (PSII). While it is clearly successful in monitoring the photochemical activity of PSII, a number of important observations cannot be explained within the framework of this simple model. Alternative interpretations have been proposed but were not supported satisfactorily by experimental data. In this review we concentrate on the processes determining the fluorescence rise on a dark-to-light transition and critically analyze the experimental data and the existing models. Recent experiments have provided additional evidence for the involvement of a second process influencing the fluorescence rise once QA is reduced. These observations are best explained by a light-induced conformational change, the focal point of our review. We also want to emphasize that—based on the presently available experimental findings—conclusions on α/ß-centers, PSII connectivity, and the assignment of FV/FM to the maximum PSII quantum yield may require critical re-evaluations. At the same time, it has to be emphasized that for a deeper understanding of the underlying physical mechanism(s) systematic studies on light-induced changes in the structure and reaction kinetics of the PSII reaction center are required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号