首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rotavirus virus-like particles (RV-VLPs) are potential alternative non-live vaccine candidates due to their high immunogenicity. They mimic the natural conformation of native viral proteins but cannot replicate because they do not contain genomic material which makes them safe. To date, most RV-VLPs have been derived from cell culture adapted strains or common G1 and G3 rotaviruses that have been circulating in communities for some time. In this study, chimaeric RV-VLPs were generated from the consensus sequences of African rotaviruses (G2, G8, G9 or G12 strains associated with either P[4], P[6] or P[8] genotypes) characterised directly from human stool samples without prior adaptation of the wild type strains to cell culture. Codon-optimised sequences for insect cell expression of genome segments 2 (VP2), 4 (VP4), 6 (VP6) and 9 (VP7) were cloned into a modified pFASTBAC vector, which allowed simultaneous expression of up to four genes using the Bac-to-Bac Baculovirus Expression System (BEVS; Invitrogen). Several combinations of the genome segments originating from different field strains were cloned to produce double-layered RV-VLPs (dRV-VLP; VP2/6), triple-layered RV-VLPs (tRV-VLP; VP2/6/7 or VP2/6/7/4) and chimaeric tRV-VLPs. The RV-VLPs were produced by infecting Spodoptera frugiperda 9 and Trichoplusia ni cells with recombinant baculoviruses using multi-cistronic, dual co-infection and stepwise-infection expression strategies. The size and morphology of the RV-VLPs, as determined by transmission electron microscopy, revealed successful production of RV-VLPs. The novel approach of producing tRV-VLPs, by using the consensus insect cell codon-optimised nucleotide sequence derived from dsRNA extracted directly from clinical specimens, should speed-up vaccine research and development by by-passing the need to adapt rotaviruses to cell culture. Other problems associated with cell culture adaptation, such as possible changes in epitopes, can also be circumvented. Thus, it is now possible to generate tRV-VLPs for evaluation as non-live vaccine candidates for any human or animal field rotavirus strain.  相似文献   

2.
3.
Significant progress has been made in Hepatitis C virus (HCV) culture since the JFH1 strain cloning. However, developing efficient and physiologically relevant culture systems for all viral genotypes remains an important goal. In this work, we aimed at producing a high titer JFH1 derived virus to test different hepatic cells’ permissivity. To this end, we performed successive infections and obtained a JFH1 derived virus reaching high titers. Six potential adaptive mutations were identified (I599V in E2, R1373Q and M1611T in NS3, S2364P and C2441S in NS5A and R2523K in NS5B) and the effect of these mutations on HCV replication and infectious particle production was investigated. This cell culture adapted virus enabled us to efficiently infect primary human hepatocytes, as demonstrated using the RFP-NLS-IPS reporter protein and intracellular HCV RNA quantification. However, the induction of a strong type III interferon response in these cells was responsible for HCV inhibition. The disruption of this innate immune response led to a strong infection enhancement and permitted the detection of viral protein expression by western blotting as well as progeny virus production. This cell culture adapted virus also enabled us to easily compare the permissivity of seven hepatoma cell lines. In particular, we demonstrated that HuH-7, HepG2-CD81, PLC/PRF/5 and Hep3B cells were permissive to HCV entry, replication and secretion even if the efficiency was very low in PLC/PRF/5 and Hep3B cells. In contrast, we did not observe any infection of SNU-182, SNU-398 and SNU-449 hepatoma cells. Using iodixanol density gradients, we also demonstrated that the density profiles of HCV particles produced by PLC/PRF/5 and Hep3B cells were different from that of HuH-7 and HepG2-CD81 derived virions. These results will help the development of a physiologically relevant culture system for HCV patient isolates.  相似文献   

4.
5.
Nonstructural protein 5A (NS5A) of hepatitis C virus (HCV) is an indispensable component of the HCV replication and assembly machineries. Although its precise mechanism of action is not yet clear, current evidence indicates that its structure and function are regulated by the cellular peptidylprolyl isomerase cyclophilin A (CyPA). CyPA binds to proline residues in the C-terminal half of NS5A, in a distributed fashion, and modulates the structure of the disordered domains II and III. Cyclophilin inhibitors (CPIs), including cyclosporine (CsA) and its nonimmunosuppressive derivatives, inhibit HCV infection of diverse genotypes, both in vitro and in vivo. Here we report a mechanism by which CPIs inhibit HCV infection and demonstrate that CPIs can suppress HCV assembly in addition to their well-documented inhibitory effect on RNA replication. Although the interaction between NS5A and other viral proteins is not affected by CPIs, RNA binding by NS5A in cell culture-based HCV (HCVcc)-infected cells is significantly inhibited by CPI treatment, and sensitivity of RNA binding is correlated with previously characterized CyPA dependence or CsA sensitivity of HCV mutants. Furthermore, the difference in CyPA dependence between a subgenomic and a full-length replicon of JFH-1 was due, at least in part, to an additional role that CyPA plays in HCV assembly, a conclusion that is supported by experiments with the clinical CPI alisporivir. The host-directed nature and the ability to interfere with more than one step in the HCV life cycle may result in a higher genetic barrier to resistance for this class of HCV inhibitors.  相似文献   

6.
Genotype 2a JFH1 virus has substantially contributed to the progress of HCV biology by allowing entire viral life cycle of HCV in cell culture. Using this genotype 2a virus, casein kinase II (CKII) was previously identified as a crucial host factor in virus assembly by phosphorylating NS5A. Since most of the prior studies employed genotype 2a JFH1 or JFH1-based intragenotypic chimera, we used genotype 1a H77S to study virus assembly. CKII inhibition by chemical inhibitors enhanced H77S virus production in contrast to that of JFH1 virus, but genetic inhibition of CKII by siRNA did not change H77S virus titer significantly. The different outcomes from these two approaches of CKII inhibition suggested that nonspecific target kinase of CKII inhibitors plays a role in increasing H77S virus production and both viral and host factors were investigated in this study. Our results emphasize substantial differences among the HCV genotypes that should be considered in both basic research and clinical practices.  相似文献   

7.
Schwannomatosis, a rare form of neurofibromatosis, is characterized predominantly by multiple, often painful, schwannomas throughout the peripheral nervous system. The current standard of care for schwannomatosis is surgical resection. A major obstacle to schwannomatosis research is the lack of robust tumor cell lines. There is a great need for mechanistic and drug discovery studies of schwannomatosis, yet appropriate tools are not currently available. Schwannomatosis tumors are difficult to grow in culture as they survive only a few passages before senescence. Our lab has extensive experience in establishing primary and immortalized human Schwann cell cultures from normal tissue that retain their phenotypes after immortalization. Therefore we took on the challenge of creating immortalized human Schwann cell lines derived from tumors from schwannomatosis patients. We have established and fully characterized 2 schwannomatosis cell lines from 2 separate patients using SV40 virus large T antigen. One patient reported pain and the other did not. The schwannomatosis cell lines were stained with S100B antibodies to confirm Schwann cell identity. The schwannomatosis cells also expressed the Schwann cell markers, p75NTR, S100B, and NGF after multiple passages. Cell morphology was retained following multiple passaging and freeze/ thaw cycles. Gene expression microarray analysis was used to compare the cell lines with their respective parent tumors. No differences in key genes were detected, with the exception that several cell cycle regulators were upregulated in the schwannomatosis cell lines when compared to their parent tumors. This upregulation was apparently a product of cell culturing, as the schwannomatosis cells exhibited the same expression pattern of cell cycle regulatory genes as normal primary human Schwann cells. Cell growth was also similar between normal primary and immortalized tumor cells in culture. Accurate cell lines derived directly from human tumors will serve as invaluable tools for advancing schwannomatosis research, including drug screening.  相似文献   

8.
Hepatitis C virus (HCV) is an important human pathogen affecting 170 million chronically infected individuals. In search for cellular proteins involved in HCV replication, we have developed a purification strategy for viral replication complexes and identified annexin A2 (ANXA2) as an associated host factor. ANXA2 colocalized with viral nonstructural proteins in cells harboring genotype 1 or 2 replicons as well as in infected cells. In contrast, we found no obvious colocalization of ANXA2 with replication sites of other positive-strand RNA viruses. The silencing of ANXA2 expression showed no effect on viral RNA replication but resulted in a significant reduction of extra- and intracellular virus titers. Therefore, it seems likely that ANXA2 plays a role in HCV assembly rather than in genome replication or virion release. Colocalization studies with individually expressed HCV nonstructural proteins indicated that NS5A specifically recruits ANXA2, probably by an indirect mechanism. By the deletion of individual NS5A subdomains, we identified domain III (DIII) as being responsible for ANXA2 recruitment. These data identify ANXA2 as a novel host factor contributing, with NS5A, to the formation of infectious HCV particles.Hepatitis C virus (HCV) infections are characterized by a mostly unapparent acute phase leading to persistence in ca. 70% of all infected individuals. Currently, 170 million people suffer from chronic hepatitis C, and they have a high risk to develop severe liver disease. It has been estimated that HCV accounts for 27% of cirrhosis and 25% of hepatocellular carcinoma cases worldwide (2).HCV is an enveloped positive-strand RNA virus belonging to the genus Hepacivirus in the family Flaviviridae. The genome of HCV encompasses a single ∼9,600-nucleotide (nt)-long RNA molecule containing one large open reading frame (ORF) that is flanked by nontranslated regions (NTRs), which are important for viral translation and replication. HCV proteins generated from the polyprotein precursor are cleaved by cellular and viral proteases into at least 10 different products (for a review of polyprotein cleavage and the function of the individual proteins, see reference 4). The structural proteins Core, E1, and E2 are located in the amino-terminal portion of the polyprotein, followed by p7, a hydrophobic peptide that is supposed to be a viroporin, and the nonstructural proteins (NS) NS2, NS3, NS4A, NS4B, NS5A, and NS5B. Only the nonstructural proteins NS3 to NS5B are involved in viral RNA replication. NS3 is a multifunctional protein, consisting of an amino-terminal protease domain required for the processing of the NS3 to NS5B region and a carboxyterminal helicase/nucleoside triphosphatase domain. NS4A is a cofactor that activates the NS3 protease function by forming a heterodimer. The hydrophobic protein NS4B induces vesicular membrane alterations involved in RNA replication. NS5A is a phosphoprotein that seems to play an important role in viral replication and assembly (3, 35, 58). NS5B is the RNA-dependent RNA polymerase of HCV.Positive-strand RNA viruses replicate their RNA in vesicular structures originating from different cellular organelles (36). In the case of HCV, particular membrane alterations have been identified by electron microscopy, designated the membranous web, consisting of accumulations of vesicles primarily derived from the endoplasmic reticulum (17). Important insights into the organization of HCV replication complexes were obtained by the in vitro analysis of viral RNA synthesis in membrane preparations of cells harboring subgenomic HCV replicons, so-called crude replication complexes (CRCs) (1, 20). A current model based on a stoichiometric analysis of CRCs suggests that each vesicular structure contains multiple copies of viral nonstructural proteins and has a connection to the cytoplasm, allowing the constant supply of nucleotides for RNA synthesis (45), presumably analogously to the replication complex of the closely related dengue virus (DV) (64). Viral RNA synthesis in CRCs is highly resistant to proteinases and nucleases (39), and the membranes are detergent resistant at 4°C, resembling features of lipid rafts (54).Several purification techniques have been established to identify relevant HCV host factors by proteomics, based on either the extraction of detergent-resistant membranes (19, 34) or the immunoprecipitation of vesicles (24), revealing different sets of cellular proteins potentially involved in viral replication. In most of these studies, cell lines harboring persistent subgenomic replicons were utilized (33); however, with the availability of a fully permissive cell culture system supporting the complete HCV replication cycle (31, 63, 66), it became evident that viral RNA replication and assembly are closely linked. Recent work revealed an intimate connection of viral replication complexes and assembly sites in close proximity to cytoplasmic lipid droplets (38), with Core and especially NS5A functioning as central regulators by a poorly defined mechanism. NS5A is phosphorylated at multiple serine and threonine residues, binds RNA, and is composed of three domains, which are separated by trypsin-sensitive low-complexity regions (LCS I and II) (59). An N-terminal amphipathic alpha helix tightly associates NS5A with intracellular membranes. Domain I and LCS1 most likely are involved in viral RNA replication, since replication-enhancing mutations primarily mapped to this region (8, 32). The role of domain II is unknown, while domain III recently has been shown to be dispensable for RNA replication but essential for viral particle assembly (3, 35, 58). One of the proposed mechanisms points to a critical interaction with the Core protein, for which phosphorylation in the C-terminal part of domain III of NS5A appears to be required (35). The interaction of Core and NS5A has been proposed to be important for the recruitment of the replication complexes to lipid droplets (3), thereby allowing a coordinated packaging of the newly synthesized RNA.In this study, we identified annexin A2 (also called annexin II, calpactin 1, and ANXA2) as an HCV host factor by a proteomic analysis. ANXA2 belongs to a family of proteins characterized by their Ca2+-dependent binding to negatively charged phospholipids. The annexin proteins consist of two principle domains, a variable N-terminal and a conserved C-terminal domain, which harbors the Ca2+ and membrane binding sites (for a review, see references 14 and 15). All annexins show cytosolic and membrane localizations. Membrane recruitment probably is regulated by intracellular Ca2+ fluctuations, and target membrane selection differs for different annexins.In addition to showing a cytosolic distribution, ANXA2 can associate with the plasma membrane and the membrane of early endosomes. Plasma membrane-associated ANXA2 typically is found in a tight heterotetrameric complex with the S100 protein S100A10 (p11). ANXA2 specifically interacts with phosphatidylinositol(4,5)bisphosphate (PIP2) (22, 48) and binds to membranes enriched in cholesterol, supporting a role in the organization of lipid raft-like membrane microdomains. Due to the direct binding of ANXA2 to F-actin, the protein has been proposed to provide a direct link between cytoskeletal elements and PIP2/cholesterol-rich membrane domains (47).ANXA2 has been implicated in several cellular transport processes, including the internalization and transport of cholesteryl esters, the biogenesis of multivesicular bodies, the recycling of plasma membrane receptors, and the Ca2+-induced exocytosis of certain secretory granules (14). Here, we show that ANXA2 is present at HCV replication sites within the membranous web. The recruitment of ANXA2 is mediated by domain III of NS5A and probably is required for efficient virus assembly.  相似文献   

9.
10.
BackgroundRibavirin (RBV) is a potential partner of interferon-based therapy and recently approved therapy using direct acting antivirals for patients with chronic hepatitis C. However, the precise mechanisms underlying RBV action against hepatitis C virus (HCV) replication are not yet understood. To clarify this point, we attempted to develop RBV-resistant cells from RBV-sensitive HCV RNA-replicating cells.Conclusions/SignificanceThese newly established HCV RNA-replicating cell lines should become useful tools for further understanding the anti-HCV mechanisms of RBV.  相似文献   

11.
12.
采用一种含有HCV全基因组和噬菌体T7启动子和终止子序列的载体(pHCV)转染Vero-E6细胞,随后感染高效表达T7 RNA聚合酶的重组痘病毒(vTF7-3),通过vTF7-3的辅助作用,使Vero-E6细胞高效增殖HCV病毒体,建立了一种新的HCV体外细胞培养体系。RT-PCR、荧光定量PCR检测转染细胞裂解液中HCV滴度的结果显示:pHCV转染细胞内HCV基因拷贝达10^7-10^8/mL,同时有HCV正链RNA合成;免疫印迹显示该培养体系中有HCV结构蛋白、非结构蛋白的表达;pHCV转染细胞经透射电镜观察,可见清晰的HCV病毒体,直径在40-50nm。这一新体系的初步建立,为研究HCV的复制机制、制备HCV疫苗和研发抗病毒药物奠定了基础。  相似文献   

13.
采用一种含有HCV全基因组和噬菌体T7启动子和终止子序列的载体(pHCV)转染Vero-E6细胞,随后感染高效表达T7 RNA聚合酶的重组痘病毒(vTF7-3),通过vTF7-3的辅助作用,使Vero-E6细胞高效增殖HCV病毒体,建立了一种新的HCV体外细胞培养体系.RT-PCR、荧光定量PCR检测转染细胞裂解液中HCV滴度的结果显示pHCV转染细胞内HCV基因拷贝达107-108/mL,同时有HCV正链RNA合成;免疫印迹显示该培养体系中有HCV结构蛋白、非结构蛋白的表达;pHCV转染细胞经透射电镜观察,可见清晰的HCV病毒体,直径在40-50nm.这一新体系的初步建立,为研究HCV的复制机制、制备HCV疫苗和研发抗病毒药物奠定了基础.  相似文献   

14.
15.
16.
We analyzed the biochemical and ultrastructural properties of hepatitis C virus (HCV) particles produced in cell culture. Negative-stain electron microscopy revealed that the particles were spherical (∼40- to 75-nm diameter) and pleomorphic and that some of them contain HCV E2 protein and apolipoprotein E on their surfaces. Electron cryomicroscopy revealed two major particle populations of ∼60 and ∼45 nm in diameter. The ∼60-nm particles were characterized by a membrane bilayer (presumably an envelope) that is spatially separated from an internal structure (presumably a capsid), and they were enriched in fractions that displayed a high infectivity-to-HCV RNA ratio. The ∼45-nm particles lacked a membrane bilayer and displayed a higher buoyant density and a lower infectivity-to-HCV RNA ratio. We also observed a minor population of very-low-density, >100-nm-diameter vesicular particles that resemble exosomes. This study provides low-resolution ultrastructural information of particle populations displaying differential biophysical properties and specific infectivity. Correlative analysis of the abundance of the different particle populations with infectivity, HCV RNA, and viral antigens suggests that infectious particles are likely to be present in the large ∼60-nm HCV particle populations displaying a visible bilayer. Our study constitutes an initial approach toward understanding the structural characteristics of infectious HCV particles.Hepatitis C virus (HCV) is a major cause of chronic hepatitis worldwide, with approximately 170 million humans chronically infected. Persistent HCV infection often leads to fibrosis, cirrhosis, and hepatocellular carcinoma (27). There is no vaccine against HCV, and the most widely used therapy involves the administration of type I interferon (IFN-α2Α) combined with ribavirin. However, this treatment is often associated with severe adverse effects and is often ineffective (53).HCV is a member of the Flaviviridae family and is the sole member of the genus Hepacivirus (43). HCV is an enveloped virus with a single-strand positive RNA genome that encodes a unique polyprotein of ∼3,000 amino acids (14, 15). A single open reading frame is flanked by untranslated regions (UTRs), the 5′ UTR and 3′ UTR, that contain RNA sequences essential for RNA translation and replication, respectively (17, 18, 26). Translation of the single open reading frame is driven by an internal ribosomal entry site (IRES) sequence residing within the 5′ UTR (26). The resulting polyprotein is processed by cellular and viral proteases into its individual components (reviewed in reference 55). The E1, E2, and core structural proteins are required for particle formation (5, 6) but not for viral RNA replication or translation (7, 40). These processes are mediated by the nonstructural (NS) proteins NS3, NS4A, NS4B, NS5A, and NS5B, which constitute the minimal viral components necessary for efficient viral RNA replication (7, 40).Expression of the viral polyprotein leads to the formation of virus-like particles (VLPs) in HeLa (48) and Huh-7 cells (23). Furthermore, overexpression of core, E1, and E2 is sufficient for the formation of VLPs in insect cells (3, 4). In the context of a viral infection, the viral structural proteins (65), p7 (31, 49, 61), and all of the nonstructural proteins (2, 29, 32, 41, 44, 63, 67) are required for the production of infectious particles, independent of their role in HCV RNA replication. It is not known whether the nonstructural proteins are incorporated into infectious virions.The current model for HCV morphogenesis proposes that the core protein encapsidates the viral genome in areas where endoplasmic reticulum (ER) cisternae are in contact with lipid droplets (47), forming HCV RNA-containing particles that acquire the viral envelope by budding through the ER membrane (59). We along with others showed recently that infectious particle assembly requires microsomal transfer protein (MTP) activity and apolipoprotein B (apoB) (19, 28, 50), suggesting that these two components of the very-low-density lipoprotein (VLDL) biosynthetic machinery are essential for the formation of infectious HCV particles. This idea is supported by the reduced production of infectious HCV particles in cells that express short hairpin RNAs (shRNAs) targeting apolipoprotein E (apoE) (12, 30).HCV RNA displays various density profiles, depending on the stage of the infection at which the sample is obtained (11, 58). The differences in densities and infectivities have been attributed to the presence of host lipoproteins and antibodies bound to the circulating viral particles (24, 58). In patients, HCV immune complexes that have been purified by protein A affinity chromatography contain HCV RNA, core protein, triglycerides, apoB (1), and apoE (51), suggesting that these host factors are components of circulating HCV particles in vivo.Recent studies using infectious molecular clones showed that both host and viral factors can influence the density profile of infectious HCV particles. For example, the mean particle density is reduced by passage of cell culture-grown virus through chimpanzees and chimeric mice whose livers contain human hepatocytes (39). It has also been shown that a point mutation in the viral envelope protein E2 (G451R) increases the mean density and specific infectivity of JFH-1 mutants (70).HCV particles exist as a mixture of infectious and noninfectious particles in ratios ranging from 1:100 to 1:1,000, both in vivo (10) and in cell culture (38, 69). Extracellular infectious HCV particles have a lower average density than their noninfectious counterparts (20, 24, 38). Equilibrium sedimentation analysis indicates that particles with a buoyant density of ∼1.10 to 1.14 g/ml display the highest ratio of infectivity per genome equivalent (GE) both in cell culture (20, 21, 38) and in vivo (8). These results indicate that these samples contain relatively more infectious particles than any other particle population. Interestingly, mutant viruses bearing the G451R E2 mutation display an increased infectivity-HCV RNA ratio only in fractions with a density of ∼1.1 g/ml (21), reinforcing the notion that this population is selectively enriched in infectious particles.The size of infectious HCV particles has been estimated in vivo by filtration (50 to 80 nm) (9, 22) and by rate-zonal centrifugation (54 nm) (51) and in cell culture by calculation of the Stokes radius inferred from the sedimentation velocity of infectious JFH-1 particles (65 to 70 nm) (20). Previous ultrastructural studies using patient-derived material report particles with heterogeneous diameters ranging from 35 to 100 nm (33, 37, 42, 57, 64). Cell culture-derived particles appear to display a diameter within that range (∼55 nm) (65, 68).In this study we exploited the increased growth capacity of a cell culture-adapted virus bearing the G451R mutation in E2 (70) and the enhanced particle production of the hyperpermissive Huh-7 cell subclone Huh-7.5.1 clone 2 (Huh-7.5.1c2) (54) to produce quantities of infectious HCV particles that were sufficient for electron cryomicroscopy (cryoEM) analyses. These studies revealed two major particle populations with diameters of ∼60 and ∼45 nm. The larger-diameter particles were distinguished by the presence of a membrane bilayer, characterized by electron density attributed to the lipid headgroups in its leaflets. Isopycnic ultracentrifugation showed that the ∼60-nm particles are enriched in fractions with a density of ∼1.1 g/ml, where optimal infectivity-HCV RNA ratios are observed. These results indicate that the predominant morphology of the infectious HCV particle is spherical and pleomorphic and surrounded by a membrane envelope.  相似文献   

17.
辛德毕斯病毒复制子载体系统的构建   总被引:1,自引:1,他引:1  
To construct vector system of XJ-160 virus,a Sindbis virus isolated in China,recombinant vector pBRepXJ together with its helper plasmid pBR-H were derived from XJ-160 viral infectious clone pBR-XJ160 by overlap-PCR.To quantitatively and qualitatively verify the function of the replicon system,recombinant plasmids pSinRep-EGFP,pBRepXJ-EGFP,pSinRep-R and pBRepXJ-R were constructed by cloning report genes of enhanced green fluorescent protein(EGFP) or Renilla luciferase(R.luc) into pBRepXJ or pSinRep5,a comme...  相似文献   

18.
Our previous studies have found that hepatitis C virus (HCV) particles are enriched in apolipoprotein E (apoE) and that apoE is required for HCV infectivity and production. Studies by others, however, suggested that both microsomal transfer protein (MTP) and apoB are important for HCV production. To define the roles of apoB and apoE in the HCV life cycle, we developed a single-cycle HCV growth assay to determine the correlation of HCV assembly with apoB and apoE expression, as well as the influence of MTP inhibitors on the formation of HCV particles. The small interfering RNA (siRNA)-mediated knockdown of apoE expression remarkably suppressed the formation of HCV particles. However, apoE expressed ectopically could restore the defect of HCV production posed by the siRNA-mediated knockdown of endogenous apoE expression. In contrast, apoB-specific antibodies and siRNAs had no significant effect on HCV infectivity and production, respectively, suggesting that apoB does not play a significant role in the HCV life cycle. Additionally, two MTP inhibitors, CP-346086 and BMS-2101038, efficiently blocked secretion of apoB-containing lipoproteins but did not affect HCV production unless apoE expression and secretion were inhibited. At higher concentrations, however, MTP inhibitors blocked apoE expression and secretion and consequently suppressed the formation of HCV particles. Furthermore, apoE was found to be sensitive to trypsin digestion and to interact with NS5A in purified HCV particles and HCV-infected cells, as demonstrated by coimmunoprecipitation. Collectively, these findings demonstrate that apoE but not apoB is required for HCV assembly, probably via a specific interaction with NS5A.Hepatitis C virus (HCV) is the leading cause of chronic viral hepatitis, affecting approximately 170 million people worldwide (8, 40). HCV coinfection with human immunodeficiency virus (HIV) is also common, occurring overall in 25 to 30% of HIV-positive persons (1). Individuals with chronic HCV infection are at high risk for the development of cirrhosis and hepatocellular carcinoma. A pegylated interferon and ribavirin combination is the standard therapy to treat hepatitis C but suffers from limited efficacy (<50% antiviral response among patients infected with the dominant genotype 1 HCV) and severe side effects (18, 27). More efficacious and safer antiviral drugs for effective treatment of hepatitis C are urgently needed. A thorough understanding of the HCV life cycle will likely provide novel targets for antiviral drug discovery and development to control HCV infection.HCV is an enveloped RNA virus containing a single-stranded, positive-sense RNA genome and is classified as a Hepacivirus in the Flaviviridae family (11, 33). The viral RNA genome carries a single open reading frame flanked by untranslated regions (UTRs) at both the 5′ and 3′ ends. The 5′ and 3′ UTRs contain cis-acting RNA elements important for the initiation of HCV polyprotein translation and viral RNA replication (24). Upon translation, the HCV polyprotein precursor is proteolytically processed by cellular peptidases and viral proteases into at least 10 different viral proteins (C, E1, E2, p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B). Studies with subgenomic HCV RNAs demonstrated that the NS3 to NS5B proteins, in association with intracellular membranes and cellular proteins, are essential and sufficient for HCV RNA replication in the cell (5, 14, 25). The newly synthesized HCV proteins and RNA genome are assembled to form progeny HCV particles by undetermined mechanisms.Our earlier work found that infectious HCV particles are highly enriched in apolipoprotein E (apoE), which is a major determinant of HCV infectivity and production in cell culture (10). ApoE-specific monoclonal antibodies (MAbs) effectively neutralized HCV infectivity, in a dose-dependent manner. The knockdown of apoE expression by specific small interfering RNA (siRNA) remarkably suppressed HCV production, suggesting that apoE is also important for the formation of infectious particles and/or egression (10). However, studies by others suggested that HCV assembly and production are dependent on microsomal transfer protein (MTP) and apolipoprotein B (apoB), both of which are essential components required for the assembly and secretion of very-low-density lipoproteins (VLDLs) (19, 21). In those studies, both apoB-specific siRNAs and MTP inhibitors were found to suppress HCV production (19, 21). It was speculated that HCV shares the same assembly and secretion pathway with VLDLs.To define the roles of apoB and apoE in the formation of HCV particles and egression, we developed a single-cycle HCV growth assay. Using this assay system, we have demonstrated that apoE but not apoB is required for the infectivity and formation of infectious HCV particles. First of all, apoB-specific MAb and polyclonal antibodies did not affect HCV infection. Additionally, apoE-specific siRNA potently inhibited the formation of infectious HCV particles, whereas HCV production was unaffected by the siRNA-mediated knockdown of apoB expression. Furthermore, two MTP inhibitors, CP-346086 and BMS-2101038, efficiently blocked apoB secretion but did not significantly affect HCV production prior to the blockage of apoE expression/secretion. At higher concentrations, however, both MTP inhibitors blocked apoE secretion and consequently suppressed the formation of infectious HCV particles. To further understand the role of apoE in HCV assembly, we carried out coimmunoprecipitation (co-IP) experiments and found that apoE-specific MAb pulled down NS5A but not other HCV proteins from lysed HCV particles, suggesting a specific interaction between apoE and NS5A during the formation of infectious HCV particles. Collectively, our findings demonstrate that apoE but not apoB is required for HCV assembly, probably via a specific interaction with NS5A.  相似文献   

19.
常规基因剔除小鼠的获得主要是利用ES细胞的全能性先获得嵌合体小鼠,再利用:ES细胞的生殖系传递能力,通过嵌合体与野生型小鼠的交配获得杂合子小鼠.而四倍体补偿技术则可绕过嵌合体小鼠阶段,直接获得基因修饰杂合子小鼠.利用电融合技术和Piezoelectric microinjecfion显微注射技术建立了四倍体补偿技术,小鼠四倍体胚胎的获得率(电融合率)为(93.01±l.37)%,经体外培养囊胚形成率为(82.49±2.08)%.通过显微注射方法将2种129品系小鼠来源的ES细胞(CJ7和SCR012)注射到四倍体囊胚腔中,获得了完全ES细胞来源的小鼠,ES鼠的获得率分别为2.7%和8.3%.经微卫星DNA检测,成体小鼠的10个被检测组织均为129小鼠来源的.同时,也利用基因修饰的ES细胞进行了研究,获得了2种基因修饰的完全ES细胞来源的杂合子小鼠,部分小鼠具有繁殖能力,经繁育已获得了纯合子,其中凝血因子Ⅷ基因敲除小鼠获得了预期的血友病小鼠表型.上述结果说明四倍体补偿技术可应用于基因修饰小鼠的制备.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号