首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Galpha(12), the alpha-subunit of the G12 family of heterotrimeric G proteins is involved in the regulation of cell proliferation and neoplastic transformation. GTPase-deficient, constitutively activated mutant of Galpha(12) (Galpha(12)Q229L or Galpha(12)QL) has been previously shown to induce oncogenic transformation of NIH3T3 cells promoting serum- and anchorage-independent growth. Reduced growth-factor dependent, autonomous cell growth forms a critical defining point at which a normal cell turns into an oncogenic one. To identify the underlying mechanism involved in such growth-factor/serum independent growth of Galpha(12)QL-transformed NIH3T3, we carried out a two-dimensional differential proteome analysis of Galpha(12)QL-transformed NIH3T3 cells and cells expressing vector control. This analysis revealed a total of 22 protein-spots whose expression was altered by more than 3-folds. Two of these spots were identified by MALDI-MS analysis as proliferating cell nuclear antigen (PCNA) and myeloid-leukemia-associated SET protein. The increased expressions of these proteins in Galpha(12)QL cells were validated by immunoblot analysis. Furthermore, transient transfection studies with NIH3T3 cells indicated that the expression of activated Galpha(12) readily increased the expression of SET protein by 24 h. As SET has been previously reported to be an inhibitor of phosphatase PP2A, the nuclear phosphatase activity was monitored in cells expressing activated Galpha(12). Our results indicate that the nuclear phosphatase activity is inhibited by greater than 50% in Galpha(12)QL cells compared to vector control cells. Thus, our results from differential proteome analysis presented here report for the first time a role for SET in Galpha(12)-mediated signaling pathways and a role for Galpha(12) in the regulation of the leukemia-associated SET-protein expression.  相似文献   

3.
Heterotrimeric G protein G12 stimulates diverse physiological responses including the activities of Na+/H+ exchangers and Jun kinases. We have observed that the expression of the constitutively activated, GTPase-deficient mutant of Galpha(12) (Galpha(12)QL) accelerates the hyperosmotic response of NIH3T3 cells as monitored by the hyperosmotic stress-stimulated activity of JNK1. The accelerated response appears to be partly due to the increased basal activity of JNK since cell lines-such as NIH3T3 cells expressing JNK1-in which JNK activity is elevated, show a similar response. NIH3T3 cells expressing Galpha(12)QL also display heightened sensitivity to hyperosmotic stress. This is in contrast to JNK1-NIH3T3 cells that failed to enhance sensitivity although they do exhibit an accelerated hyperosmotic response. Reasoning that the increased sensitivity seen in Galpha(12)QL cells is due to a signaling component other than JNK, the effect of dimethyamiloride, an inhibitor of Na+/H+ exchanger in this response, was assessed. Treatment of vector control NIH3T3 cells with 50 microM dimethylamiloride potently inhibited their hyperosmotic response whereas the response was only partially inhibited in Galpha(12)QL-NIH3T3 cells. These results, for the first time, identify that NHEs are upstream of the JNK module in the hyperosmotic stress-signaling pathway and that Galpha(12) can enhance this response by modulating either or both of these components namely, JNKs and NHEs in NIH3T3 cells.  相似文献   

4.
Farnesyltransferase inhibitors (FTIs) represent a novel class of anticancer drugs that exhibit a remarkable ability to inhibit malignant transformation without toxicity to normal cells. However, the mechanism by which FTIs inhibit tumor growth is not well understood. Here, we demonstrate that FTI-277 inhibits phosphatidylinositol 3-OH kinase (PI 3-kinase)/AKT2-mediated growth factor- and adhesion-dependent survival pathways and induces apoptosis in human cancer cells that overexpress AKT2. Furthermore, overexpression of AKT2, but not oncogenic H-Ras, sensitizes NIH 3T3 cells to FTI-277, and a high serum level prevents FTI-277-induced apoptosis in H-Ras- but not AKT2-transformed NIH 3T3 cells. A constitutively active form of AKT2 rescues human cancer cells from FTI-277-induced apoptosis. FTI-277 inhibits insulin-like growth factor 1-induced PI 3-kinase and AKT2 activation and subsequent phosphorylation of the proapoptotic protein BAD. Integrin-dependent activation of AKT2 is also blocked by FTI-277. Thus, a mechanism for FTI inhibition of human tumor growth is by inducing apoptosis through inhibition of PI 3-kinase/AKT2-mediated cell survival and adhesion pathway.  相似文献   

5.
The Cbl proto-oncogene product has emerged as a novel negative regulator of receptor and non-receptor tyrosine kinases. Our previous observations that Cbl overexpression in NIH3T3 cells enhanced the ubiquitination and degradation of the platelet-derived growth factor receptor-alpha (PDGFRalpha) and that the expression of oncogenic Cbl mutants up-regulated the PDGFRalpha signaling machinery strongly suggested that Cbl negatively regulates PDGFRalpha signaling. Here, we show that, similar to PDGFRalpha, selective stimulation of PDGFRbeta induces Cbl phosphorylation, and its physical association with the receptor. Overexpression of wild type Cbl in NIH3T3 cells led to an enhancement of the ligand-dependent ubiquitination and subsequent degradation of the PDGFRbeta, as observed with PDGFRalpha. We show that Cbl-dependent negative regulation of PDGFRalpha and beta results in a reduction of PDGF-induced cell proliferation and protection against apoptosis. A point mutation (G306E) that inactivates the tyrosine kinase binding domain in the N-terminal transforming region of Cbl compromised the PDGF-inducible tyrosine phosphorylation of Cbl although this mutant could still associate with the PDGFR. More importantly, the G306E mutation abrogated the ability of Cbl to enhance the ligand-induced ubiquitination and degradation of the PDGFR and to inhibit the PDGF-dependent cell proliferation and protection from apoptosis. These results demonstrate that Cbl can negatively regulate PDGFR-dependent biological responses and that this function requires the conserved tyrosine kinase binding domain of Cbl.  相似文献   

6.
7.
8.
9.
10.
11.
In this study we have examined CD44 (a hyaluronan (HA) receptor) interaction with a RhoA-specific guanine nucleotide exchange factor (p115RhoGEF) in human metastatic breast tumor cells (MDA-MB-231 cell line). Immunoprecipitation and immunoblot analyses indicate that both CD44 and p115RhoGEF are expressed in MDA-MB-231 cells and that these two proteins are physically associated as a complex in vivo. The binding of HA to MDA-MB-231 cells stimulates p115RhoGEF-mediated RhoA signaling and Rho kinase (ROK) activity, which, in turn, increases serine/threonine phosphorylation of the adaptor protein, Gab-1 (Grb2-associated binder-1). Phosphorylated Gab-1 promotes PI 3-kinase recruitment to CD44v3. Subsequently, PI 3-kinase is activated (in particular, alpha, beta, gamma forms but not the delta form of the p110 catalytic subunit), AKT signaling occurs, the cytokine (macrophage-colony stimulating factor (M-CSF)) is produced, and tumor cell-specific phenotypes (e.g. tumor cell growth, survival and invasion) are up-regulated. Our results also demonstrate that HA/CD44-mediated oncogenic events (e.g. AKT activation, M-CSF production and breast tumor cell-specific phenotypes) can be effectively blocked by a PI 3-kinase inhibitor (LY294002). Finally, we have found that overexpression of a dominant-negative form of ROK (by transfection of MBA-MD-231 cells with the Rho-binding domain cDNA of ROK) not only inhibits HA/CD44-mediated RhoA-ROK activation and Gab-1 phosphorylation but also down-regulates oncogenic signaling events (e.g. Gab-1.PI 3-kinase-CD44v3 association, PI 3-kinase-mediated AKT activation, and M-CSF production) and tumor cell behaviors (e.g. cell growth, survival, and invasion). Taken together, these findings strongly suggest that CD44 interaction with p115RhoGEF and ROK plays a pivotal role in promoting Gab-1 phosphorylation leading to Gab-1.PI 3-kinase membrane localization, AKT signaling, and cytokine (M-CSF) production during HA-mediated breast cancer progression.  相似文献   

12.
13.
Previously, we demonstrated that the gastrin releasing peptide (GRP) induces cyclooxygenase-2 (COX-2) expression through a Rho-dependent, protein kinase C (PKC)-independent signaling pathway in fibroblasts (Slice et al., 1999, J Biol Chem 274:27562-27566). However, the specific role of heterotrimeric guanine nucleotide binding regulatory proteins (G-proteins) that are coupled to the GRP receptor in Rho-dependent COX-2 expression has not been elucidated. In this report, we utilize embryonic fibroblasts from transgenic mice containing double gene knock-outs (DKO) for Galpha(q/11) and Galpha(12/13) to demonstrate that COX-2 promoter activation by GRP requires Galpha(q). Furthermore, we show that GRP-dependent COX-2 gene expression, as assessed by a COX-2 reporter luciferase assay, was induced in cells lacking Galpha(12/13) but was blocked in cells that did not express Galpha(q/11). GRP-dependent COX-2 promoter induction in Galpha(q/11) deficient cells was rescued by expression of wild type Galpha(q) but blocked by inhibition of calcium signaling in calcium-free media or in cells treated with 2-aminoethoxydiphenylborate (2-APB). Co-stimulation of transfected Galpha(q/11) deficient cells with GRP and thapsigargin (TG) induced the COX-2 promoter. Activation of endogenous Rho by expression of Onco-lbc or expression of Rho A Q63L resulted in COX-2 promoter activation in Galpha(q/11) deficient cells. Inhibition of Rho by Clostridium botulinum C3 toxin blocked COX-2 promoter induction. Expression of Galpha(q) Q209L in the well-characterized fibroblast cell line, NIH3T3, induced the COX-2 promoter which was blocked by expression of C3 toxin. These results demonstrate that calcium signaling mediated by Galpha(q) and Rho play critical roles in GRP-dependent COX-2 expression in fibroblasts.  相似文献   

14.
Lo RK  Liu AM  Wise H  Wong YH 《Cellular signalling》2008,20(11):2095-2106
Human prostacyclin receptor (hIP) stimulates STAT3 via pertussis toxin-insensitive G proteins in human erythroleukemia (HEL) cells. Since hIP can utilize G(s) and G(q) proteins for signal transduction and that both G proteins can induce STAT3 phosphorylation and activation via complex signaling networks, we sought to determine if one of them is predominant in mediating the hIP signal. Stimulation of STAT3 Tyr(705) and Ser(727) phosphorylations by the IP-specific agonist, cicaprost, was sensitive to inhibition of protein kinase A, phospholipase Cbeta, protein kinase C, calmodulin-dependent protein kinase II and Janus kinase 2/3. Unlike Galpha(16)-mediated regulation of STAT3 in the same cells, cicaprost-induced STAT3 Tyr(705) phosphorylation was resistant to inhibition of Src and MEK while STAT3 Ser(727) phosphorylation distinctly required phosphatidylinositol-3 kinase. This unique inhibitor-sensitivity pattern of STAT3 phosphorylation was reproduced in HEL cells by stimulating the G(16)-coupled C5a receptor in the presence of dibutyryl-cAMP, suggesting that the change in inhibitor-sensitivity was due to activation of the G(s) pathway. This postulation was confirmed by expressing constitutively active Galpha(16)QL and Galpha(s)QL in human embryonic kidney 293 cells and the inhibitor-sensitivity of Galpha(16)QL-induced STAT3 phosphorylations could be converted by the mere presence of Galpha(s)QL to resemble that obtained with cicaprost in HEL cells. In addition, the restoration of the Galpha(16)-mediated inhibitor-sensitivity upon cicaprost induction in Galpha(s)-knocked down HEL cells again verified the pivotal role of G(s) signal. Taken together, our observations illustrate that co-stimulation of G(s) and G(q) can result in the fine-tuning of STAT3 activation status, and this may provide the basis for cell type-specific responses following activation of hIP.  相似文献   

15.
Apoptosis is an essential mechanism for the maintenance of somatic tissues, and when dysregulated can lead to numerous pathological conditions. G proteins regulate apoptosis in addition to other cellular functions, but the roles of specific G proteins in apoptosis signaling are not well characterized. Galpha12 stimulates protein phosphatase 2A (PP2A), a serine/threonine phosphatase that modulates essential signaling pathways, including apoptosis. Herein, we examined whether Galpha12 regulates apoptosis in epithelial cells. Inducible expression of Galpha12 or constitutively active (QL)alpha12 in Madin-Darby canine kidney cells led to increased apoptosis with expression of QLalpha12, but not Galpha12. Inducing QLalpha12 led to degradation of the anti-apoptotic protein Bcl-2 (via the proteasome pathway), increased JNK activity, and up-regulated IkappaBalpha protein levels, a potent stimulator of apoptosis. Furthermore, the QLalpha12-stimulated activation of JNK was blocked by inhibiting PP2A. To characterize endogenous Galpha12 signaling pathways, non-transfected MDCK-II and HEK293 cells were stimulated with thrombin. Thrombin activated endogenous Galpha12 (confirmed by GST-tetratricopeptide repeat (TPR) pull-downs) and stimulated apoptosis in both cell types. The mechanisms of thrombin-stimulated apoptosis through endogenous Galpha12 were nearly identical to the mechanisms identified in QLalpha12-MDCK cells and included loss of Bcl-2, JNK activation, and up-regulation of IkappaBalpha. Knockdown of the PP2A catalytic subunit in HEK293 cells inhibited thrombin-stimulated apoptosis, prevented JNK activation, and blocked Bcl-2 degradation. In summary, Galpha12 has a major role in regulating epithelial cell apoptosis through PP2A and JNK activation leading to loss of Bcl-2 protein expression. Targeting these pathways in vivo may lead to new therapeutic strategies for a variety of disease processes.  相似文献   

16.
17.
18.
19.
20.
Hepatoma-derived growth factor (HDGF) stimulates the migration, invasion and metastasis in several types of cancer cells. However, the mechanism underlying HDGF-stimulated migration remains unclear. In this study, we investigated the influence of HDGF on cytoskeleton remodeling and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway in non-transformed NIH/3T3 cells. Exogenous HDGF promoted the migration and the formation of dorsal ruffles and podosome rosettes. Besides, HDGF supply increased the PI3K expression and Akt phosphorylation in dose- and time-dependent manners. Application of LY294002, a PI3K inhibitor, attenuated the HDGF-induced migration, dorsal ruffles and podosome rosettes formation. Consistently, the HDGF-overexpressing NIH/3T3 transfectants exhibited significantly increased motility and elevated PI3K/Akt activities, which were repressed by LY294002 or adenovirus-mediated overexpression of endogenous PI3K antagonist, PTEN. In summary, HDGF elicits the activation of PI3K/Akt signaling cascade, thereby promoting cytoskeleton remodeling to stimulate cellular migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号