首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Macrophages are host cells for the pathogenic parasite Leishmania major. Neutrophils die and are ingested by macrophages in the tissues. We investigated the role of macrophage interactions with inflammatory neutrophils in control of L. major infection. Coculture of dead exudate neutrophils exacerbated parasite growth in infected macrophages from susceptible BALB, but killed intracellular L. major in resistant B6 mice. Coinjection of dead neutrophils amplified L. major replication in vivo in BALB, but prevented parasite growth in B6 mice. Neutrophil depletion reduced parasite load in infected BALB, but exacerbated infection in B6 mice. Exacerbated growth of L. major required PGE(2) and TGF-beta production by macrophages, while parasite killing depended on neutrophil elastase and TNF-alpha production. These results indicate that macrophage interactions with dead neutrophils play a previously unrecognized role in host responses to L. major infection.  相似文献   

2.
Whereas the acquired T cell-mediated protection against intracellular pathogens such as Leishmania major has been well studied in the past, the cells and mechanisms involved in their innate control are still poorly understood. Here, we investigated the role of natural killer T (NKT) cells in a high dose L. major mouse infection model. In vitro, L. major only weakly stimulated NKT cells and antagonized their response to the prototypic NKT cell ligand alpha-galactosylceramide, indicating that L. major partially escapes the activation of NKT cells. NKT cell deficiency as analyzed by subcutaneous infection of Jalpha281-/- mice (lacking invariant CD1d-restricted NKT cells) and CD1-/- mice (lacking all CD1d-restricted NKT cells) led to a transient increase in skin lesions, but did not impair the clinical cure of the infection, NK cell cytotoxicity, the production of IFN-gamma, the expression of inducible nitric oxide synthase, and the control of the parasites in the lymph node. In the spleen, however, NKT cells were required for NK cell cytotoxicity and early IFN-gamma production, they lowered the parasite burden, and exerted bystander effects on Leishmania antigen-specific T cell responses, most notably after systemic infection. Thus, NKT cells fulfill organ-specific protective functions during infection with L. major, but are not essential for parasite control.  相似文献   

3.
Leishmania major infection is useful as an experimental model to define factors responsible for the development and maintenance of Th cell immune responses. Studies using inbred mouse strains have identified that the Th1 response characteristic of C57BL/6 mice results in healing, whereas BALB/c mice fail to control the infection due to the generation of an inappropriate Th2 response. We now demonstrate that IL-13 is a key factor in determining susceptibility to L. major infection. Overexpression of IL-13 in transgenic mice makes the normally resistant C57BL/6 mouse strain susceptible to L. major infection even in the absence of IL-4 expression. This susceptibility correlates with a suppression of IL-12 and IFN-gamma expression. Furthermore, using BALB/c mice deficient in the expression of IL-4, IL-13, or both IL-13 and IL-4, we demonstrate that IL-13-deficient mice are resistant to infection and that there is an additive effect of deleting both IL-4 and IL-13.  相似文献   

4.
AIM To investigate the modulatory effect of B-1 cells on murine peritoneal macrophages infected with Leishmania major(L. major) in vitro.METHODS Peritoneal macrophages obtained from BALB/c andBALB/c XID mice were infected with L. major and cultured in the presence or absence of B-1 cells obtained from wild-type BALB/c mice. Intracellular amastigotes were counted, and interleukin-10(IL-10) production was quantified in the cellular supernatants using an enzymelinked immunosorbent assay. The levels of the lipid mediator prostaglandin E2(PGE2) were determined using a PGE2 enzyme immunoassay kit(Cayman Chemical, Ann Arbor, MI), and the number of lipid bodies was quantified in the cytoplasm of infected macrophages in the presence and absence of B-1 cells. Culturing the cells with selective PGE2-neutralizing drugs inhibited PGE2 production and confirmed the role of this lipid mediator in IL-10 production. In contrast, we demonstrated that B-1 cells derived from IL-10 KO mice did not favor the intracellular growth of L. major.RESULTS We report that B-1 cells promote the growth of L. major amastigotes inside peritoneal murine macrophages. We demonstrated that the modulatory effect was independent of physical contact between the cells, suggesting that soluble factor(s) were released into the cultures. We demonstrated in our co-culture system that B-1 cells trigger IL-10 production by L. major-infected macrophages. Furthermore, the increased secretion of IL-10 was attributed to the presence of the lipid mediator PGE2 in supernatants of L. major-infected macrophages. The presence of B-1 cells also favors the production of lipid bodies by infected macrophages. In contrast, we failed to obtain the same effect on parasite replication inside L. major-infected macrophages when the B-1 cells were isolated from IL-10 knockout mice. CONCLUSION Our results show that elevated levels of PGE2 and IL-10 produced by B-1 cells increase L. major growth, as indicated by the number of parasites in cell cultures.  相似文献   

5.
Leishmania (L.) tropica is a causative agent of human cutaneous and viscerotropic leishmaniasis. Immune response to L. tropica in humans and experimental animals are not well understood. We previously established that L. tropica infection induces partial protective immunity against subsequent challenge infection with Leishmania major in BALB/c mice. Aim of the present study was to study immunologic mechanisms of protective immunity induced by L. tropica infection, as a live parasite vaccine, in BALB/c mouse model. Mice were infected by L. tropica, and after establishment of the infection, they were challenged by L. major. Our findings shows that L. tropica infection resulted in protection against L. major challenge in BALB/c mice and this protective immunity is associated with: (1) a DTH response, (2) higher IFN-γ and lower IL-10 response at one week post-challenge, (3) lower percentage of CD4+ lymphocyte at one month post-challenge, and (4) the source of IFN-γ and IL-10 were mainly CD4 lymphocyte up to one month post-challenge suggesting that CD4 lymphocytes may be responsible for protection induced by L. tropica infection in the studied intervals.  相似文献   

6.
Bloodfeeding arthropods transmit many of the world's most serious infectious diseases. Leishmania are transmitted to their mammalian hosts when an infected sandfly probes in the skin for a bloodmeal and injects the parasite mixed with its saliva. Arthropod saliva contains molecules that affect blood flow and modulate the immune response of the host. Indeed, sandfly saliva markedly enhances the infectivity of L. major for its host. If the salivary molecule(s) responsible for this phenomenon was identified, it might be possible to vaccinate the host against this molecule and thereby protect the host against infection with Leishmania. Such an approach represents a novel means of controlling arthropod-borne disease transmission. Here, we report that a single molecule, maxadilan, in sandfly saliva can exacerbate infection with L. major to the same degree as whole saliva, and that vaccinating against maxadilan protects mice against infection with L. major.  相似文献   

7.
Protective immunity against cutaneous leishmaniasis is dependent on the induction of Th1/Tc1 immune responses resulting in efficient parasite elimination. In this review, the mechanisms leading to protection are discussed with special focus on the role of Leishmania major-infected dendritic cells (DC) in induction of Th1-dependent immunity. Murine strain-dependent differences between DC derived from Leishmania-susceptible as compared to resistant mice are highlighted.  相似文献   

8.
Neural involvement was traditionally associated with leprosy. However, more recent studies have shown the presence of a persistent hyperalgesia in cutaneous leishmaniasis caused by the infection of BALB/c mice with a high dose of Leishmania major. In this study, we report the presence of hyperalgesia within the first two weeks of infection caused by a low dose of the parasite. Using BALB/c mice, we demonstrate the presence of hyperalgesia during the first 10 days of infection as assessed by thermal pain tests. After 10 days these decreased pain thresholds start to recover resulting in similar levels to those in uninfected controls during the third week of infection. This hyperalgesia is accompanied by a sustained upregulation of interleukin-1beta (IL-1beta) and an early upregulation of interleukin-6 (IL-6) which is restored to normal levels after five days of infection. In conclusion, this study shows that, during early infection, the low dose of L. major causes hyperalgesia accompanied by an upregulation of IL-1beta and IL-6 and that these effects are reversed within the first two weeks of infection.  相似文献   

9.
10.
In Old World Leishmania infections, Leishmania donovani is responsible for fatal visceral leishmaniasis, and L. major is responsible for non-fatal cutaneous leishmaniasis in humans. The genetic differences between these species which govern the pathology or site of infection are not known. We have therefore carried out detailed analysis of the A2 loci in L. major and L. donovani because A2 is expressed in L. donovani but not L. major, and A2 is required for survival in visceral organs by L. donovani. We demonstrate that although L. major contains A2 gene regulatory sequences, the multiple repeats that exist in L. donovani A2 protein coding regions are absent in L. major, and the remaining corresponding A2 sequences appear to represent non-expressed pseudogenes. It was possible to restore amastigote-specific A2 expression to L. major, confirming that A2 regulatory sequences remain functional in L. major. Although L. major is a cutaneous parasite in rodents and humans, restoring A2 expression to L. major inhibited its ability to establish a cutaneous infection in susceptible BALB/c or resistant C57BL6 mice, a phenotype typical of L. donovani. There was no detectable cellular immune response against L. major after cutaneous infection with A2-expressing L. major, suggesting that the lack of growth was not attributable to acquired host resistance but to an A2-mediated suppression of parasite survival in skin macrophages. These observations argue that the lack of A2 expression in L. major contributed to its divergence from L. donovani with respect to the pathology of infection.  相似文献   

11.
Folylpolyglutamates in Leishmania major   总被引:3,自引:0,他引:3  
The intracellular folates of the protozoan parasite Leishmania major have been examined. About 95% of the exogenous [3H]folate accumulated by the protozoan is metabolized to polyglutamate conjugates within 65 hr, and the intracellular folates are about forty-fold concentrated over the folate in the medium. The predominant metabolite of folic acid is the pentaglutamate conjugate (85%), with lessor amounts of the tetraglutamate (approximately 9%) and hexaglutamate (approximately 3%), and trace (less than 2.5%) amounts of di-, tri- and hepta-glutamate conjugates. Chromatographic properties of the products indicate that the conjugates are linked through the gamma-carboxyl groups. The folylpolyglutamate distribution in Leishmania is similar to that found in mammalian tissues.  相似文献   

12.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been shown to play a protective role in leishmanial infection. Mice with a null mutation in the gene for the beta common (beta c) chain of the receptors for GM-CSF, interleukin(IL)-3 and IL-5 (beta c-null mice) display normal steady state hemopoiesis and develop lung disease similar to the human condition, alveolar proteinosis, due to a lack of signaling by GM-CSF. We therefore expected to observe a heightened sensitivity to Leishmania major in the beta c-null mice. Surprisingly, the beta c-null mice were more resistant to cutaneous infection than wild-type (wt) mice. Upon intradermal injection of L. major promastigotes, fewer beta c-null mice developed cutaneous lesions than wt mice and these lesions were smaller and healed more rapidly than in wt mice. This resistance to disease was associated with a reduced percentage of in vitro infected beta c-null macrophages. Macrophages from beta c-null mice displayed a more activated phenotype and produced increased amounts of nitric oxide following infection with L. major, both in vivo and in vitro. Paradoxically, however, the parasite burden in the draining lymph nodes was similar in both beta c-null and wt mice, suggesting that at least a subpopulation of cells was susceptible to the parasite. The mechanism preventing normal lesion development remains to be elucidated.  相似文献   

13.
Control of the protozoan parasite Leishmania major is dependent on establishing a robust T cell response. An early event in the development of an effective T cell response is the expansion (or hypertrophy) of the lymph node draining the site of infection, although the mechanisms involved in this response are not completely understood. In this study, we show that lymph node hypertrophy following L. major infection in mice is associated with increased recruitment of lymphocytes to the lymph node from the blood, and that CD62L-deficient mice, which are unable to recruit cells to the lymph node, develop a chronic infection with L. major. Injection of L. major-activated dendritic cells promoted lymph node hypertrophy, and this correlated with an increase in the expression of CCR7 on dendritic cells, although the upregulation of CCR7 occurred on the bystander (uninfected) dendritic cells rather than those containing parasites. We found that increased CCR7 expression was TLR9-dependent, that TLR9(-/-) dendritic cells migrated less efficiently to the draining lymph node, and that TLR9(-/-) mice exhibited a deficit in lymph node expansion following L. major infection, as well as increased susceptibility. Taken together, to our knowledge, these results are the first to demonstrate that activation of dendritic cells via TLR9 is essential for the induction of lymph node hypertrophy in leishmaniasis.  相似文献   

14.
c-Jun N-terminal kinase (JNK) is a mitogen-activated protein kinase that plays important regulatory roles in helper T cell differentiation. In the current study, we used Jnk1-deficient mice to examine the function of JNK during an in vivo pathogenic infection, leishmaniasis, which is strongly influenced by Th1/Th2 effector mechanisms. The data show that Jnk1-deficient mice, despite their usually genetically resistant background, were unable to resolve Leishmania infections. Jnk1-/- mice displayed reduced delayed-type hypersensitivity in response to the pathogen, which was associated with a T cell defect. We found that, although these mice can direct an apparent Th1-response, there is also simultaneous generation of Leishmania-specific Th2 responses, which possibly down-modulate protective Th1-mediated immune function. These findings demonstrate that the negative regulation of Th2 cytokine production by the JNK1 signaling pathway is essential for generating Th1-polarized immunity against intracellular pathogens, such as Leishmania major.  相似文献   

15.
Leishmania infection: surfaces and immunity   总被引:1,自引:0,他引:1  
Infections with Leishmania parasites are initiated by bites from infected sandflies; the injected promastigotes are attacked by phagocytic cells but succeed in entering cells of the macrophage family and surviving in them. The secrets of the success of the extracellular form in penetrating the host cell and of the intracellular form in surviving in a potentially hostile environment are yet to be unraveled. The infectivity of the extracellular promastigote is related to the expression on its surface of molecules that interact with the surface of the host cell. One of these molecules is the promastigote surface protease, or gp63, which is also a dominant surface antigen; this enzyme is thought to be involved in binding to the macrophage via the cell receptors for mannose and fucose and for the third component of complement. Another important surface component is the lipophosphoglycan, consisting of a series of phosphorylated disaccharides linked to a novel lipid anchor in the membrane. This is also released from the parasite surface and was earlier identified as a highly immunogenic antigen excreted into culture medium. It can activate complement and may in this way promote attachment of the parasite to the macrophage. Other surface structures include the acid phosphatase, a glyco-inositol phospholipid, another glycolipid, and membrane proteins of 80 and 17 kilodaltons. All of these may play a role in attachment of the promastigote to the macrophage host cell, as well as in the survival of the amastigote within the macrophage, perhaps by inhibiting the activities of destructive enzymes. The roles in infectivity of these components of the Leishmania surfaces and their interactions with the various receptors on macrophages are discussed. The immune responses induced by these and other parasite antigens during infections in humans and experimental animals are also described briefly, especially those responses that may contribute to protection from infection, or to diagnosis and epidemiology.  相似文献   

16.
A model of skin infection with Leishmania amazonensis with low doses of parasites is compared to infection with high doses of L. amazonensis and low and high doses of Leishmania major. C57BL/6 mice were infected with 103 or 10(6) parasites in the ear and the outcome of infection was assessed. The appearance of lesions in mice infected with 103 parasites was delayed compared to mice infected with 10(6) Leishmania and parasites were detectable at the infection site before lesions became apparent. Mice infected with L. amazonensis displayed persistent lesions, whereas infection with L. major spontaneously healed in all groups, although lymphocytes persisted at the site of infection after healing. Macrophages persisted only in L. amazonensis-infected mice. High-dose L. amazonensis-infected mice produced lower levels of IFN-γ and TNF than mice infected with L. major. No correlation between the persistence of parasites and IL-10 levels and the production of nitric oxide or urea by macrophages was found. We conclude that infection with low doses of L. amazonensis in the dermis changes the course of infection by delaying the appearance of lesions. However, low-dose infection does not change the outcomes of susceptibility and cytokine production described for subcutaneous infection with high numbers of parasites.  相似文献   

17.
Numerous species of Meriones have been incriminated as natural reservoir hosts of Leishmania major in Mongolia, Soviet Asia, Afghanistan, the Middle East, and North Africa. However, little is known about the immunological response or course of infection in these small rodents. In this study, 40 commercially obtained inbred Meriones unguiculatus were divided into equal groups and injected in the right hind footpad with various doses of L. major promastigotes or with medium only. At regular intervals, blood was collected from the animals for subsequent evaluation of the kinetics of anti-L. major serum antibody production. Footpad lesions were measured periodically for 13 wk, beginning just before infection. The humoral response to infection and the course and severity of disease were dose related. However, metastasis lymph nodes, liver, spleen, and secondary cutaneous sites occurred at each of the doses tested.  相似文献   

18.
BALB/c mice are susceptible to develop non-healing, progressive infection with Leishmania major (L. major) due to the development of a non-protective Th2 response. Resistance to L. major infection is dependent to Th1 response. Treatment of mice with the opioid antagonist naloxone can promote the activation of Th1 responses. Here we study the effect of chronic administration of various doses of naloxone on susceptibility of BALB/c mice to L. major infection. Our results showed that naloxone has dose-dependent biphasic effect on L. major infection in BALB/c mice. While administration of 1mg/kg × 2/day tends to exacerbate the local reaction to L. major infection, treatment with 10mg/kg × 2/day of naloxone suppresses the local reaction and progress of infection. On the other hand treatment of mice with middle dose (5mg/kg whether 1 or 2 times per day) does not have significant effect on the infection. This study demonstrates that administration of high dose of naloxone could improve protection against L. major infection in BALB/c mice, presumably by modulation in Th1/Th2 balance or by affecting macrophages through binding to Toll-like receptors.  相似文献   

19.
20.
One mechanism to control immune responses following infection is to rapidly down-regulate Ag presentation, which has been observed in acute viral and bacterial infections. In this study, we describe experiments designed to address whether Ag presentation is decreased after an initial response to Leishmania major. Naive alphabeta-Leishmania-specific (ABLE) TCR transgenic T cells were adoptively transferred into mice at various times after L. major infection to determine the duration of presentation of parasite-derived Ags. ABLE T cells responded vigorously at the initiation of infection, but the ability to prime these cells quickly diminished, independent of IL-10, regulatory T cells, or Ag load. However, Ag-experienced clonal and polyclonal T cell populations could respond, indicating that the diminution in naive ABLE cell responses was not due to lack of Ag presentation. Because naive T cell priming could be restored by removal of the endogenous T cell population, or adoptive transfer of Ag-pulsed dendritic cells, it appears that T cells that have previously encountered Ag during infection compete with naive Ag-specific T cells. These results suggest that during L. major infection Ag-experienced T cells, rather than naive T cells, may be primarily responsible for sustaining the immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号