首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Concentrations of cyclic AMP (adenosine 3':5'-cyclic monophosphate) and rates of insulin release were measured in islets of Langerhans isolated from rat pancreas and incubated for various times in the presence of glucose, 3-isobutyl-1-methylxanthine, caffeine, theophylline, adrenaline and diazoxide. 2. Caffeine and theophylline produced small but significant increases in both cyclic AMP and release of insulin when they were incubated in the presence of 10mm-glucose. 3. 3-Isobutyl-1-methylxanthine produced a marked increase in the intracellular concentration of cyclic AMP in the presence of 5mm- and 10mm-glucose. However, insulin release was stimulated only in the presence of 10mm-glucose. 4. In response to rising concentrations of extracellular glucose (5-20mm) there was no detectable increase in the intracellular concentration of cyclic AMP even though there was a marked increase in the rate of insulin release. 5. In response to 10mm-glucose insulin release occurred in two phases and 3-isobutyl-1-methylxanthine potentiated the effect of glucose on both phases. The intracellular concentration of cyclic AMP remained constant with glucose and rose within 10min to its maximum value with 3-isobutyl-1-methylxanthine. 6. Adrenaline and diazoxide inhibited insulin release and lowered the intracellular concentration of cyclic AMP when islets were incubated with glucose or 3-isobutyl-1-methylxanthine. 7. It is suggested that glucose does not stimulate insulin release by increasing the concentration of cyclic AMP in islet cells. However, the concentration of cyclic AMP in islet cells may modulate the effect of glucose on the release process.  相似文献   

2.
To facilitate detailed studies of the B-cytotoxic action of alloxan we developed a model using isolated pancreatic islets of normal mice. An essential feature of this model is the low temperature employed during exposure to alloxan, which minimizes the degradation of the drug. The islets were incubated with alloxan for 30min at 4 degrees C and subsequently various aspects of their metabolism were studied. The O(2) consumption was measured by the Cartesian-diver technique. Islets exposed to 2mm-alloxan and control islets had the same endogenous respiration, whereas the O(2) uptake of the alloxan-treated islets was inhibited and that of the control islets stimulated when they were incubated with 28mm-glucose as an exogenous substrate. The islet glucose oxidation was estimated by measurement of the formation of (14)CO(2) from [U-(14)C]glucose at 37 degrees C. Compared with the controls, alloxan-treated islets showed a decrease in the glucose-oxidation rate in a dose-dependent manner. Pretreatment of the islets with 28mm-glucose for 30min at 37 degrees C completely protected against this effect, whereas preincubations at glucose concentrations below 16.7mm failed to exert any protective effect. The glucose utilization was estimated as the formation of (3)H(2)O from [5-(3)H]glucose. Alloxan (2mm) failed to affect islet glucoseutilization rate in the presence of either 2.8 or 28mm-glucose. In contrast, islets exposed to 5 or 10mm-alloxan exhibited lowered glucose utilization. It is concluded that in vitro alloxan has an acute inhibitory effect on the islet glucose metabolism, and that this action can be prevented by previous exposure to a high glucose concentration. The results are consistent with the idea that the B-cytotoxicity of alloxan reflects an interaction with intracellular sites involved in the oxidative metabolism of the B-cell.  相似文献   

3.
1. Concentrations of glucose 6-phosphate and 6-phosphogluconate were studied in islets of Langerhans isolated from rat pancreas and incubated in the presence of various agents that induce insulin release. 2. In response to rising concentrations of extracellular glucose (2-10mm) there is a linear increase in the intracellular concentration of glucose 6-phosphate, though this is not the case for 6-phosphogluconate, the intracellular concentration of which only increases when the external glucose concentration exceeds 5mm. 3. Tolbutamide, octanoate and citrate, all of which promote insulin secretion from isolated islets, increase the intracellular concentrations of glucose 6-phosphate and 6-phosphogluconate. The results obtained in the presence of octanoate and citrate are compatible with an inhibitory effect of citrate on islet-cell phosphofructokinase. 4. Theophylline and glucagon when incubated with islets in vitro promote insulin release and cause a rise in 6-phosphogluconate concentration and not in that of glucose 6-phosphate. 5. It is suggested that the further metabolism of glucose 6-phosphate through a pathway other than glycolysis is essential for insulin release. One such pathway involves its oxidation to 6-phosphogluconate, which seems to be a necessary accompaniment of insulin secretion due to glucose. The possibility that agents other than glucose promote insulin release by enhancing the oxidation of glucose 6-phosphate through this pathway is discussed.  相似文献   

4.
The oxidation of alanine, arginine, leucine, glucose, and pyruvate was studied in microdissected pancreatic islets of obese-hyperglycaemic mice. The following main observations were made. The oxidation of glucose was enhanced severalfold when its concentration was raised from 3 to 20mm. At the latter concentration the rate was about 65mmol/h per kg dry wt. The oxidation of 17mm-pyruvate amounted to 20mmol/h per kg dry wt. indicating a significant entry of this compound into the beta-cells. Leucine oxidation was little affected by concentration changes above 5mm, the rate at 20mm corresponding to about 25% of that obtained with 20mm-glucose. In the absence of glucose, the oxidation of alanine or arginine was barely significant. Glucose stimulated the oxidation of alanine but depressed that of leucine. These effects of glucose were blocked by mannoheptulose or iodoacetamide but were not influenced by adrenaline, diazoxide, dibutyryl 3':5'-cyclic AMP, or glibenclamide. The rate of alanine oxidation was doubled in the presence of 17mm-pyruvate but was unaffected by citrate or succinate. Succinate depressed the oxidation of leucine. Neither alanine nor leucine significantly affected the oxidation of glucose. It is suggested that the effects of glucose on the oxidation of alanine and leucine were mediated by metabolism of the sugar, and that amino acids do not act as insulin secretagogues by serving as fuels for the beta-cells. The results are consistent with the existence of mechanisms auxiliary to glucose metabolism for control of insulin release.  相似文献   

5.
S Sandler  A Andersson 《Cryobiology》1987,24(4):285-291
It was the aim of this study to investigate the influence of the glucose concentration of the post-thaw culture medium on islet B-cell survival after cryopreservation by the combined assessments of islet recovery, islet DNA and insulin contents, and insulin release. Collagenase isolated mouse islets were kept in culture for 3 days in the presence of 11.1 mM glucose and then transferred to freezing ampoules containing Hanks' solution supplemented with 10% calf serum and 2 M dimethyl sulfoxide. After a 20-min incubation at 0 degrees C the islets were cooled at a rate of 25 degrees C/min to -70 degrees C and subsequently plunged into liquid nitrogen. After 2 hr the frozen islets were rapidly thawed at 37 degrees C, transferred to culture dishes, and cultured for another 3 days in the presence of 2.8, 5.6, 11.1, 16.7, or 28 mM glucose. Nonfrozen control islets were treated identically after a preceding 3-day culture at 11.1 mM glucose. The percentage recovery of cryopreserved islets was decreased compared to that of nonfrozen islets, but was increased when higher glucose concentrations were used in the post-thaw culture medium. Since the DNA content of the cryopreserved islets was slightly decreased, the overall survival rate of the cryopreserved B-cells, when cultured at the higher glucose concentrations after thawing, was found to be about 75%. The insulin content of the cryopreserved islets was decreased but the glucose-stimulated insulin release was essentially the same as that of the nonfrozen islets.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Differences in glucose handling by pancreatic A- and B-cells   总被引:10,自引:0,他引:10  
Glucose exerts opposite effects upon glucagon and insulin release from the endocrine pancreas. Glucose uptake and oxidation were therefore compared in purified A- and B-cells. In purified B-cells, the intracellular concentration of glucose or 3-O-methyl-D-glucose equilibrates within 2 min with the extracellular levels, and, like in intact islets, the rate of glucose oxidation displays a sigmoidal dose-response curve for glucose. In contrast, even after 5 min of incubation, the apparent distribution space of D-glucose or 3-O-methyl-D-glucose in A-cells remains much lower than the intracellular volume. In A-cells, both the rate of 3-O-methyl-D-glucose uptake and glucose oxidation proceed proportional to the hexose concentration up to 10 mM and reach saturation at higher concentrations. Addition of insulin failed to affect 3-O-methyl-D-glucose or D-glucose uptake and glucose oxidation by purified A-cells. Glucose releases 30-fold more insulin from islets than from single B-cells, but this marked difference is not associated with differences in glucose handling. The rate of glucose oxidation is virtually identical in single and reaggregated B-cells and is not altered after addition of glucagon or somatostatin. It is concluded that the dependency of glucose-induced insulin release upon the functional coordination between islet cells is not mediated through changes in glucose metabolism.  相似文献   

7.
Pentitols and insulin release by isolated rat islets of Langerhans   总被引:7,自引:13,他引:7       下载免费PDF全文
1. Insulin secretion was studied in isolated islets of Langerhans obtained by collagenase digestion of rat pancreas. In addition to responding to glucose and mannose as do whole pancreas and pancreas slices in vitro, isolated rat islets also secrete insulin in response to xylitol, ribitol and ribose, but not to sorbitol, mannitol, arabitol, xylose or arabinose. 2. Xylitol and ribitol readily reduce NAD(+) when added to a preparation of ultrasonically treated islets. 3. Adrenaline (1mum) inhibits the effects of glucose and xylitol on insulin release. Mannoheptulose and 2-deoxy-glucose, however, inhibit the response to glucose but not that to xylitol. 4. The intracellular concentration of glucose 6-phosphate is increased when islets are incubated with glucose but not with xylitol, suggesting that xylitol does not promote insulin release by conversion into glucose 6-phosphate. 5. Theophylline (5mm) potentiates the effect of 20mm-glucose on insulin release from isolated rat islets of Langerhans, but has no effect on xylitol-mediated release. These results indicate that xylitol does not stimulate insulin release by alterations in the intracellular concentrations of cyclic AMP. 6. A possible role for the metabolism of hexoses via the pentose phosphate pathway in the stimulation of insulin release is discussed.  相似文献   

8.
1. Insulin biosynthesis in isolated rat islets of Langerhans was determined by the incorporation of [(3)H]leucine into newly synthesized islet proteins. Anti-insulin serum covalently coupled to a solid phase (CNBr-activated Sepharose 4B) was used to separate the immunoreactive proinsulin and insulin from other islet proteins. This method was applied to a study of the regulation of insulin biosynthesis in isolated rat islets of Langerhans during pregnancy, and immediately after a period of food deprivation. 2. Islets isolated from pregnant rats showed an increased basal rate of synthesis compared with the non-pregnant controls. In addition, they showed a significant increase in biosynthesis of proinsulin and insulin in comparison with the normal islets over a range of glucose concentrations of 2-20mm. 3. Addition of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine significantly increased the insulin-synthetic response of normal islets over the glucose range 5-20mm, so that their glucose response approached that of islets from pregnant rats. 4. Normal female rates were injected with a long-acting progesterone derivative (hydroxyprogesterone hexanoate), to investigate the role of progesterone on the increased insulin biosynthesis observed in islets in pregnancy. There appeared to be no marked difference in insulin biosynthesis between the islets from the progesterone-injected and control rats in the presence of 2mm- or 6mm-glucose alone. However, in the presence of 4mm- or 6mm-glucose and 3-isobutyl-1-methylxanthine there was a significant increase in insulin biosynthesis in the progesterone-treated animals. 5. Total islet protein biosynthesis was determined by the incorporation of [(3)H]leucine into trichloroacetic acid-precipitable islet proteins. Islets isolated from normal rats showed a 1.6-fold increase in incorporation over the glucose concentration range 2-20mm, and this value remained unchanged during starvation; however, rates of incorporation were significantly raised in islets isolated from pregnant rats in the presence of 20mm-glucose. 6. Islets from starved and fed control rats were incubated in the presence of increasing concentrations of glucose or glucose+3-isobutyl-1-methylxanthine. The islets isolated from the starved animals showed a diminished insulin-synthetic response to glucose as compared with the controls; this response was partially restored to normal values by elevation of cyclic AMP concentrations by using 3-isobutyl-1-methylxanthine. 7. It is suggested that the alterations in glucose-stimulated insulin biosynthesis observed in islets during pregnancy and after a period of starvation could be attributable, at least in part, to a long-term alteration of the cyclic AMP system, and in pregnancy to a direct or indirect effect of progesterone on beta-cell function.  相似文献   

9.
The present study aimed at comparing the effects of glucose on ionic and secretory events in freshly isolated and 5-7 day cultured rat pancreatic islets. The capacity of glucose to provoke insulin release was severely reduced in islets maintained in culture. Whether in freshly isolated or cultured islets, glucose provoked a marked and sustained decrease in 45Ca2+ outflow from islets deprived of extracellular Ca2+. In the presence of extracellular Ca2+ throughout, the magnitude of the glucose-induced secondary rise in 45Ca2+ outflow was reduced in cultured islets. Glucose provoked a weaker increase in [Ca2+]i in islet cells obtained from cultured islets than in islet cells dissociated from freshly isolated pancreatic islets. On the other hand, the stimulatory effect of carbamylcholine on 45Ca2+ outflow was unaffected by tissue culture. Lastly, in islet cells obtained from cultured islets, the increase in [Ca2+]i evoked by K+ depolarization averaged half of that observed in control experiments. These results indicate that the reduced secretory potential of glucose in cultured pancreatic islets can be ascribed to the inability of the nutrient secretagogue to provoke a suitable increase in Ca2+ influx.  相似文献   

10.
It has been suggested that the stimulatory effect of glucose on insulin release may be mediated by the adenylate cyclase-cyclic AMP phosphodiesterase system. In this study it was found that exposure of isolated pancreatic islets to an elevated extracellular glucose concentration for 1 week in vitro caused an increase of the cyclic AMP phosphodiesterase activity in the islet cells. These and previous data indicate that there is an increased turnover of cyclic AMP in B-cells exposed for a prolonged time to a high extracellular glucose concentration, which also causes an increased turnover rate of insulin.  相似文献   

11.
Rat pancreatic islets cultured for 6 days at 100 or 500 mg/dl glucose and 20 or 7% O2 were examined electron-microscopically, and insulin accumulation in the culture media was assayed immunologically. In the islets cultured at 500 mg/dl glucose and 20% O2, B cells exhibited hypertrophy of granular endoplasmic reticulum and Golgi apparatus, an abundance of free ribosomes, degranulation and the margination of secretory granules. In islets cultured at 500 mg/dl glucose and 7% O2, B cells exhibited dilatation of endoplasmic reticulum cisternae and dominance of Golgi vesicles in addition to the above-mentioned changes. These changes, together with the correlated data on insulin accumulation, are discussed with special reference to the effects of glucose and oxygen upon the synthesis and release of insulin in B cells.  相似文献   

12.
At a glucose concentration of 3mm or less, iodoacetamide had no effect on the release of insulin from microdissected pancreatic islets of ob/ob-mice. At higher glucose concentrations, iodoacetamide exerted both an initial stimulatory and a subsequent inhibitory action. When islets were perifused with 1mm-iodoacetamide and 17mm-glucose the inhibitory action predominated after about 15min of transient stimulation. With decreasing concentrations of iodoacetamide the stimulatory phase was gradually prolonged, and with 0.003-0.1mm-iodoacetamide stimulation only was observed for 75min. Prolonged stimulation was also noted after a short pulse of iodoacetamide. Similar responses to 0.1mm-iodoacetamide were observed with islets from normal mice. With islets from ob/ob-mice the effect of 0.1mm-iodoacetamide was reproduced with 0.1mm-iodoacetate, whereas 0.1mm-acetamide had no apparent effect. Iodoacetamide increased the V(max.) of glucose-stimulated insulin release without altering the apparent K(m) for glucose. Leucine, glibenclamide or theophylline could not replace glucose in this synergistic action with iodoacetamide. Iodoacetamide rather inhibited the insulin-releasing action of theophylline. Iodoacetamide-induced potentiation of the glucose-stimulated insulin release was rapidly and reversibly inhibited by mannoheptulose, adrenaline, or calcium deficiency. The potentiating effect on insulin release was not paralleled by effects on glucose oxidation or on islet fructose 1,6-diphosphate. However, the inhibitory action of iodoacetamide might be explained by inhibition of glycolysis as evidenced by an inhibition of glucose oxidation and a rise of fructose 1,6-diphosphate. The results support our previous hypothesis that thiol reagents can stimulate insulin release by acting on relatively superficial thiol groups in the beta-cell plasma membrane. Glycolysis seems to be necessary in order for iodoacetamide to stimulate in this way.  相似文献   

13.
Glucose regulates glucokinase activity in cultured islets from rat pancreas   总被引:6,自引:0,他引:6  
In this study, we have used isolated pancreatic islets cultured for 7 days in 3 or 30 mM glucose to explore whether glucokinase is induced or activated by high glucose concentrations and has related enzyme activity to glucose-stimulated insulin release. Islets cultured in low glucose medium or low glucose medium plus 350 ng/ml insulin did not respond to high glucose stimulation. Islets cultured in medium containing high glucose concentrations showed a high rate of basal insulin secretion when perifused with 5 mM glucose, and the insulin release was greatly augmented in a biphasic secretion profile when the glucose concentration was raised to 16 mM. Islet glucokinase and hexokinase activities were determined by a sensitive and specific fluorometric method. Glucokinase activity was reduced to approximately 50% in islets cultured in low glucose medium with or without insulin present compared to results with fresh islets. However, islets cultured in 30 mM glucose showed that glucokinase activity was elevated to 236% compared to results with fresh islets. It is concluded that (a) glucose is the physiological regulator of glucokinase in the islet of Langerhans and that (b) the activity of glucokinase plays a crucial role in glucose-induced insulin secretion.  相似文献   

14.
Digitoxose specifically and competitively inhibited glucose stimulated insulin release from islets of both lean and obese mice without affecting either the rate of glucose oxidation or the rate of glucose stimulated oxygen consumption. Obese mouse islets were marginally more resistant to the inhibitory effect of digitoxose than lean mouse islets. Digitoxose provides a means for dissociating glucose stimulated insulin release by isolated islets from their metabolism of glucose confirming that glucose metabolism per se is not a necessary prerequisite for the initiation of insulin release but is required to fuel the insulin secretory process.  相似文献   

15.
Islets of Langerhans, isolated from normal or 19-day pregnant rats, were cultured for 20 h at 37 degrees C in tissue culture medium 199. When islets were cultured in medium containing low glucose (5.5 mM), the higher adenylate cyclase activity and insulin secretory responses characteristic of islets from pregnant rats were maintained during the test period of 29 h. Islets from normal and pregnant rats were also cultured for 20 h in medium containing a very high glucose concentration (83.3 mM) in order to load the B cells with glycogen. It was found, after glycogen loading, that, while adenylate cyclase activity increased to a greater extent in islets from pregnant rats than controls, this activity was not increased in proportion to the striking changes in insulin release rate observed in pregnant rat islets. The results show that the difference in insulin secretory response between islets from normal and pregnant rats may be preserved when the islets are cultured for 20 h, and that these differences are enhanced for a variety of reasons after culture of islets in 83.3 mM glucose.  相似文献   

16.
The effects of phloretin on islet metabolism and insulin release have been studied in isolated pancreatic islets of the rat. At a concentration of 0.18 mM phloretin inhibited insulin release stimulated by glucose or leucine but did not affect the oxidation rates of glucose or leucine, the rate of glucose utilization and the islet content of ATP. Higher concentrations of phloretin caused inhibition of the rate of glucose metabolism, but stimulation of insulin release. Insulin release stimulated by phloretin was inhibited by mannoheptulose but was independent on extracellular Ca2+ and was not potentiated by caffeine. Both inhibitory and stimulatory effects of dextran-linked phloretin on insulin release were also seen; a concentration of dextran-linked phloretin that did not inhibit islet metabolism inhibited glucose-stimulated insulin release, but not release stimulated by leucine or glyceraldehyde. Higher concentrations of dextran-linked phloretin inhibited glucose oxidation but stimulated insulin release. These data are discussed in terms of current models of the beta-cell glucose-sensor mechanism.  相似文献   

17.
The transport and oxidation of glucose, the content of fructose 1,6-diphosphate, and the release of insulin were studied in microdissected pancreatic islets of ob/ob mice incubated in Krebs-Ringer bicarbonate medium. Under control conditions glucose oxidation and insulin release showed a similar dependence on glucose concentration with the steepest slope in the range 5-12mm. The omission of Ca(2+), or the substitution of choline ions for Na(+), or the addition of diazoxide had little if any effect on glucose transport. However, Ca(2+) or Na(+) deficiency as well as diazoxide (7-chloro-3-methyl-1,2,4-benzothiadiazine 1,1-dioxide) or ouabain partially inhibited glucose oxidation. These alterations of medium composition also increased the islet content of fructose 1,6-diphosphate, as did the addition of adrenaline. Phentolamine [2-N-(3-hydroxyphenyl)-p-toluidinomethyl-2-imidazoline] counteracted the effects of adrenaline and Ca(2+) deficiency on islet fructose 1,6-diphosphate. After equilibration in Na(+)-deficient medium, the islets exhibited an increase in basal insulin release whereas the secretory response to glucose was inhibited. The inhibitory effects of Na(+) deficiency on the secretory responses to different concentrations of glucose correlated with those on (14)CO(2) production. When islets were incubated with 17mm-glucose, the sudden replacement of Na(+) by choline ions resulted in a marked but transient stimulation of insulin release that was not accompanied by a demonstrable increase of glucose oxidation. Galactose and 3-O-methylglucose had no effect on glucose oxidation or on insulin release. The results are consistent with a metabolic model of the beta-cell recognition of glucose as insulin secretagogue and with the assumption that Ca(2+) or Na(+) deficiency, or the addition of adrenaline or diazoxide, inhibit insulin release at some step distal to stimulus recognition. In addition the results suggest that these conditions create a partial metabolic block of glycolysis in the beta-cells. Hence the interrelationship between the processes of stimulus recognition and insulin discharge may involve a positive feedback of secretion on glucose metabolism.  相似文献   

18.
The effects of phloretin on islet metabolism and insulin release have been studied in isolated pancreatic islets of the rat. At a concentration of 0.18 mM phloretin inhibited insulin release stimulated by glucose or leucine but did not affect the oxidation rates of glucose or leucine, the rate of glucose utilization and the islet content of ATP. Higher concentrations of phloretin caused inhibition of the rate of glucose metabolism, but stimulation of insulin release. Insulin release stimulated by phloretin was inhibited by mannoheptulose but was independent of extracellular Ca2+ and was not potentiated by caffeine. Both inhibitory and stimulatory effects of dextran-linked phloretin on insulin release were also seen; a concentration of dextran-linked phloretin that did not inhibit islet metabolism inhibited glucose-stimulated insulin release, but not release stimulated by leucine or glyceraldehyde. Higher concentrations of dextran-linked phloretin inhibited glucose oxidation but stimulated insulin release. These data are discussed in terms of current models of the β-cell glucose-sensor mechanism.  相似文献   

19.
The effects of quinine and 9-aminoacridine, two blockers of potassium conductance in islet cells, on 45Ca efflux and insulin release from perifused islets were investigated in order to elucidate the mechanisms by which glucose initially reduces 45Ca efflux and later stimulates calcium inflow in islet cells. In the absence of glucose, 100 μM quinine stimulated 45Ca net uptake, 45Ca outflow rate and insulin release. Quinine also dramatically enhanced the cationic and the secretory response to intermediate concentrations of glucose, but had little effect on 45Ca net uptake, 45Ca fractional outflow rate and insulin release at a high glucose concentration (16.7 mM). The ability of quinine to stimulate 45Ca efflux depended on the presence of extracellular calcium, suggesting that it reflects a stimulation of calcium entry in the islet cells. In the absence of extracellular calcium, quinine provoked a sustained decrease in 45Ca efflux. Such an inhibitory effect was not additive to that of glucose, and was reduced at low extracellular Na+ concentration. At a low concentration (5 μM), quinine, although reducing 86Rb efflux from the islets to the same extent as a non-insulinotropic glucose concentration (4.4 mM), failed to inhibit 45Ca efflux. In the presence of extracellular calcium, 9-aminoacridine produced an important but transient increase in 45Ca outflow rate and insulin release from islets perifused in the absence of glucose. In the absence of extracellular calcium, 9-aminoacridine, however, failed to reduced 45Ca efflux from perifused islets. It is concluded that quinine, by reducing K+ conductance, reproduces the effect of glucose to activate voltage-sensitive calcium channels and to stimulate the entry of calcium into the B-cell. However, the glucose-induced inhibition of calcium outflow rate, which may also participate in the intracellular accumulation of calcium, does not appear to be mediated by changes in K+ conductance.  相似文献   

20.
The effect of porcine vasoactive intestinal polypeptide (VIP) on development of the biphasic insulin release response in cultured fetal rat islets was investigated. Fetal islets, 21.5 days gestational age, were cultured for 7 days in RPMI 1640 culture medium containing either 2.8 or 11.1 mM glucose adn subsequently challenged with 16.7 mM glucose in a perfusion system. Islets were exposed to VIP at a final concentration of 13.2 nM by adding the peptide to the perifusion buffer (acute exposure) or by adding it to the culture medium throughout the culture period (chronic exposure). Islet hormone and DNA contents were also quantitated at the end of the culture period. Acute exposure to VIP resulted in no alterations of the insulin release pattern after culture in the presence of either glucose concentration. However, chronic treatment of islets with 13.2 nM VIP in the presence of 2.8 mM glucose resulted in significant increases in the maximum rate of insulin release during the first phase and the total amount of insulin release during both phases. Similarly, islets cultured in the presence of 11.1 mM glucose and 13.2 nM VIP demonstrated enhanced biphasic insulin release patterns with increased maximum rate and total amount of release during both phases. The presence of VIP and 2.8 mM glucose increased islet glucagon and somatostatin contents, but islet DNA and insulin contents remained unchanged. These findings indicate that VIP plays a significant role in the in vitro development of the biphasic insulin release pattern and may be a factor controlling the maturation of the fetal islet in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号