首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To take advantage of the ample potential for tissue regeneration by the newt, a technique to create transgenic newt was developed. The technique was based on a procedure for producing transgenic Xenopus, but modified to adapt to the different sperm morphology and to overcome the refractoriness of newt eggs to activation by normal cleavage. Sperm was collected from mature testes early in winter, permeabilized with digitonin, but without treatment of egg extract. Efficient egg activation was achieved by coinjection of inositol 1,4,5-trisphosphate (IP3) with DNA-sperm nucleus complex. Transgenic Cynops for EGFP/DsRed2 genes under the control of cytomegalovirus (CMV) enhancer/promoter showed nonmosaic widespread expression of reporter genes in embryos, swimming larvae, and adults after metamorphosis. Transgenic newt carrying EGFP gene under regulation of betaB1-crystallin promoter expressed the transgene uniquely in the lens. During lens regeneration after lens removal, EGFP expression occurred, reflecting the lens regeneration process. The newt transgenesis technique described here is likely to be of wide use in monitoring and manipulating gene expression in the study of molecular mechanisms underlying tissue regeneration.  相似文献   

2.
Total regeneration of experimentally excised lens from the dorsal part of the iris-pigmented epithelium of newts has been a key model of tissue regeneration via cells originating from a foreign tissue. Due to the strict spatial restriction of the lens origin in the newt iris, it has often been assumed that only the dorsal iris cells are endowed with an intrinsic potential to give rise to lens tissues. However, our reinvestigation of the process revealed completely different mechanisms underlying lens regeneration and its spatial restriction, comprising the following two steps: (i) Fibroblast growth factor (FGF) 2-dependent proliferation of iris-pigmented epithelium and activation of early lens genes ( Pax6, Sox2, MafB ) over the entire circumference of the iris; and (ii) dorsal iris-restricted activation of the canonical Wnt signals (involving Wnt2b and Frizzeld4) that leads to localized expression of late lens genes ( Prox1, Sox1, β-crystallin ). Injection of FGF2 into normal eyes specifically elicited the second lens development from the dorsal iris, and the administration of recombinant Wnt3a to the cultured iris-pigmented epithelium caused even ventral iris-derived lens development. Thus, it is concluded that the regulation of FGF2 and Wnt signals is a determinative of the iris-derived lens regeneration in the newt eye.  相似文献   

3.
Lens regeneration from non-lens ocular tissues has been well documented in amphibians, from the dorsal iris in the newt and from the outer cornea in Xenopus. To understand the early molecular events which govern lens regeneration, we examined the expression of two early marker genes of normal lens development, Pax-6 and Prox 1. In both Cynops (newt) iris and Xenopus cornea, Pax-6 is expressed soon after lentectomy in a region broader than that giving rise to the regenerating lens, indicative of an important role for Pax-6 in determination of the regeneration potential. Then Prox 1 expression begins within the Pax-6-expressing tissue, and these Prox 1-expressing cells give rise to the regenerating lens. This sequence of events also takes place in the lens placode of the embryo, indicating that the presence of the same genetic program operates in both embryonic lens development and lens regeneration, at least partly. In the Cynops iris, Pax-6 expression occurs initially in the entire marginal region of the iris after lentectomy but then becomes restricted to the dorsal region. Further studies are expected to elucidate the mechanism of this long-standing problem of the dorsal-restriction of lens regeneration from the newt iris.  相似文献   

4.
In this paper we describe the basic process of lens regeneration in adult newt and we pinpoint several issues in order to obtain a comprehensive understanding of this ability, which is restricted to only a few salamanders. The process is characterized by dynamic changes in the organization of the extracellular matrix in the eye, re-entering of the cell cycle and dedifferentiation of the dorsal iris pigment epithelial cells. The ability of the dorsal iris to contribute to lens regeneration is discussed in light of iris-specific gene expression as well as in relation to factors present in the eye.  相似文献   

5.
6.
Salamanders like newt and axolotl possess the ability to regenerate many of its lost body parts such as limbs, the tail with spinal cord, eye, brain, heart, the jaw 1. Specifically, newts are unique for its lens regeneration capability. Upon lens removal, IPE cells of the dorsal iris transdifferentiate to lens cells and eventually form a new lens in about a month 2,3. This property of regeneration is never exhibited by the ventral iris cells. The regeneration potential of the iris cells can be studied by making transplants of the in vitro cultured IPE cells. For the culture, the dorsal and ventral iris cells are first isolated from the eye and cultured separately for a time period of 2 weeks (Figure 1). These cultured cells are reaggregated and implanted back to the newt eye. Past studies have shown that the dorsal reaggregate maintains its lens forming capacity whereas the ventral aggregate does not form a lens, recapitulating, thus the in vivo process (Figure 2) 4,5. This system of determining regeneration potential of dorsal and ventral iris cells is very useful in studying the role of genes and proteins involved in lens regeneration.  相似文献   

7.
8.
A study was made of proliferative activity and transdifferentiation of the cells of retinal pigment epithelium (RPE) cultivated in the cavity of the lensectomized eye of adult newt. Implantation of the newt RPE together with vascular membrane and scleral coat resulted in the regeneration of retina. In this process the character of changes in the proliferative activity of RPE and differentiation of retinal cells were the same as in the regeneration of retina in situ. RPE implanted with the vascular membrane alone, despite a high level of proliferation during the first ten days of cultivation, no differentiated retina was formed. Possible causes of these differences are discussed, and the comparison is made of the data obtained with those on RPE cultivation in vitro. After lens removal, with RPE implants present in the eye cavity, in addition to the regenerated lens, 2-3 extra lenses and retina were formed from the cells of the inner layer of the recipient's dorsal iris. Also some cases were revealed of lens formation from the cells of ventral iris. With a complete detachment of the recipient's retina (an after-effect of transplantation) a second differentiated retina regenerated in situ from the recipient's RPE cells.  相似文献   

9.
Although it is generally assumed that the lens regenerated in the newt eye after complete lentectomy is formed by cells derived from the dorsal iris epithelium, experimental evidence so far obtained for this transformation does not rule out participation of cells from the dorsal iris stroma. When the normal dorsal iris epithelium of adult Notophthalmus (Triturus) viridescens was isolated and cultured in the presence of frog retinal complex, newt lens tissue was produced in 88% of cultures. These lens tissues were positive for immunofluorescence for lens-fiber-specific gamma crystallins as well as for total lens protein. On the basis of a study of stromal cells contaminating the samples of dorsal iris epithelium and a test for the lens-forming capacity in vitro of the dorsal iris stroma in the presence of frog retinal complex, it is concluded that lens formation observed in the above experiment is not dependent on the contaminating stromal cells. This implies that, in Wolffian lens regeneration, fully differentiated adult cells completely withdrawn from the cell cycle are transformed into another cell type. An additional culture experiment demonstrated that lens-forming capacity is not restricted to the dorsal half of the iris epithelium, but extends into its ventral half.  相似文献   

10.
Upon lentectomy of adult newt eyes, the dorsal iris epithelium produces a cell population that develops into a new lens. The tissue transformation can be completed not only in the isolated lentectomized eye cultured as a whole, but also in the isolated newt normal dorsal iris combined with the retina of frog larvae in vitro. In this study, 93% of such cultures produced lens tissue made up of newt cells. Well-differentiated lens fibre cells were formed which showed positive immunofluorescence for gamma crystallins. When the isolated dorsal iris epithelium was cultured under the same conditions, well-differentiated lens tissue was again formed in 95% of the cases, suggesting that iris epithelial cells and not iris stromal cells are responsible for lens formation. In contrast, the combination of newt ventral iris with frog retina did not produce any newt lens tissue. No lens tissue was produced when the dorsal iris was cultured with newt spleen or lung, although a considerable number of iris epithelial cells became depigmented. Isolated normal dorsal iris or normal dorsal iris epithelium cultured alone infrequently produced a population of depigmented cells but failed to form lens tissue. On the basis of the present and earlier data, it is concluded that in Wolffian lens regeneration in situ , interaction of the iris epithelial cells with the retina plays a decisive role. However, it is suggested that the iris epithelial cells may have an inherent tendency towards lens formation, and that the factor(s) from the retina facilitates the realization of this tendency, rather than instructing the cells to produce lens. The reported experiments provide the first direct evidence for the existence of cellular metaplasia by demonstrating transformation of fully differentiated iris epithelial cells into lens cells.  相似文献   

11.
A novel role of the hedgehog pathway in lens regeneration   总被引:4,自引:0,他引:4  
Lens regeneration in the adult newt is a classic example of replacing a lost organ by the process of transdifferentiation. After lens removal, the pigmented epithelial cells of the dorsal iris proliferate and dedifferentiate to form a lens vesicle, which subsequently differentiates to form a new lens. In searching for factors that control this remarkable process, we investigated the expression and role of hedgehog pathway members. These molecules are known to affect retina and pigment epithelium morphogenesis and have been recently shown to be involved in repair processes. Here we show that Shh, Ihh, ptc-1, and ptc-2 are expressed during lens regeneration. The expression of Shh and Ihh is quite unique since these genes have never been detected in lens. Interestingly, both Shh and Ihh are only expressed in the regenerating and developing lens, but not in the intact lens. Interfering with the hedgehog pathway results in considerable inhibition of the process of lens regeneration, including decreased cell proliferation as well as interference with lens fiber differentiation in the regenerating lens vesicle. Down-regulation of ptc-1 was also observed when inhibiting the pathway. These results provide the first evidence of a novel role for the hedgehog pathway in specific regulation of the regenerating lens.  相似文献   

12.
13.
The newt is one of the few organisms that is able to undergo lens regeneration as an adult. This review will examine the signaling pathways that are involved in this amazing phenomenon. In addition to outlining the current research involved in elucidating the key signaling molecules in lens regeneration, we will also highlight some of the similarities and differences between lens regeneration and development.  相似文献   

14.
In newt lens regeneration, the dorsal iris has lens forming ability and the ventral iris has no such capability, whereas there is no difference in the morphological criteria. To investigate the real aspects of this characteristic lens regeneration in the newt at the cellular level, a useful model system was constructed by transplanting the dorsal and ventral reaggregate derived from singly dissociated pigmented epithelial cells of the iris into the blastema of the forelimb in the newt. The lens was formed from the dorsal reaggregate with high efficiency, but not from the ventral one. No lens formation was observed in the implantation of the reaggregate into the tissue of the intact limbs. In detailed examination of the process of lens formation from the reaggregate, it was shown that tubular formation was the first step in the rearrangement of cells within the reaggregate. This was followed by depigmentation, vesicle formation with active cell growth, and the final step was lens fiber formation by transdifferentiation of epithelial cells composing the lens vesicle. The process was almost the same as in situ lens regeneration except the reconstitution of the two-layered epithelial structure was embodied as flattened tubular formation in the first step. The present study made it possible for the first time to examine lens forming ability in the reaggregate mixed with dorsal and ventral cells, because the formation of a reaggregate was started from singly dissociated cells of the dorsal and ventral cells of the iris. Mixed reaggregate experiments indicated that the existence of the dorsal cells in a cluster within the reaggregate is important in lens formation, and ventral cells showed an inhibitory effect on the formation. The present study demonstrated that the limb system thus constructed was effective for the analysis of lens formation at the cellular level and made it possible to examine the role of dorsal and ventral cells in lens regeneration.  相似文献   

15.
Some urodele amphibians possess the capacity to regenerate their body parts, including the limbs and the lens of the eye. The molecular pathway(s) involved in urodele regeneration are largely unknown. We have previously suggested that complement may participate in limb regeneration in axolotls. To further define its role in the regenerative process, we have examined the pattern of distribution and spatiotemporal expression of two key components, C3 and C5, during limb and lens regeneration in the newt Notophthalmus viridescens. First, we have cloned newt cDNAs encoding C3 and C5 and have generated Abs specifically recognizing these molecules. Using these newt-specific probes, we have found by in situ hybridization and immunohistochemical analysis that these molecules are expressed during both limb and lens regeneration, but not in the normal limb and lens. The C3 and C5 proteins were expressed in a complementary fashion during limb regeneration, with C3 being expressed mainly in the blastema and C5 exclusively in the wound epithelium. Similarly, during the process of lens regeneration, C3 was detected in the iris and cornea, while C5 was present in the regenerating lens vesicle as well as the cornea. The distinct expression profile of complement proteins in regenerative tissues of the urodele lens and limb supports a nonimmunologic function of complement in tissue regeneration and constitutes the first systematic effort to dissect its involvement in regenerative processes of lower vertebrate species.  相似文献   

16.
白内障摘除联合人工晶状体植入术是目前治疗白内障的唯一有效措施。然而,人工晶状体作为替代材料,仍然存在一些如屈光调节力差以及术后眩光等未能克服的缺陷。寻找更理想的晶状体替代物及低等两栖类动物(如蝾螈)强大的晶状体再生能力,为晶状体再生的研究提供了原动力和依据。近年来,人们已探索出将胚胎干细胞/诱导的多能干细胞在体外诱导分化为类晶状体样结构的培养方法,为白内障的治疗开辟了新的思路。晶状体再生的研究为探索晶状体正常发育机制及晶状体疾病的发生和防治提供了新的平台。晶状体再生的成功也将为白内障的防治带来里程碑性的突破。本文拟总结晶状体正常发育过程及其调控机制,回顾国内外对晶状体体内再生能力的研究成果,并对目前人们探索利用胚胎干细胞和诱导的多能干细胞再造晶状体的研究进展作一概述,希望对干细胞与晶状体再生的后续相关研究提供一定的借鉴。  相似文献   

17.
We examined whether lymphangiogenesis is essential for the process of lens destruction and subsequent remodeling in the newt eye. Lens regeneration was induced by pricking the lens once with a needle through the cornea. The results showed that the formation of the vacuoles which was mediated by lysosomes occurred in the original lens on 8 days after pricking, and histolysis of the lens was induced 24 h later. At that time, new lymphatic vessels appeared in the normally avascular cornea. Immunofluorescence studies revealed the expression of VEGF receptor not only on the cells in the central cornea but also on those in the dorsal iris. Moreover, dendritic cells (DCs) migrated from the peripheral to the central regions in the cornea to engulf the remains of the lens. Next, to determine the extent to which the DCs are important for lens regeneration, we transplanted the DCs that had engulfed the remains of the lens into the eyeball of the normal animals. Interestingly, lens regeneration began in the dorsal iris of eyeballs into which the DCs were transplanted and also in those in which no DCs were transplanted. However, surgical removal of the spleen of the recipient animals prior to transplantation resulted in both a failure of both the VEGFR expression in the dorsal iris and a failure of the novel regeneration.  相似文献   

18.
The red-spotted newt has the ability to fully regenerate complex structures by creating a pool of dedifferentiated cells that arise in response to tissue injury. An understanding of the mechanisms involved in the regenerative ability of the newt is limited by a lack of characterized assays. This deficiency includes the cloning and validation of housekeeping genes for normalizing gene expression data. We describe the cloning, characterization and real-time quantitative PCR evaluation of the normalization potential of the newt homologues of cytoplasmic beta-actin and GAPDH during newt limb regeneration and within the blastemal B1H1 cell line. Nvbeta-actin demonstrates a heterogeneous expression during limb regeneration and may be associated with differentiation state. The level of Nvbeta-actin expression in B1H1 cultures under conditions of myogenesis and serum resupplementation varies with the treatment. NvGAPDH is ubiquitously expressed during limb regeneration and within B1H1 cultures and does not demonstrate overall variations in expression levels. Thus, NvGAPDH is a more appropriate normalization factor in gene expression analyses during limb regeneration and treatments of B1H1 cultures.  相似文献   

19.
When a lens is removed from the newt eye, a new lens is regenerated from the pigmented epithelial cells of the dorsal iris, whereas the ventral iris never shows such an ability. It is important to clarify the nature of signaling molecules which act directly on the iris cells to accomplish lens regeneration from the iris and also to gain insight into the mechanism of dorso-ventral difference of the regeneration potential. To examine the effects of exogenous factors, we established an in vitro culture of reaggregates made from dissociated pigmented epithelial cells of dorsal or ventral halves of newt iris. Foci of depigmented cells appeared within the cell reaggregates, regardless of their origins, when the cell reaggregates were cultured with FGF2 or FGF4. In contrast, only the depigmented cells in the dorsal iris cell reaggregates underwent extensive proliferation and developed a lens with the synthesis of lens-specific crystallins, recapitulating the normal lens regeneration. On the other hand, neither FGF8, FGF10, EGF, VEGF, nor IGF promoted lens development from iris cell reaggregates. Consistent with the FGF-specific action, FGFR-specific inhibitor SU5402 suppressed the lens development from the cultured cell reaggregates. These results demonstrated that FGF2 or FGF4 is essential for the in vitro lens regeneration from the pigmented cells of the dorsal iris. In addition, these findings indicated that unequal competence in the dorsal and ventral iris to FGF2/4 contributes to the difference in lens forming ability between them.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号