首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Lew S  Ren J  London E 《Biochemistry》2000,39(32):9632-9640
To explore the influence of amino acid composition on the behavior of membrane-inserted alpha-helices, we examined the behavior of Lys-flanked polyleucyl (pLeu) helices containing a single polar/ionizable residue within their hydrophobic core. To evaluate the location of the helices within the membrane by fluorescence, each contained a Trp residue at the center of the sequence. When incorporated into dioleoylphosphatidylcholine (DOPC) model membrane vesicles, pLeu helices with or without a single Ser, Asn, Lys, or Asp residue in the hydrophobic core maintained a transmembrane state (named the N state) at neutral and acidic pH. In this state, the central Trp exhibited highly blue-shifted fluorescence, and fluorescence quenching by nitroxide-labeled lipids showed it located at the bilayer center. A state in which Trp fluorescence red-shifted by several nanometers (named the B state) was observed above pH 10-11. B state formation appears to result from deprotonation of the flanking Lys residues. Despite the red shift in Trp emission, fluorescence quenching showed that in the B state the Trp at most is only slightly shallower than in the N state, suggesting the B state also is a transmembrane or near-transmembrane structure. The B state is characterized by increased helix oligomerization, as shown by the dependence of Trp lambda(max) on the concentration of the peptide within the bilayer at high pH. The pLeu peptide with a Asp residue in the core underwent a pH-dependent transition at a lower pH than the other peptides (pH 8-9). At high pH, it exhibited both a more highly red-shifted fluorescence and shallower Trp location than the other peptides. This state (named the S state) did not exhibit a concentration-dependent Trp lambda(max). We attribute S state behavior to the formation of a charged Asp residue at high pH, and a consequent movement of the Asp toward the membrane surface, resulting in the formation of a nontransmembrane state. We conclude that a polar or ionizable residue can readily be tolerated in a single transmembrane helix, but that the charges on ionizable residues in the core and regions flanking the helix significantly modulate the stability of transmembrane insertion and/or helix-helix association.  相似文献   

2.
Ni Z  Bikadi Z  Shuster DL  Zhao C  Rosenberg MF  Mao Q 《Biochemistry》2011,50(37):8057-8066
The human breast cancer resistance protein (BCRP/ABCG2) confers multidrug resistance and mediates the active efflux of drugs and xenobiotics. BCRP contains one nucleotide-binding domain (NBD) followed by one membrane-spanning domain (MSD). We investigated whether prolines in or near the transmembrane helices are essential for BCRP function. Six proline residues were substituted with alanine individually, and the mutants were stably expressed in Flp-In(TM)-293 cells at levels comparable to that of wild-type BCRP and predominantly localized on the plasma membrane of the cells. While P392A showed a significant reduction (35-50%) in the efflux activity of mitoxantrone, BODIPY-prazosin, and Hoechst 33342, P485A exhibited a significant decrease of approximately 70% in the efflux activity of only BODIPY-prazosin. Other mutants had no significant changes in the efflux activities of these substrates. Drug resistance profiles of the cells expressing the mutants correlated well with the efflux data. ATPase activity was not substantially affected for P392A or P485A compared to that of wild-type BCRP. These results strongly suggest Pro(392) and Pro(485) are important in determining the overall transport activity and substrate selectivity of BCRP, respectively. Prazosin differentially affected the binding of 5D3, a conformation-sensitive antibody, to wild-type BCRP, P392A, or P485A in a concentration-dependent manner. In contrast, mitoxantrone had no significant effect on 5D3 binding. Homology modeling indicates that Pro(392) may play an important role in the communication between the MSD and NBD as it is predicted to be located at the interface between the two functional domains, and Pro(485) induces flexible hinges that may be essential for the broad substrate specificity of BCRP.  相似文献   

3.
Fusion proteins were constructed between the alpha(2A)-adrenoceptor and the alpha-subunit of the G-protein G(i1). Mutation of the highly conserved Asp(79) in transmembrane (TM) helix 2 of the receptor to Asn reduced the capacity of agonists to activate G(i1)alpha by 95% without altering [3H]antagonist or agonist ligand-binding affinity. A reciprocal mutation in TM helix 7 (Asn(422)Asp) was without effect on signalling effectiveness. Combination of these two mutations overcame the effect of the Asp(79)Asp mutation. By examining alterations in this helix 2-helix 7 microdomain, we further demonstrate the utility of receptor-G-protein fusion proteins to quantitate mutational effects on receptor-G-protein interactions and information transfer.  相似文献   

4.
To better understand the mechanism of interactions between G-protein-coupled melatonin receptors and their ligands, our previously reported homology model of human MT2 receptor with docked 2-iodomelatonin was further refined and used to select residues within TM3, TM6, and TM7 potentially important for receptor-ligand interactions. Selected residues were mutated and radioligand-binding assay was used to test the binding affinities of hMT2 receptors transiently expressed in HEK293 cells. Our data demonstrate that residues N268 and A275 in TM6 as well as residues V291 and L295 in TM7 are essential for 2-iodomelatonin binding to the hMT2 receptor, while TM3 residues M120, G121, V124, and I125 may participate in binding of other receptor agonists and/or antagonists. Presented data also hint at possible specific interaction between the side-chain of Y188 in second extracellular loop and N-acetyl group of 2-iodomelatonin.  相似文献   

5.
The octapeptide hormone, angiotensin II (Ang II), exerts its major physiological effects by activating AT(1) receptors. In vivo Ang II is degraded to bioactive peptides, including Ang III (angiotensin-(2-8)) and Ang IV (angiotensin-(3-8)). These peptides stimulate inositol phosphate generation in human AT(1) receptor expressing CHO-K1 cells, but the potency of Ang IV is very low. Substitution of Asn(111) with glycine, which is known to cause constitutive receptor activation by disrupting its interaction with the seventh transmembrane helix (TM VII), selectively increased the potency of Ang IV (900-fold) and angiotensin-(4-8), and leads to partial agonism of angiotensin-(5-8). Consistent with the need for the interaction between Arg(2) of Ang II and Ang III with Asp(281), substitution of this residue with alanine (D281A) decreased the peptide's potency without affecting that of Ang IV. All effects of the D281A mutation were superseded by the N111G mutation. The increased affinity of Ang IV to the N111G mutant was also demonstrated by binding studies. A model is proposed in which the Arg(2)-Asp(281) interaction causes a conformational change in TM VII of the receptor, which, similar to the N111G mutation, eliminates the constraining intramolecular interaction between Asn(111) and TM VII. The receptor adopts a more relaxed conformation, allowing the binding of the C-terminal five residues of Ang II that switches this "preactivated" receptor into the fully active conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号