首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We have analyzed the pathfinding of thalamocortical axons (TCAs) from dorsal thalamus to neocortex in relation to specific cell domains in the forebrain of wild-type and Mash-1-deficient mice. In wild-type mice, we identified four cell domains that constitute the proximal part of the TCA pathway. These domains are distinguished by patterns of gene expression and by the presence of neurons retrogradely labeled from dorsal thalamus. Since the cells that form these domains are generated in forebrain proliferative zones that express high levels of Mash-1, we studied Mash-1 mutant mice to assess the potential roles of these domains in TCA pathfinding. In null mutants, each of the domains is altered: the two Pax-6 domains, one in ventral thalamus and one in hypothalamus, are expanded in size; a complementary RPTP(delta) domain in ventral thalamus is correspondingly reduced and the normally graded expression of RPTP(delta) in that domain is no longer apparent. In ventral telencephalon, a domain characterized in the wild type by Netrin-1 and Nkx-2.1 expression and by retrogradely labeled neurons is absent in the mutant. Defects in TCA pathfinding are localized to the borders of each of these altered domains. Many TCAs fail to enter the expanded, ventral thalamic Pax-6 domain that constitutes the most proximal part of the TCA pathway, and form a dense whorl at the border between dorsal and ventral thalamus. A proportion of TCAs do extend further distally into ventral thalamus, but many of these stall at an aberrant, abrupt border of high RPTP(delta) expression. A small proportion of TCAs extend around the RPTP(delta) domain and reach the ventral thalamic-hypothalamic border, but few of these axons turn at that border to extend into the ventral telencephalon. These findings demonstrate that Mash-1 is required for the normal development of cell domains that in turn are required for normal TCA pathfinding. In addition, these findings support the hypothesis that ventral telencephalic neurons and their axons guide TCAs through ventral thalamus and into ventral telencephalon.  相似文献   

3.
Thalamocortical axons (TCAs), which originate in dorsal thalamus, project ventrally in diencephalon and then dorsolaterally in ventral telencephalon to their target, the neocortex. To elucidate potentially key decision points in TCA pathfinding and hence the possible localization of guidance cues, we used DiI-tracing to describe the initial trajectory of TCAs in mice. DiI-labeled TCAs extend ventrally on the lateral surface of ventral thalamus. Rather than continuing this trajectory onto the lateral surface of the hypothalamus, TCAs make a sharp lateral turn into ventral telencephalon. This behavior suggests that the hypothalamus is repulsive and the ventral telencephalon attractive for TCAs. In support of this hypothesis, we find that axon outgrowth from explants of dorsal thalamus is biased away from hypothalamus and toward ventral telencephalon when cocultured at a distance in collagen gels. The in vivo DiI analysis also reveals a broad cluster of retrogradely labeled neurons in the medial part of ventral telencephalon positioned within or adjacent to the thalamocortical pathway prior to or at the time TCAs are extending through it. The axons of these neurons extend into or through dorsal thalamus and appear to be coincident with the oppositely extending TCAs. These findings suggest that multiple cues guide TCAs along their pathway from dorsal thalamus to neocortex: TCAs may fasciculate on the axons of ventral telencephalic neurons as they extend through ventral thalamus and the medial part of ventral telencephalon, and chemorepellent and chemoattractant activities expressed by hypothalamus and ventral telencephalon, respectively, may cooperate to promote the turning of TCAs away from hypothalamus and into ventral telencephalon.  相似文献   

4.
The prevailing model to explain the formation of topographic projections in the nervous system stipulates that this process is governed by information located within the projecting and targeted structures. In mammals, different thalamic nuclei establish highly ordered projections with specific neocortical domains and the mechanisms controlling the initial topography of these projections remain to be characterized. To address this issue, we examined Ebf1(-/-) embryos in which a subset of thalamic axons does not reach the neocortex. We show that the projections that do form between thalamic nuclei and neocortical domains have a shifted topography, in the absence of regionalization defects in the thalamus or neocortex. This shift is first detected inside the basal ganglia, a structure on the path of thalamic axons, and which develops abnormally in Ebf1(-/-) embryos. A similar shift in the topography of thalamocortical axons inside the basal ganglia and neocortex was observed in Dlx1/2(-/-) embryos, which also have an abnormal basal ganglia development. Furthermore, Dlx1 and Dlx2 are not expressed in the dorsal thalamus or in cortical projections neurons. Thus, our study shows that: (1) different thalamic nuclei do not establish projections independently of each other; (2) a shift in thalamocortical topography can occur in the absence of major regionalization defects in the dorsal thalamus and neocortex; and (3) the basal ganglia may contain decision points for thalamic axons' pathfinding and topographic organization. These observations suggest that the topography of thalamocortical projections is not strictly determined by cues located within the neocortex and may be regulated by the relative positioning of thalamic axons inside the basal ganglia.  相似文献   

5.
6.
Recent studies have demonstrated that the topography of thalamocortical (TC) axon projections is initiated before they reach the cortex, in the ventral telencephalon (VTel). However, at this point, the molecular mechanisms patterning the topography of TC projections in the VTel remains poorly understood. Here, we show that a long-range, high-rostral to low-caudal gradient of Netrin-1 in the VTel is required in vivo for the topographic sorting of TC axons to distinct cortical domains. We demonstrate that Netrin-1 is a chemoattractant for rostral thalamic axons but functions as a chemorepulsive cue for caudal thalamic axons. In accordance with this model, DCC is expressed in a high-rostromedial to low-caudolateral gradient in the dorsal thalamus (DTh), whereas three Unc5 receptors (Unc5A–C) show graded expression in the reverse orientation. Finally, we show that DCC is required for the attraction of rostromedial thalamic axons to the Netrin-1–rich, anterior part of the VTel, whereas DCC and Unc5A/C receptors are required for the repulsion of caudolateral TC axons from the same Netrin-1–rich region of the VTel. Our results demonstrate that a long-range gradient of Netrin-1 acts as a counteracting force from ephrin-A5 to control the topography of TC projections before they enter the cortex.  相似文献   

7.
The mechanisms generating precise connections between specific thalamic nuclei and cortical areas remain poorly understood. Using axon tracing analysis of ephrin/Eph mutant mice, we provide in vivo evidence that Eph receptors in the thalamus and ephrins in the cortex control intra-areal topographic mapping of thalamocortical (TC) axons. In addition, we show that the same ephrin/Eph genes unexpectedly control the inter-areal specificity of TC projections through the early topographic sorting of TC axons in an intermediate target, the ventral telencephalon. Our results constitute the first identification of guidance cues involved in inter-areal specificity of TC projections and demonstrate that the same set of mapping labels is used differentially for the generation of topographic specificity of TC projections between and within individual cortical areas.  相似文献   

8.
9.
10.
Thalamocortical projections in mammals must travel through a considerable portion of the newly formed subdivisions of the embryonic forebrain. They descend through the ventral thalamus, advance in the internal capsule amongst cells which already possess dorsal thalamic projections, traverse the striatocortical junction, and then reach the cerebral cortex by associating with subplate cells and their early corticofugal fibers. The interactions of the thalamocortical projections with early generated, largely transient cells of these regions are believed to play a crucial role in their deployment. These ideas are supported by recent work on reeler and other strains of mutant mice. While we are beginning to understand the basic pattern of the cellular and molecular interactions employed in mammalian thalamocortical development, comparative developmental studies hold the promise to reveal the underlying logic of these steps and the evolutionary origin of the mammalian cerebral cortex.  相似文献   

11.
12.
13.
Summary We have investigated the central connections of the classical olfactory system in the weakly electric fish Gnathonemus petersii using HRP and cobalt labelling techniques. The olfactory bulb projects bilaterally via the medial and lateral olfactory tracts to restricted areas of the telencephalon, namely to its rostromedial, lateral and posterior medial parts. The most extensive telencephalic target is the posterior terminal field, which arcs around the lateral forebrain bundle at levels posterior to the anterior commissure. Projections to the contralateral hemisphere cross in the ventral telencephalon rostral to the anterior commissure and via the posterior dorsal part of the anterior commissure; endings are also present within the anterior commissure. Bilateral projections to the preoptic area, to the nucleus posterior tuberis and to an area in the thalamus are apparent. In all cases, contralateral projections are less extensive than those on the side ipsilateral to the injected bulb. A projection via the medial olfactory tract can be followed to the contralateral bulb. Following injections into the olfactory bulb, retrogradely labelled neurons are found in the contralateral bulb and in six telencephalic areas; they are also present in the periventricular diencephalon and in an area lateral to the nucleus posterior tuberis. The present results support the suggestion that a reduction in olfactory input to the telencephalon occurs together with increased telencephalic differentiation in actinopterygian fishes.  相似文献   

14.
15.
16.
17.
Considerable data suggest that sonic hedgehog (Shh) is both necessary and sufficient for the specification of ventral pattern throughout the nervous system, including the telencephalon. We show that the regional markers induced by Shh in the E9.0 telencephalon are dependent on the dorsoventral and anteroposterior position of ectopic Shh expression. This suggests that by this point in development regional character in the telencephalon is established. To determine whether this prepattern is dependent on earlier Shh signaling, we examined the telencephalon in mice carrying either Shh- or Gli3-null mutant alleles. This analysis revealed that the expression of a subset of ventral telencephalic markers, including Dlx2 and Gsh2, although greatly diminished, persist in Shh(-/-) mutants, and that these same markers were expanded in Gli3(-/-) mutants. To understand further the genetic interaction between Shh and Gli3, we examined Shh/Gli3 and Smoothened/Gli3 double homozygous mutants. Notably, in animals carrying either of these genetic backgrounds, genes such as Gsh2 and Dlx2, which are expressed pan-ventrally, as well as Nkx2.1, which demarcates the ventral most aspect of the telencephalon, appear to be largely restored to their wild-type patterns of expression. These results suggest that normal patterning in the telencephalon depends on the ventral repression of Gli3 function by Shh and, conversely, on the dorsal repression of Shh signaling by Gli3. In addition these results support the idea that, in addition to hedgehog signaling, a Shh-independent pathways must act during development to pattern the telencephalon.  相似文献   

18.
Sonic hedgehog (Shh) secreted from the axial signaling centers of the notochord and prechordal plate functions as a morphogen in dorsoventral patterning of the neural tube. Active Shh is uniquely cholesterol-modified and the hydrophobic nature of cholesterol suggests that it might regulate Shh spreading in the neural tube. Here, we examined the capacity of Shh lacking the cholesterol moiety (ShhN) to pattern different cell types in the telencephalon and spinal cord. In mice expressing ShhN, we detected low-level ShhN in the prechordal plate and notochord, consistent with the notion that ShhN can rapidly spread from its site of synthesis. Surprisingly, we found that low-level ShhN can elicit the generation of a full spectrum of ventral cell types in the spinal cord, whereas ventral neuronal specification and ganglionic eminence development in the Shh(N/-) telencephalon were severely impaired, suggesting that telencephalic patterning is more sensitive to alterations in local Shh concentration and spreading. In agreement, we observed induction of Shh pathway activity and expression of ventral markers at ectopic sites in the dorsal telencephalon indicative of long-range ShhN activity. Our findings indicate an essential role for the cholesterol moiety in restricting Shh dilution and deregulated spread for patterning the telencephalon. We propose that the differential effect of ShhN in patterning the spinal cord versus telencephalon may be attributed to regional differences in the maintenance of Shh expression in the ventral neuroepithelium and differences in dorsal tissue responsiveness to deregulated Shh spreading behavior.  相似文献   

19.
OL-protocadherin is a member of the non-clustered-type protocadherin family. A recent study of ours showed that it is essential not only for growth of striatal axons but also for higher ordered neural circuit formation in the ventral telencephalon. The phenotype of OL-protocadherin-deficient mice is striking: several major neural pathways such as thalamocortical pathway, corticothalamic pathway, corticospinal pathway and strionigral pathway were misrouted and/or congested in the ventral telencephalon. Moreover, we detected abnormal patterning of putative guidance cues for thalamocortical axons such as the Nkx2.1+ cell domain and permissive "corridor" in the ventral telencephalon. Analyses of the expression pattern and phenotypes suggested that deficiency of striatal axons is the primary cause of these phenotypes. With these observations in mind, we proposed a novel hypothesis that proper growth of striatal axons is essential in patterning guidance cues and subsequent formation of neural circuits in the ventral telencephalon. This hypothesis will open a new possibility to reveal the unknown mechanism of neural circuit formation in the ventral telencephalon.  相似文献   

20.
Injection of horseradish peroxidase into the basal macrocellular and lateral nuclei of the amygdaloid complex (BLAC) in the cat brain has revealed their rich thalamic afferentation. On the BLAC there are massive projections of: a) nuclei of the middle line of the precommissural pole of the dorsal thalamus (anterior parts of the paratenial, interanteromedial and reunial nuclei), as well as the whole anterior paraventricular nucleus, medial part of the ventral posteromedial nucleus; b) postcommissural nuclei of the dorsal thalamus; some "nonacustical" nuclei of the internal geniculate body (ventrolateral nucleus, medial and macrocellular parts and the most caudal end of the internal geniculate body). Rather essential are projections of the "posterior group nuclei", those of the suprageniculate nucleus, of some parts of the ventral thalamus (subparafascicular nucleus, marginal and peripeduncular nuclei) and parabrachial nucleus. Scattered single projections are obtained from all hypothalamic parts (most of all the ventromedial nucleus), reticular nuclei of the septum, substantia innominata, substantia nigra, truncal nuclei of the raphe. Variety of the dorsal thalamic nuclei, sending their fibers to the BLAC reflects variety of sensory information, that gets here, according to its modality, degree of its differentiation and integrity. A number of the dorsal thalamus nuclei, owing to abundance of labelled neurons, can be considered as special relay thalamic nuclei for the BLAC resembling corresponding relay nuclei for the new cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号