共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
《Epigenetics》2013,8(7):578-582
Across the genome, outside of a small number of known imprinted genes and regions subject to X-inactivation in females, DNA methylation at CpG dinucleotides is often assumed to be complementary across both alleles in a diploid cell. However, recent findings suggest the reality is more complex, with the discovery that allele-specific methylation (ASM) is a common feature across the genome. A key observation is that the majority of ASM is associated with genetic variation in cis, although a noticeable proportion is also non-cis in nature and mediated, for example, by parental origin. ASM appears to be both quantitative, characterized by subtle skewing of DNA methylation between alleles, and heterogeneous, varying across tissues and between individuals. These findings have important implications for complex disease genetics; whilst cis-mediated ASM provides a functional consequence for non-coding genetic variation, heterogeneous and quantitative ASM complicates the identification of disease-associated loci. We propose that non-cis ASM could contribute toward the ‘missing heritability’ of complex diseases, rendering certain loci hemizygous and masking the direct association between genotype and phenotype. We suggest that the interpretation of results from genomewide association studies can be improved by the incorporation of epi-allelic information, and that in order to fully understand the extent and consequence of ASM in the human genome, a comprehensive sequencing-based analysis of allelic methylation patterns across tissues and individuals is required. 相似文献
4.
5.
6.
7.
We describe a system designed to express biotinylated proteins in mammalian cells in vivo and its application to the study of protein-DNA interactions in vivo by chromatin immunoprecipitation (ChIP). The system is based on coexpression of the target protein fused to a short biotin acceptor domain together with the biotinylating enzyme BirA from Escherichia coli. The superior strength of the biotin-avidin interaction allows one to employ more stringent washing conditions in the ChIP protocol, resulting in a better signal/noise ratio. 相似文献
8.
Histone modifications of nucleosomes distinguish euchromatic from heterochromatic chromatin states, distinguish gene regulation in eukaryotes from that of prokaryotes, and appear to allow eukaryotes to focus recombination events on regions of highest gene concentrations. Four additional epigenetic mechanisms that regulate commitment of cell lineages to their differentiated states are involved in the inheritance of differentiated states, e.g., DNA methylation, RNA interference, gene repositioning between interphase compartments, and gene replication time. The number of additional mechanisms used increases with the taxon's somatic complexity. The ability of siRNA transcribed from one locus to target, in trans, RNAi-associated nucleation of heterochromatin in distal, but complementary, loci seems central to orchestration of chromatin states along chromosomes. Most genes are inactive when heterochromatic. However, genes within beta-heterochromatin actually require the heterochromatic state for their activity, a property that uniquely positions such genes as sources of siRNA to target heterochromatinization of both the source locus and distal loci. Vertebrate chromosomes are organized into permanent structures that, during S-phase, regulate simultaneous firing of replicon clusters. The late replicating clusters, seen as G-bands during metaphase and as meiotic chromomeres during meiosis, epitomize an ontological utilization of all five self-reinforcing epigenetic mechanisms to regulate the reversible chromatin state called facultative (conditional) heterochromatin. Alternating euchromatin/heterochromatin domains separated by band boundaries, and interphase repositioning of G-band genes during ontological commitment can impose constraints on both meiotic interactions and mammalian karyotype evolution. 相似文献
9.
Extensive chromatin fragmentation improves enrichment of protein binding sites in chromatin immunoprecipitation experiments 总被引:2,自引:0,他引:2
Extensive sonication of formaldehyde-crosslinked chromatin can generate DNA fragments averaging 200 bp in length (range 75–300 bp). Fragmentation is largely random with respect to genomic region and nucleosome position. ChIP experiments employing such extensively fragmented samples show 2- to 4-fold increased enrichment of protein binding sites over control genomic regions, when compared to samples sonicated to a more conventional size range (300–500 bp). The basis of improved fold enrichments is that immunoprecipitation of protein-bound regions is unaffected by fragment size, whereas immunoprecipitation of control genomic regions decreases progressively along with reduced fragment size due to fewer nonspecific binding sites. The use of extensively sonicated samples improves mapping of protein binding sites, and it extends the dynamic range for quantitative measurements of histone density. We show that many yeast promoter regions are virtually devoid of histones. 相似文献
10.
Allele-specific transcript isoforms in human 总被引:2,自引:0,他引:2
11.
Väisänen S Dunlop TW Frank C Carlberg C 《The Journal of steroid biochemistry and molecular biology》2004,(1-5):277-279
We applied the chromatin immunoprecipitation (ChIP) method for the analysis of 1alpha,25-dihydroxyvitamin D(3) (1,25-D(3))-dependent chromatin activity on the human 24-hydroxylase (CYP24) promoter in MCF-7 human breast cancer cells. In this pilot study we concentrated on the proximal promoter (+22 to -424) of the CYP24 gene, which includes the known 1,25-D(3) response element (VDRE) cluster. A constitutively active region of the human histone 4a gene (-40 to +285) served for normalization. Chromatin activity snapshots were taken 0, 30, 60, 120, 180, 240 and 300 min after the onset of stimulation with 1,25-D(3) and anti-acetylated histone 4 antibodies were used for ChIP. Our results suggest that ChIP is suitable for monitoring 1,25-D(3)-dependent changes of chromatin organization and can be used to reveal information about chromatin activity in living cells. 相似文献
12.
13.
14.
Chromatin immunoprecipitation (ChIP) has been used to detect binding of DNA-binding proteins to sites in nuclear and mitochondrial genomes. Here, we describe a method for detecting protein-binding sites on chloroplast DNA, using modifications to the nuclear ChIP procedures. The method was developed using the lac operator (lacO)/lac repressor (LacI) system from Escherichia coli. The lacO sequences were integrated into a single site between the rbcL and accD genes in tobacco plastid DNA and homoplasmic transplastomic plants were crossed with transgenic tobacco plants expressing a nuclear-encoded plastid-targeted GFP-LacI fusion protein. In the progeny, the GFP-LacI fusion protein could be visualized in living tissues using confocal microscopy, and was found to co-localize with plastid nucleoids. Isolated chloroplasts from the lacO/GFP-LacI plants were lysed, treated with micrococcal nuclease to digest the DNA to fragments of ∼600 bp and incubated with antibodies to GFP and protein A-Sepharose. PCR analysis on DNA extracted from the immunoprecipitate demonstrated IPTG (isopropylthiogalactoside)-sensitive binding of GFP-LacI to lacO. Binding of GFP-LacI to endogenous sites in plastid DNA showing sequence similarity to lacO was also detected, but required reversible cross-linking with formaldehyde. This may provide a general method for the detection of binding sites on plastid DNA for specific proteins. 相似文献
15.
16.
17.
Does achievement independent of ability or previous attainment provide a purer measure of the added value of school? In a study of 4000 pairs of 12-year-old twins in the UK, we measured achievement with year-long teacher assessments as well as tests. Raw achievement shows moderate heritability (about 50%) and modest shared environmental influences (25%). Unexpectedly, we show that for indices of the added value of school, genetic influences remain moderate (around 50%), and the shared (school) environment is less important (about 12%). The pervasiveness of genetic influence in how and how much children learn is compatible with an active view of learning in which children create their own educational experiences in part on the basis of their genetic propensities. 相似文献
18.
19.