首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A glasshouse experiment was undertaken to provide baseline data on the variation between conventional maize (Zea mays L.) varieties and genetically modified maize plants expressing the insecticidal Bacillus thuringiensis protein (Bt, Cry1Ab). The objective was to determine whether the variation in soil parameters under a range of conventional maize cultivars exceeded the differences between Bt and non-Bt maize cultivars. Variations in plant growth parameters (shoot and root biomass, percentage carbon, percentage nitrogen), Bt protein concentration in shoots, roots and soil, soil nematode abundance and soil microbial community structure were determined. Eight paired varieties (i.e. varieties genetically modified to express Bt protein and their near-isogenic control varieties) were investigated, together with a Bt variety for which no near-isogenic control was available (NX3622, a combined transformant expressing both Bt and herbicide tolerance) and a conventional barley (Hordeum vulgare L.) variety which was included as a positive control. The only plant parameter which showed a difference between Bt varieties and near-isogenic counterparts was the shoot carbon to nitrogen ratio; this was observed for only two of the eight varieties, and so was not attributable to the Bt trait. There were no detectable differences in the concentration of Bt protein in plant or soil with any of the Bt-expressing varieties. There were significant differences in the abundance of soil nematodes, but this was not related to the Bt trait. Differences in previously published soil nematode studies under Bt maize were smaller than these varietal effects. Soil microbial community structure, as determined by phospholipid fatty acid (PLFA) analysis, was strongly affected by plant growth stage but not by the Bt trait. The experimental addition of purified Cry1Ab protein to soil confirmed that, at ecologically relevant concentrations, there were no measurable effects on microbial community structure.  相似文献   

2.
The cultivation of genetically engineered Bacillus thuringiensis toxin-expressing (Bt) maize continues to increase worldwide, yet the effects of Bt crops on arbuscular mycorrhizal fungi (AMF) in soil are poorly understood. In this field experiment, we investigated the impact of seven different genotypes of Bt maize and five corresponding non-Bt parental cultivars on AMF and evaluated plant growth responses at three different physiological time points. Plants were harvested 60 days (active growth), 90 days (tasseling and starting to produce ears), and 130 days (maturity) after sowing, and data on plant growth responses and percent AMF colonization of roots at each harvest were collected. Spore abundance and diversity were also evaluated at the beginning and end of the field season to determine whether the cultivation of Bt maize had a negative effect on AMF propagules in the soil. Plant growth and AMF colonization did not differ between Bt and non-Bt maize at any harvest period, but AMF colonization was positively correlated with leaf chlorophyll content at the 130-day harvest. Cultivation of Bt maize had no effect on spore abundance and diversity in Bt versus non-Bt plots over one field season. Plot had the most significant effect on total spore counts, indicating spatial heterogeneity in the field. Although previous greenhouse studies demonstrated that AMF colonization was lower in some Bt maize lines, our field study did not yield the same results, suggesting that the cultivation of Bt maize may not have an impact on AMF in the soil ecosystem under field conditions.  相似文献   

3.
Rye (Secale cereale L.), wheat (Triticum aestivum L.), and annual ryegrass (Lolium multiflorum Lam.) are commonly double cropped with soybean (Glycine max L.). Recent greenhouse studies have shown variability in plant-parasitic nematode response to cool season grass species and cultivars. However, subsequent soybean performance was not affected by previous annual ryegrass cultivar in the green-house. The objective of this research was to determine whether winter cover crop species or cultivars affected nematode populations and subsequent performance of soybean in teh field. Four cultivars of annual ryegrass, wheat, and rye, and a fallow control were seeded on a Suffolk sandy loam (fine-loamy, siliceous, thermic Typic Hapuldult) soil in each of three years. Nematode-susceptible soybeans were seeded following forage removal. Soil samples for nematode counts were taken immediately before soybean harvest each year. In another experiment, one cultivar each of annual ryegrass, wheat, and rye, and a fallow control were followed by three soybean cultivars selected for differing nematode susceptibility. Grass cultivars did not affect nematode populations under succedding soybean. The only nematodes affected by grass species in either experiment were Pratylenchus spp., Heterodera glycines Ichinohe, and Tylenchorhynchus claytoni (Kofoid and White) Chitwood. Nematode population means were usually low following ryegrass and high following the fallow control. High soybean yields followed the fallow control, and low soybean yields followed annual ryegrass.  相似文献   

4.
The investigation of Neoseiulus cucumeris in the context of the ecological risk assessment of insect resistant transgenic plants is of particular interest as this omnivorous predatory mite species is commercially available and considered important for biological control. In a multitrophic feeding experiment we assessed the impact of Bt maize on the performance of N. cucumeris when offered spider mites (Tetranychus urticae) reared on Bt (Bt11, Syngenta) or non-Bt maize (near isogenic line) and Bt or non-Bt maize pollen as a food source. Various parameters including mortality, development time, oviposition rate were measured. Spider mites were used as a prey for N. cucumeris, since these herbivores are known to contain similar levels of Cry1Ab toxin, when reared on Bt maize, as those found in the transgenic leaf material. In contrast, toxin levels in pollen of this transgenic cultivar are very low. No differences in any of the parameters were found when N. cucumeris was fed with spider mites reared on Bt and non-Bt maize. Pollen was shown to be a less suitable food source for this predator as compared to spider mites. Moreover, subtle effects on female N. cucumeris (9% longer development time and 17% reduced fecundity) were measured when fed with pollen originating from Bt maize as compared to non-Bt maize pollen. Our findings indicate that the predatory mite N. cucumeris is not sensitive to the Cry1Ab toxin as no effects could be detected when offered Bt-containing spider mites, and that the effects found when fed with Bt maize pollen can be assigned to differences in nutritional quality of Bt and non-Bt maize pollen. The significance of these findings is discussed with regard to the ecological relevance for risk assessment of transgenic plants.  相似文献   

5.
The effects of stem nematode (Ditylenchus dipsaci) infestation on the establishment of white clover sown in mixed swards with perennial ryegrass, were investigated in two field trials. Clover cultivars known to have different degrees of resistance were sown on land in which stem nematode was controlled either by aldicarb (Experiment 1) or crop rotation (Experiment 2). The establishment of white clover was greatly improved and subsequent clover yields were inversely related to stem nematode infestation. At the first harvest after sowing, clover yields were 3.6 and 3.3 times greater from aldicarb and rotation treatment plots than from check plots; over the first nine months, total clover yields were increased by 3.5 and 8.9 times by aldicarb and rotation treatments. In both trials, plots of resistant cultivars had less stem nematode infestation and yielded better than the very susceptible cultivar, S184. Stem nematode infestations eventually developed on all plots, after the establishment phase. This is the first report showing that resistant cultivars improve establishment of clover in mixed swards on stem nematode infested soils. In both experiments, plots became dominated by clover and even cv. S184 eventually produced good clover swards. Aldicarb and rotation treatments also controlled clover cyst and root lesion nematodes, and numbers of these were inversely related to first harvest yields. Other soil borne pests and diseases, although not prominent, have not been ruled out as possible confounding factors. There was no correlation between grass yield and aldicarb treatment.  相似文献   

6.
The cultivation of genetically modified plants (GMP) has raised concerns regarding the plants’ ecological safety. A greenhouse experiment was conducted to assess the impact of five seasons of continuous Bt (Bacillus thuringiensis) maize cultivation on the colonisation and community structure of the non-target organisms arbuscular mycorrhizal fungi (AMF) in the maize roots, bulk soils and rhizospheric soils using the terminal restriction fragment length polymorphism (T-RFLP) analysis of the 28S ribosomal DNA and sequencing methods. AMF colonisation was significantly higher in the two Bt maize lines that express Cry1Ab, 5422Bt1 (event Bt11) and 5422CBCL (MON810) than in the non-Bt isoline 5422. No significant differences were observed in the diversity of the AMF community between the roots, bulk soils and rhizospheric soils of the Bt and non-Bt maize cultivars. The AMF genus Glomus was dominant in most of the samples, as detected by DNA sequencing. A clustering analysis based on the DNA sequence data suggested that the sample types (i.e., the samples from the roots, bulk soils or rhizospheric soils) might have greater influence on the AMF community phylotypes than the maize cultivars. This study indicated that the Cry1Ab protein has minor effects on the AMF communities after five seasons of continuous Bt maize cultivation.  相似文献   

7.
Transgenic Bt maize and Rhopalosiphum padi (Hom., Aphididae) performance   总被引:2,自引:0,他引:2  
Abstract.  1. The population abundance and age structure of Rhopalosiphum padi , one of the most common maize aphid species, on transgenic Bt (expressing the Cry1Ab protein) and non-Bt isogenic maize was studied in commercial plots during three crop seasons.
2. A higher density of aphids, particularly alates and young nymphs, occurred in Bt plots at very young maize development stages, corresponding to the settlement period, in the 3 years studied. Possible causes are discussed. After this period, there were no differences between Bt and non-Bt maize.
3. Mortality, development, and reproduction of the offspring of alate forms of R. padi and the offspring of different generations of apterous forms fed with Bt maize were evaluated in the laboratory under controlled conditions.
4. The developmental and pre-reproductive times of the offspring of the first generation of alatae were shorter and the intrinsic rate of natural increase ( r m ) higher when aphids fed on Bt maize. The opposite occurs with the offspring of the first generation of apterous mothers, which have lower nymphal and adult mortality, shorter developmental and pre-reproductive times, a higher effective fecundity rate, and greater r m , when fed on non-Bt maize. The differences in aphid development on the two cultivars may be linked to changes in host-plant quality due to pleiotropic effects of the genetic modification.
5. No differences on aphid mortality, developmental and pre-reproductive times, fecundity, and r m were found between the offspring of apterous aphids maintained on Bt or non-Bt maize for several generations.  相似文献   

8.
全球气候变化下转Bt水稻种植对土壤生态系统的影响仍是未知领域。利用野外开顶式气室(OTC)模拟气候变化,探讨了温度和CO2浓度([CO2])升高后种植转Bt(华恢1号)水稻对土壤活性碳氮和线虫群落的影响。结果表明:(1)温度和[CO2]升高条件下种植转Bt水稻显著影响土壤可溶性碳(DOC)、可溶性氮(DON)和硝态氮(NO-3-N)含量,同时DOC和DON受到升温和[CO2]升高与转Bt水稻的交互影响;在正常温度和[CO2]下,转Bt水稻显著降低了土壤微生物量碳氮含量(MBC、MBN),但在温度和[CO2]升高后转Bt水稻种植使土壤MBC和MBN含量显著高于亲本水稻。(2)在温度和[CO2]升高条件下,转Bt水稻土壤线虫总数呈高于亲本水稻的趋势,植食性线虫的比例随[CO2]和温度升高呈增大的趋势。此外,升温和转Bt水稻种植提高了土壤线虫群落的能流通道指数,而[CO2]升高和转Bt水稻种植则提高了土壤线虫群落的富集指数。总之,在模拟全球气候变化下,种植转Bt水稻在短期内对土壤活性碳氮和线虫群落均产生影响,但短期研究并未发现转Bt水稻种植对土壤生态系统的不利影响。  相似文献   

9.
Although the agricultural use of genetically engineered (GE) plants has been employed extensively, its adoption is still controversial and its impact on arthropods has rarely been scrutinized at the community level. If this technology is aimed at a drastic reduction of a key community component, significant community-level impact is expected and needs to be assessed. Thus, food web analysis was used to assess the short-term impact of genetically modified maize plants, Zea mays L. (Poaceae), expressing insecticidal proteins of the bacterium Bacillus thuringiensis Berliner (i.e., Bt maize), on the associated arthropod assemblage in a neotropical scenario. Arthropods associated with winter and summer cultivations with Bt and non-Bt (isoline) maize were thus sampled using sweep nets and whole-plant collections throughout the plant phenological cycle. The collected information was used to build a plant-consumer-predator trivariate network based on data of individual arthropod body mass, numerical abundance, and biomass abundance using food web analysis. Eighty-five arthropod species were sampled, and whereas cultivation season significantly affected arthropod species richness and abundance, only marginal differences existed between maize hybrids (Bt vs. non-Bt). The recognized food webs also indicated significant differences between seasons. In contrast, Bt-maize-hosted food webs were similar to those of the non-Bt isoline indicating no significant impact on arthropod food webs. Nonetheless, Bt maize did not provide significant control of the target pest species, the fall armyworm, nor did it lead to higher crop yield, raising questions about its current usefulness in the region.  相似文献   

10.
Non-lepidopteran pests are exposed to, and may be influenced by, Bt toxins when feeding on Bt maize that express insecticidal Cry proteins derived from Bacillus thuringiensis (Bt). In order to assess the potential effects of transgenic cry1Ie maize on non-lepidopteran pest species and ecological communities, a 2-year field study was conducted to compare the non-lepidopteran pest abundance, diversity and community composition between transgenic cry1Ie maize (Event IE09S034, Bt maize) and its near isoline (Zong 31, non-Bt maize) by whole plant inspections. Results showed that Bt maize had no effects on non-lepidopteran pest abundance and diversity (Shannon–Wiener diversity index, Simpson’s diversity index, species richness, and Pielou’s index). There was a significant effect of year and sampling time on those indices analyzed. Redundancy analysis indicated maize type, sampling time and year totally explained 20.43 % of the variance in the non-lepidopteran pest community composition, but no association was presented between maize type (Bt maize and non-Bt maize) and the variance. Nonmetric multidimensional scaling analysis showed that sampling time and year, rather than maize type had close relationship with the non-lepidopteran pest community composition. These results corroborated the hypothesis that, at least in the short-term, the transgenic cry1Ie maize had negligible effects on the non-lepidopteran pest abundance, diversity and community composition.  相似文献   

11.
A seed blend refuge has been implemented in the U.S. Corn Belt for Bt maize resistance management. The fall armyworm, Spodoptera frugiperda (J.E. Smith), is a target pest of Bt maize in the Americas. The larvae of this pest are mobile, which may affect the efficacy of seed blend refuges. In this study, field and greenhouse trials were conducted to determine the performance of Bt-susceptible (aabb) and -heterozygous dual-gene-resistant (AaBb) genotypes of S. frugiperda in seed blends of non-Bt and pyramided Bt maize. Three field trials evaluated larval survival, larval growth, and plant injury with aabb in seed blends of Bt maize expressing Cry1A.105/Cry2Ab2/Vip3A with 0–30% non-Bt seeds. Greenhouse tests investigated the performance of aabb and AaBb in seed blends of Cry1A.105/Cry2Ab2 with 0–30% non-Bt seeds. In pure non-Bt maize plots, after 9–13 d of neonates being released on the plants, 0.39 and 0.65 larvae/plant survived with leaf injury ratings of 4.7 and 5.9 (Davis's 1–9 scale) in the field and greenhouse, respectively. In contrast, live larvae and plant injury were virtually not observed on Bt plants across all planting patterns. Larval occurrence and plant injury by aabb on non-Bt plants were similar between seed blends and pure non-Bt plantings, suggesting that the blended refuges could provide an equivalent susceptible population as structured refuge under the test conditions. In the greenhouse, the two insect genotypes in seed blends performed similarly, indicating that the seed blends did not provide more favorable conditions for AaBb over aabb. The information generated from this study should be useful in managing S. frugiperda and evaluating if send blends could be suitable refuge options for Bt resistance management in the regions where the insect is a primary target pest.  相似文献   

12.
In many species, root system development depends on cultivar and sowing date, with consequences for aerial growth, and seed yield. Most of the peas (Pisum sativum L.) grown in France are sown in spring or in mid-November. We analyzed the effect of two sowing periods (November and February) and three pea cultivars (a spring cultivar, a winter cultivar, a winter recombinant inbred line) on root development in field conditions. For all treatments, rooting depth at various dates seemed to be strongly correlated with cumulative radiation since sowing. Maximum root depth varied from 0.88 to 1.06 m, with the roots penetrating to greater depths for February sowing than for November sowing in very cold winters. The earlier the crop was sown, the sooner maximum root depth was reached. No difference in root dynamics between cultivars was observed. In contrast, the winter recombinant inbred line presented the highest root density in the ploughed layer. These findings are discussed in terms of their possible implications for yield stability and environmental impact.  相似文献   

13.
Percentage survivorship, developmental time, adult body length, and sex ratio of Plodia interpunctella (Hübner) reared on field-produced grain from sixteen cultivars of maize, Zea mays L., including several transgenic Bacillus thuringiensis (Bt) Berliner hybrids and selected non-Bt isolines, were evaluated under laboratory conditions. Compared with isolines, development was delayed and survivorship reduced for P. interpunctella reared on grain from transgenic hybrids with the CaMV/35s promoter that express Cry1Ab protein. Similarly, compared with non-Bt hybrids, a transgenic hybrid with the CaMV/35s promoter that expresses Cry9C protein delayed development, decreased survivorship, and caused reductions in adult body length of P. interpunctella. In contrast, no significant differences in P. interpunctella developmental times or survivorship were observed between transgenic hybrids with the PEPC promoter expressing Cry1Ab and their isolines. Additionally, developmental time, survivorship, and adult body length were similar between P. interpunctella reared on a transgenic hybrid with the CaMV/35s promoter expressing Cry1Ac and non-Bt hybrids. Our data demonstrate that transgenic Bt maize grain, especially grain from hybrids with the CaMV/35s promoter expressing Cry1Ab or Cry9C, can significantly affect B. thuringiensis-susceptible P. interpunctella populations up to 4 or 5 mo after harvest.  相似文献   

14.
Crop plants genetically modified for the expression of Bacillus thuringiensis (Bt) insecticidal toxins have broad appeal for reducing insect damage in agricultural systems, yet questions remain about the impact of Bt plants on symbiotic soil organisms. Here, arbuscular mycorrhizal fungal (AMF) colonization of transgenic maize isoline Bt 11 (expressing Cry1Ab) and its non-Bt parental line (Providence) was evaluated under different fertilizer level and spore density scenarios. In a three-way factorial design, Bt 11 and non-Bt maize were inoculated with 0, 40, or 80 spores of Glomus mosseae and treated weekly with 'No' (0 g L(-1) ), 'Low' (0.23 g L(-1) ), or 'High' (1.87 g L(-1) ) levels of a complete fertilizer and grown for 60 days in a greenhouse. While no difference in AMF colonization was detected between the Bt 11 and Providence maize cultivars in the lower spore/higher fertilizer treatments, microcosm experiments demonstrated a significant reduction in AMF colonization in Bt 11 maize roots in the 80 spore treatments when fertilizer was limited. These results confirm previous work indicating an altered relationship between this Bt 11 maize isoline and AMF and demonstrate that the magnitude of this response is strongly dependent on both nutrient supply and AMF spore inoculation level.  相似文献   

15.
We examined nine pairs of near-isogenic hybrids of Bacillus thuringiensis (Bt) and non-Bt corn, Zea mays L., at two locations in 1999 and three locations in 2000 to compare the effects of Bt toxins on damage caused by Helicoverpa zea (Boddie) to whorl stage field corn, and ear damage at harvest, as well as yield. We found that whorl damage was less in all Bt hybrids compared with their non-Bt counterparts each year and at each location. Differences in ear damage between Bt and non-Bt hybrids, however, differed in 1999 and 2000. In 1999, only one Bt hybrid, NC+5788Bt, had less ear damage than its non-Bt counterpart at the dryland site, whereas four Bt hybrids, C8120Bt, P31B13Bt, P33VO8Bt, and NC+5788Bt, had less damage at the irrigated site. In 2000, most Bt hybrids had less ear damage than their non-Bt counterparts at each location. Differences in whorl damage did not translate into yield differences. However, variations in ear damage were partially reflected in yield differences. In 1999, P31B13Bt and P33V08Bt had higher yields than their non-Bt counterparts at both sites, whereas in 2000 all Bt hybrids had higher yields. Also, although whorl damage was not correlated with yield, ear damage was negatively correlated with yield; increasing ear damage by H. zea decreased yield for Bt and non-Bt hybrids alike. Overall, depending on location and year, each centimeter of H. zea ear damage reduced yield by between 2 and 13%.  相似文献   

16.
Three field experiments were made to determine the effectiveness of small-plot trials in detecting differences between potato cultivars/clones in their tolerance of damage by potato cyst-nematodes. A nematicide (aldicarb) was applied at three rates to decrease nematode damage. The largest rate of aldicarb increased tuber yields most but the relationship between yield response and nematicide rate was not linear. The yield increases of the cultivars and clones differed, indicating that they have different degrees of tolerance of potato cyst nematodes. The results were analysed in several ways and the untreated yield as a proportion of the treated provided the best means of expressing and comparing tolerance; but whichever method was used the tolerance rankings of the cultivars and clones were similar. At two sites infested with Globodera rostochiensis, the rankings of the 10 cultivars and clones were similar but at a third site, heavily infested with G. pallida, they were different. Aldicarb decreased the nematode population density after harvest at the G. pallida site but was less effective at the G. rostochiensis sites, which were less heavily infested. Growing resistant or partially resistant potatoes usually prevented nematode increase, and the more resistant cultivars and clones decreased population densities markedly.  相似文献   

17.
We evaluated tritrophic level interactions among fungal endophytes (Acremonium spp.) of fescue grasses (Festuca spp.), the root-feeding Japanese beetlePopillia japonica Newman larvae, and the entomopathogenic nematodeHeterorhabditis bacteriophora Poinar. Third-instarP. japonica larvae were introduced into pots containing endophyteinfected or endophyte-free plants of tall fescueFestuca arundinacea Schreber (cultivars Kentucky 31 and Georgia Jesup Improved) and the Chewings fescueFestuca rubra commutata Guad. (cultivars F-93 and Jamestown II). After two weeks, the surviving larvae were recovered, and their susceptibility to nematodes was evaluated in sand columns. Endophytes enhanced the rate of nematode-induced mortality in all cultivars except Georgia Jesup Improved, and increased the proportion of dead larvae with nematodes in all cultivars except Jamestown II. Endophytes in the cultivar Kentucky 31 were associated with improved nematode establishment in the larvae. No effect on nematode reproduction was found. Since endophytes produce biologically active alkaloids, we tested the effects of an ergot alkaloid, ergotamine tartrate, on the feeding behavior and weight ofP. japonica larvae in agar medium. The alkaloid caused feeding deterrence, and reduced the consumption of medium by the larvae, resulting in weight loss. These larvae were more susceptible toH. bacteriophora than the untreated larvae. Unfed ‘starved’ larvae were more susceptible to nematodes than those fed on untreated agar. Our results support the hypothesis that endophyte-induced starvation ofP. japonica would reduce larval vigor, and render them more susceptible to entomopathogenic nematodes.  相似文献   

18.
This study was conducted to determine the effects of Bt cotton leaves (Bollgard II), non-Bt cotton leaves, and a mixture of Bt+non-Bt cotton leaves on larval orientation behavior, survival and development of Trichoplusia ni in the laboratory. Results indicate that in a no-choice test, more first and fifth instars remained on Bt leaves than the third instars. All larvae that remained on the leaves gradually moved to leaf edge. In the choice between a Bt and a non-Bt leaf, more first instars moved to non-Bt leaves, whereas the third and fifth instars did not show significant difference in the first 8 h, but eventually more moved to non-Bt leaves. More first instars fed non-Bt leaves than third instars and fifth instars. When larvae fed Bt leaves, 100% of first instars, 92.7% of third instars and 51.1% of fifth instars died in 108 h. Once larvae pupated, >90% developed to adults. First and third instars that fed Bt leaves developed slower but their pupae developed faster than those on Bt+non-Bt leaves, whereas fifth instars developed similar on the three types of leaves. First and third instars that fed Bt+non-Bt leaves resulted in less heavy pupae than those fed non-Bt leaves; whereas the fifth instars that survived on Bt leaves produced lighter pupae.  相似文献   

19.
Summer-active (continental) and summer-dormant (Mediterranean) tall fescue morphotypes are each adapted to different environmental conditions. Endophyte presence provides plant parasitic nematode resistance, but not with all endophyte strains and cultivar combinations. This study sought to compare effects of four nematode genera on continental and Mediterranean cultivars infected with common toxic or novel endophyte strains. A 6-mon greenhouse study was conducted with continental cultivars, Kentucky 31 (common toxic) and Texoma MaxQ II (novel endophyte) and the Mediterranean cultivar Flecha MaxQ (novel endophyte). Endophyte-free plants of each cultivar were controls. Each cultivar × endophyte combination was randomly assigned to a control, low or high inoculation rate of a mixed nematode culture containing stunt nematodes (Tylenchorhynchus spp.), ring nematodes (Criconemella spp.), spiral nematodes (Helicotylenchus spp.), and lesion nematodes (Pratylenchus spp.). Endophyte infection had no effect on nematode population densities. The cultivar × endophyte interaction was significant. Population densities of stunt nematode, spiral nematode, and ring nematodes were higher for Flecha MaxQ than other cultivar × endophyte combinations. Novel endophyte infection enhances suitability of Flecha MaxQ as a nematode host.  相似文献   

20.

Background

Uncertainty persists over the environmental effects of genetically-engineered crops that produce the insecticidal Cry proteins of Bacillus thuringiensis (Bt). We performed meta-analyses on a modified public database to synthesize current knowledge about the effects of Bt cotton, maize and potato on the abundance and interactions of arthropod non-target functional guilds.

Methodology/Principal Findings

We compared the abundance of predators, parasitoids, omnivores, detritivores and herbivores under scenarios in which neither, only the non-Bt crops, or both Bt and non-Bt crops received insecticide treatments. Predators were less abundant in Bt cotton compared to unsprayed non-Bt controls. As expected, fewer specialist parasitoids of the target pest occurred in Bt maize fields compared to unsprayed non-Bt controls, but no significant reduction was detected for other parasitoids. Numbers of predators and herbivores were higher in Bt crops compared to sprayed non-Bt controls, and type of insecticide influenced the magnitude of the difference. Omnivores and detritivores were more abundant in insecticide-treated controls and for the latter guild this was associated with reductions of their predators in sprayed non-Bt maize. No differences in abundance were found when both Bt and non-Bt crops were sprayed. Predator-to-prey ratios were unchanged by either Bt crops or the use of insecticides; ratios were higher in Bt maize relative to the sprayed non-Bt control.

Conclusions/Significance

Overall, we find no uniform effects of Bt cotton, maize and potato on the functional guilds of non-target arthropods. Use of and type of insecticides influenced the magnitude and direction of effects; insecticde effects were much larger than those of Bt crops. These meta-analyses underscore the importance of using controls not only to isolate the effects of a Bt crop per se but also to reflect the replacement of existing agricultural practices. Results will provide researchers with information to design more robust experiments and will inform the decisions of diverse stakeholders regarding the safety of transgenic insecticidal crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号