首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 122 毫秒
1.
An extract from the marine alga Ulva lactuca was highly osmoprotective in salt-stressed cultures of Sinorhizobium meliloti 102F34. This beneficial activity was due to algal 3-dimethylsulfoniopropionate (DMSP), which was accumulated as a dominant compatible solute and strongly reduced the accumulation of endogenous osmolytes in stressed cells. Synthetic DMSP also acted as a powerful osmoprotectant and was accumulated as a nonmetabolizable cytosolic osmolyte (up to a concentration of 1,400 nmol/mg of protein) throughout the growth cycles of the stressed cultures. In contrast, 2-dimethylsulfonioacetate (DMSA), the sulfonium analog of the universal osmoprotectant glycine betaine (GB), was highly toxic to unstressed cells and was not osmoprotective in stressed cells of wild-type strains of S. meliloti. Nonetheless, the transport and accumulation of DMSA, like the transport and accumulation of DMSP and GB, were osmoregulated and increased fourfold in stressed cells of strain 102F34. Strikingly, DMSA was not toxic and became highly osmoprotective in mutants that are impaired in their ability to demethylate GB and DMSA. Furthermore, 2-methylthioacetate and thioglycolic acid (TGA), the demethylation products of DMSA, were excreted, apparently as a mechanism of cellular detoxification. Also, exogenous TGA and DMSA displayed similar inhibitory effects in strain 102F34. Thus, on the basis of these findings and other physiological and biochemical evidence, we infer that the toxicity of DMSA in wild-type strains of S. meliloti stems from its catabolism via the GB demethylation pathway. This is the first report describing the toxicity of DMSA in any organism and a metabolically stable osmoprotectant (DMSP) in S. meliloti.  相似文献   

2.
Yersinia enterocolitica is a gram-negative, food-borne pathogen that can grow in 5% NaCl and at refrigerator temperatures. In this report, the compatible solutes (osmolytes) which accumulate intracellularly and confer the observed osmotic tolerance to this pathogen were identified. In minimal medium, glutamate was the only detectable osmolyte that accumulated in osmotically stressed cells. However, when the growth medium was supplemented with glycine betaine, dimethylglycine, or carnitine, the respective osmolyte accumulated intracellularly to high levels and the growth rates of the osmotically stressed cultures improved from 2.4- to 3.5-fold. Chill stress also stimulated the intracellular accumulation of glycine betaine, but the growth rate was only slightly improved by this osmolyte. Both osmotic upshock and temperature downshock stimulated the rate of uptake of [(sup14)C]glycine betaine by more than 30-fold, consistent with other data indicating that the osmolytes are accumulated from the growth medium via transport.  相似文献   

3.
Intracellular accumulation of glycine betaine has been shown to confer an enhanced level of osmotic stress tolerance in Rhizobium meliloti. In this study, we used a physiological approach to investigate the mechanism by which glycine betaine is accumulated in osmotically stressed R. meliloti. Results from growth experiments, 14C labeling of intermediates, and enzyme activity assays are presented. The results provide evidence for the pathway of biosynthesis and degradation of glycine betaine and the osmotic effects on this pathway. High osmolarity in the medium decreased the activities of the enzymes involved in the degradation of glycine betaine but not those of enzymes that lead to its biosynthesis from choline. Thus, the concentration of the osmoprotectant glycine betaine is increased in stressed cells. This report demonstrates the ability of the osmolarity of the growth medium to regulate the use of glycine betaine as a carbon and nitrogen source or as an osmoprotectant. The mechanisms of osmoregulation in R. meliloti and Escherichia coli are compared.  相似文献   

4.
The mechanism of osmotic stress adaptation in Pseudomonas aeruginosa PAO1 was investigated. By using natural abundance 13C nuclear magnetic resonance spectroscopy, osmotically stressed cultures were found to accumulate glutamate, trehalose, and N-acetylglutaminylglutamine amide, an unusual dipeptide previously reported only in osmotically stressed Rhizobium meliloti and Pseudomonas fluorescens. The intracellular levels of these osmolytes were dependent on the chemical composition and the osmolality of the growth medium. It was also demonstrated that glycine betaine, a powerful osmotic stress protectant, participates in osmoregulation in this organism. When glycine betaine or its precursors, phosphorylcholine or choline, were added to the growth medium, growth rates of cultures in 0.7 M NaCl were increased more than threefold. Furthermore, enhancement of growth could be observed with as little as 10 microM glycine betaine or precursor added to the medium. Finally, the mechanism of osmotic stress adaptation of two clinical isolates of P. aeruginosa was found to be nearly identical to that of the laboratory strain PAO1 in all aspects studied.  相似文献   

5.
Listeria monocytogenes is a pathogenic bacterium that can grow at low temperatures and elevated osmolarity. The organism survives these stresses by the intracellular accumulation of osmolytes: low-molecular-weight organic compounds which exert a counterbalancing force. The primary osmolyte in L. monocytogenes is glycine betaine, which is accumulated from the environment via two transport systems: glycine betaine porter I, an Na(+)-glycine betaine symporter; and glycine betaine porter II, an ATP-dependent transporter. The biochemical characteristics of glycine betaine porter I were investigated in a mutant strain (LTG59) lacking the ATP-dependent transporter. At 4% NaCl, glycine betaine uptake in LTG59 was about fivefold lower than in strain DP-L1044, which has both transporters, indicating that the ATP-dependent transporter is the primary means by which glycine betaine enters the cell. In the absence of osmotic stress, cold-activated uptake by both transporters was most rapid between 7 and 12 degrees C, but a larger fraction of the total uptake was via the ATP-dependent transporter than was observed under salt-stressed conditions. Twelve glycine betaine analogs were tested for their ability to inhibit glycine betaine uptake and growth of stressed cultures. Carnitine, dimethylglycine, and gamma-butyrobetaine appear to inhibit the ATP-dependent transporter, while trigonelline and triethylglycine primarily inhibit glycine betaine porter I. Triethylglycine was also able to retard the growth of osmotically stressed L. monocytogenes grown in the presence of glycine betaine.  相似文献   

6.
Glycine betaine and its precursors choline and glycine betaine aldehyde have been found to confer a high level of osmotic tolerance when added exogenously to cultures of Escherichia coli at an inhibitory osmotic strength. In this paper, the following findings are described. Choline works as an osmoprotectant only under aerobic conditions, whereas glycine betaine aldehyde and glycine betaine function both aerobically and anaerobically. No endogenous glycine betaine accumulation was detectable in osmotically stressed cells grown in the absence of the osmoprotectant itself or the precursors. A membrane-bound, O2-dependent, and electron transfer-linked dehydrogenase was found which oxidized choline to glycine betaine aldehyde and aldehyde to glycine betaine at nearly the same rate. It displayed Michaelis-Menten kinetics; the apparent Km values for choline and glycine betaine aldehyde were 1.5 and 1.6 mM, respectively. Also, a soluble, NAD-dependent dehydrogenase oxidized glycine betaine aldehyde. It displayed Michaelis-Menten kinetics; the apparent Km values for the aldehyde, NAD, and NADP were 0.13, 0.06, and 0.5 mM, respectively. The choline-glycine betaine pathway was osmotically regulated, i.e., full enzymic activities were found only in cells grown aerobically in choline-containing medium at an elevated osmotic strength. Chloramphenicol inhibited the formation of the pathway in osmotically stressed cells.  相似文献   

7.
Listeria monocytogenes is a pathogenic bacterium that can grow at low temperatures and elevated osmolarity. The organism survives these stresses by the intracellular accumulation of osmolytes: low-molecular-weight organic compounds which exert a counterbalancing force. The primary osmolyte in L. monocytogenes is glycine betaine, which is accumulated from the environment via two transport systems: glycine betaine porter I, an Na+-glycine betaine symporter; and glycine betaine porter II, an ATP-dependent transporter. The biochemical characteristics of glycine betaine porter I were investigated in a mutant strain (LTG59) lacking the ATP-dependent transporter. At 4% NaCl, glycine betaine uptake in LTG59 was about fivefold lower than in strain DP-L1044, which has both transporters, indicating that the ATP-dependent transporter is the primary means by which glycine betaine enters the cell. In the absence of osmotic stress, cold-activated uptake by both transporters was most rapid between 7 and 12°C, but a larger fraction of the total uptake was via the ATP-dependent transporter than was observed under salt-stressed conditions. Twelve glycine betaine analogs were tested for their ability to inhibit glycine betaine uptake and growth of stressed cultures. Carnitine, dimethylglycine, and γ-butyrobetaine appear to inhibit the ATP-dependent transporter, while trigonelline and triethylglycine primarily inhibit glycine betaine porter I. Triethylglycine was also able to retard the growth of osmotically stressed L. monocytogenes grown in the presence of glycine betaine.  相似文献   

8.
Osmolyte accumulation and release can protect cells from abiotic stresses. In Escherichia coli, known mechanisms mediate osmotic stress-induced accumulation of K+ glutamate, trehalose, or zwitterions like glycine betaine. Previous observations suggested that additional osmolyte accumulation mechanisms (OAMs) exist and their impacts may be abiotic stress specific. Derivatives of the uropathogenic strain CFT073 and the laboratory strain MG1655 lacking known OAMs were created. CFT073 grew without osmoprotectants in minimal medium with up to 0.9 M NaCl. CFT073 and its OAM-deficient derivative grew equally well in high- and low-osmolality urine pools. Urine-grown bacteria did not accumulate large amounts of known or novel osmolytes. Thus, CFT073 showed unusual osmotolerance and did not require osmolyte accumulation to grow in urine. Yeast extract and brain heart infusion stimulated growth of the OAM-deficient MG1655 derivative at high salinity. Neither known nor putative osmoprotectants did so. Glutamate and glutamine accumulated after growth with either organic mixture, and no novel osmolytes were detected. MG1655 derivatives retaining individual OAMs were created. Their abilities to mediate osmoprotection were compared at 15°C, 37°C without or with urea, and 42°C. Stress protection was not OAM specific, and variations in osmoprotectant effectiveness were similar under all conditions. Glycine betaine and dimethylsulfoniopropionate (DMSP) were the most effective. Trimethylamine-N-oxide (TMAO) was a weak osmoprotectant and a particularly effective urea protectant. The effectiveness of glycine betaine, TMAO, and proline as osmoprotectants correlated with their preferential exclusion from protein surfaces, not with their propensity to prevent protein denaturation. Thus, their effectiveness as stress protectants correlated with their ability to rehydrate the cytoplasm.  相似文献   

9.
Sucrose and ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidine carboxylic acid) are very unusual osmoprotectants for Sinorhizobium meliloti because these compounds, unlike other bacterial osmoprotectants, do not accumulate as cytosolic osmolytes in salt-stressed S. meliloti cells. Here, we show that, in fact, sucrose and ectoine belong to a new family of nonaccumulated sinorhizobial osmoprotectants which also comprises the following six disaccharides: trehalose, maltose, cellobiose, gentiobiose, turanose, and palatinose. Also, several of these disaccharides were very effective exogenous osmoprotectants for strains of Rhizobium leguminosarum biovars phaseoli and trifolii. Sucrose and trehalose are synthesized as endogenous osmolytes in various bacteria, but the other five disaccharides had never been implicated before in osmoregulation in any organism. All of the disaccharides that acted as powerful osmoprotectants in S. meliloti and R. leguminosarum also acted as very effective competitors of [14C]sucrose uptake in salt-stressed cultures of these bacteria. Conversely, disaccharides that were not osmoprotective for S. meliloti and R. leguminosarum did not inhibit sucrose uptake in these bacteria. Hence, disaccharide osmoprotectants apparently shared the same uptake routes in these bacteria. Natural-abundance 13C nuclear magnetic resonance spectroscopy and quantification of cytosolic solutes demonstrated that the novel disaccharide osmoprotectants were not accumulated to osmotically significant levels in salt-stressed S. meliloti cells; rather, these compounds, like sucrose and ectoine, were catabolized during early exponential growth, and contributed indirectly to enhance the cytosolic levels of two endogenously synthesized osmolytes, glutamate and the dipeptide N-acetylglutaminylglutamine amide. The ecological implication of the use of these disaccharides as osmoprotectants is discussed.  相似文献   

10.
The uptake and accumulation of the potent osmolytes glycine betaine and carnitine enable the food-borne pathogen Listeria monocytogenes to proliferate in environments of elevated osmotic stress, often rendering salt-based food preservation inadequate. To date, three osmolyte transport systems are known to operate in L. monocytogenes: glycine betaine porter I (BetL), glycine betaine porter II (Gbu), and a carnitine transporter OpuC. We investigated the specificity of each transporter towards each osmolyte by creating mutant derivatives of L. monocytogenes 10403S that possess each of the transporters in isolation. Kinetic and steady-state osmolyte accumulation data together with growth rate experiments demonstrated that osmotically activated glycine betaine transport is readily and effectively mediated by Gbu and BetL and to a lesser extent by OpuC. Osmotically stimulated carnitine transport was demonstrated for OpuC and Gbu regardless of the nature of stressing salt. BetL can mediate weak carnitine uptake in response to NaCl stress but not KCl stress. No other transporter in L. monocytogenes 10403S appears to be involved in osmotically stimulated transport of either osmolyte, since a triple mutant strain yielded neither transport nor accumulation of glycine betaine or carnitine and could not be rescued by either osmolyte when grown under elevated osmotic stress.  相似文献   

11.
DL-Pipecolic acid (DL-PIP) promotes growth restoration of Sinorhizobium meliloti cells facing inhibitory hyperosmolarity. Surprisingly, D and L isomers of this imino acid supplied separately were not effective. The uptake of L-PIP was significantly favored in the presence of the D isomer and by a hyperosmotic stress. Chromatographic analysis of the intracellular solutes showed that stressed cells did not accumulate radiolabeled L-PIP. Rather, it participates in the synthesis of the main endogenous osmolytes (glutamate and the dipeptide N-acetylglutaminylglutamine amide) during the lag phase, thus providing a means for the stressed cells to recover the osmotic balance. (13)C nuclear magnetic resonance analysis was used to determine the fate of D-PIP taken into the cells. In the absence of L-PIP, the imported D isomer was readily degraded. Supplied together with its L isomer, D-PIP was accumulated temporarily and thus might contribute together with the endogenous osmolytes to enhance the internal osmotic strength. Furthermore, it started to disappear from the cytosol when the L isomer was no longer available in the culture medium (during the late exponential phase of growth). Together, these results show an uncommon mechanism of protection of osmotically stressed cells of S. meliloti. It was proved, for the first time, that the presence of the two isomers of the same molecule is necessary for it to manifest an osmoprotective activity. Indeed, D-PIP seems to play a major role in cellular osmoadaptation through both its own accumulation and improvement of the utilization of the L isomer as an immediate precursor of endogenous osmolytes.  相似文献   

12.
Seasonal changes in the leaf concentration of compatible osmolytes were investigated in three halophytic species (Lepidium crassifolium, Camphorosma annua and Limonium gmelini subsp. hungaricum) native to a salty-sodic grassland. The investigated species were shown to accumulate both carbohydrate- and amino acid-derived osmolytes. The leaf tissues of C. annua (Chenopodiaceae) preferentially stored glycine betaine and pinitol, while in L. gmelini (Plumbaginaceae) beta-alanine betaine, choline-O-sulphate, and pinitol were accumulated. In the leaves of L. crassifolium (Brassicaceae) a very high amount of proline, associated with a high level of soluble carbohydrates was found. Not only the biochemical nature of the osmolyte, but also the seasonal pattern of osmolyte accumulation showed significant species-specific fluctuations. In addition, the cellular levels of the observed osmolytes changed with the growth period and according to the environmental parameters. The highest concentrations of osmolytes were found in March, when low temperatures, hypoxic conditions and high salt concentrations were the main constraints to plant growth. The high structural diversity of osmolytes combined with their multifunctionality and the seasonal flexibility of the metabolism in plants facing multiple stresses is discussed.  相似文献   

13.
In the coryneform Brevibacterium linens, ectoine constitutes the major intracellular solute accumulated under elevated medium osmolarity. Here we report that exogenously supplied proline, choline, glycine betaine, and even ectoine, protected bacterial cells against deleterious effects of a hyperosmotic constraint (i.e. 1.5 M NaCl). In all cases, a significant improvement of growth was observed; in parallel, intracellular osmolyte pools composed mainly of glutamate and ectoine substantially increased, either with added glycine betaine (under limiting supply) or with proline. However, these two osmoprotectants behaved differently: glycine betaine acted as a genuine osmoprotectant, whereas proline was accumulated only transiently and participated actively in the biosynthesis of glutamate, ectoine, and trehalose. The strategy developed by B. linens cells allows the proposal of a novel role for proline in the osmoprotection process through its conversion to the apparently preferred endogenous osmolyte ectoine.  相似文献   

14.
The halophilic methanogen Methanohalophilus portucalensis synthesizes three distinct zwitterions, (beta)-glutamine, N(sup(epsilon))-acetyl-(beta)-lysine (NA(beta)Lys), and glycine betaine, as osmolytes when it is grown at high concentrations of external NaCl. The selective distribution of these three species was determined by growing cells in the presence of osmolyte biosynthetic precursors. Glycine betaine is formed by the stepwise methylation of glycine. Exogenous glycine (10 mM) and sarcosine (10 mM), although internalized, do not bias the cells to accumulate any more betaine. However, exogenous N,N-dimethylglycine (10 mM) is available to the appropriate methyltransferase and the betaine generated from it suppresses the synthesis of other osmolytes. Precursors of the two zwitterionic (beta)-amino acids ((beta)-glutamate for (beta)-glutamine and (alpha)-lysine and diaminopimelate for NA(beta)Lys) have only small effects on (beta)-amino acid accumulation. The largest effect is provided by L-(alpha)-glutamine, suggesting that nitrogen assimilation is a key factor in osmolyte distribution.  相似文献   

15.
Nineteen wheat genotypes were used to examine the effects of foliar applied glycine betaine (GB, 100 mM) on concentration of various osmolytes (such as proline, choline, GB and sucrose) under drought stress conditions. Drought stress caused a significant increase in proline content and GB content of wheat genotypes, both at maximum tillering and anthesis stages. Choline and sucrose were accumulated significantly at higher levels under stress conditions at both the stages. GB application increased the proline content and endogenous levels of GB in comparison to their stressed counterparts both at maximum tillering and anthesis stages but this increase was observed to be genotype specific. Furthermore, significant decrease in choline levels and sucrose contents of GB treated plants at anthesis stage and enhanced levels of proline questioned about involvement of GB in production of other osmolytes as well as stage specific response of wheat genotypes to GB spray. But these changes in osmolyte accumulation (OA) were not correlated with relative water content and stress tolerance index observed, under both GB sprayed and non-sprayed drought stressed conditions. So OA could not be considered as a selection criteria for drought tolerance in wheat.  相似文献   

16.
The uptake and accumulation of the potent osmolytes glycine betaine and carnitine enable the food-borne pathogen Listeria monocytogenes to proliferate in environments of elevated osmotic stress, often rendering salt-based food preservation inadequate. To date, three osmolyte transport systems are known to operate in L. monocytogenes: glycine betaine porter I (BetL), glycine betaine porter II (Gbu), and a carnitine transporter OpuC. We investigated the specificity of each transporter towards each osmolyte by creating mutant derivatives of L. monocytogenes 10403S that possess each of the transporters in isolation. Kinetic and steady-state osmolyte accumulation data together with growth rate experiments demonstrated that osmotically activated glycine betaine transport is readily and effectively mediated by Gbu and BetL and to a lesser extent by OpuC. Osmotically stimulated carnitine transport was demonstrated for OpuC and Gbu regardless of the nature of stressing salt. BetL can mediate weak carnitine uptake in response to NaCl stress but not KCl stress. No other transporter in L. monocytogenes 10403S appears to be involved in osmotically stimulated transport of either osmolyte, since a triple mutant strain yielded neither transport nor accumulation of glycine betaine or carnitine and could not be rescued by either osmolyte when grown under elevated osmotic stress.  相似文献   

17.
A common cellular mechanism of osmotic-stress adaptation is the intracellular accumulation of organic solutes (osmolytes). We investigated the mechanism of osmotic adaptation in the diazotrophic bacteria Azotobacter chroococcum, Azospirillum brasilense, and Klebsiella pneumoniae, which are adversely affected by high osmotic strength (i.e., soil salinity and/or drought). We used natural-abundance 13C nuclear magnetic resonance spectroscopy to identify all the osmolytes accumulating in these strains during osmotic stress generated by 0.5 M NaCl. Evidence is presented for the accumulation of trehalose and glutamate in Azotobacter chroococcum ZSM4, proline and glutamate in Azospirillum brasilense SHS6, and trehalose and proline in K. pneumoniae. Glycine betaine was accumulated in all strains grown in culture media containing yeast extract as the sole nitrogen source. Alternative nitrogen sources (e.g., NH4Cl or casamino acids) in the culture medium did not result in measurable glycine betaine accumulation. We suggest that the mechanism of osmotic adaptation in these organisms entails the accumulation of osmolytes in hyperosmotically stressed cells resulting from either enhanced uptake from the medium (of glycine betaine, proline, and glutamate) or increased net biosynthesis (of trehalose, proline, and glutamate) or both. The preferred osmolyte in Azotobacter chroococcum ZSM4 shifted from glutamate to trehalose as a consequence of a prolonged osmotic stress. Also, the dominant osmolyte in Azospirillum brasilense SHS6 shifted from glutamate to proline accumulation as the osmotic strength of the medium increased.  相似文献   

18.
Molecular and Cellular Biochemistry - The enzyme betaine aldehyde dehydrogenase (BADH EC 1.2.1.8) catalyzes the synthesis of glycine betaine (GB), an osmolyte and osmoprotectant. Also, it...  相似文献   

19.
Listeria monocytogenes is a food-borne pathogen that is widely distributed in nature and is found in many kinds of fresh and processed foods. The pervasiveness of this organism is due, in part, to its ability to tolerate environments with elevated osmolarity and reduced temperatures. Previously, we showed that L. monocytogenes adapts to osmotic and chill stress by transporting the osmolyte glycine betaine from the environment and accumulating it intracellularly (R. Ko, L. T. Smith, and G. M. Smith, J. Bacteriol. 176:426-431, 1994). In the present study, the influence of various environmental conditions on the accumulation of glycine betaine and another osmolyte, carnitine, was investigated. Carnitine was shown to confer both chill and osmotic tolerance to the pathogen but was less effective than glycine betaine. The absolute amount of each osmolyte accumulated by the cell was dependent on the temperature, the osmolarity of the medium, and the phase of growth of the culture. L. monocytogenes also accumulated high levels of osmolytes when grown on a variety of processed meats at reduced temperatures. However, the contribution of carnitine to the total intracellular osmolyte concentration was much greater in samples grown on meat than in those grown in liquid media. While the amount of each osmolyte in meat was less than 1 nmol/mg (fresh weight), the overall levels of osmolytes in L. monocytogenes grown on meat were about the same as those in liquid samples, from about 200 to 1,000 nmol/mg of cell protein for each osmolyte. This finding suggests that the accumulation of osmolytes is as important in the survival of L. monocytogenes in meat as it is in liquid media.  相似文献   

20.
The role of glycine betaine and choline in osmoprotection of various Rhizobium, Sinorhizobium, Mesorhizobium, Agrobacterium, and Bradyrhizobium reference strains which display a large variation in salt tolerance was investigated. When externally provided, both compounds enhanced the growth of Rhizobium tropici, Sinorhizobium meliloti, Sinorhizobium fredii, Rhizobium galegae, Agrobacterium tumefaciens, Mesorhizobium loti, and Mesorhizobium huakuii, demonstrating their utilization as osmoprotectants. However, both compounds were inefficient for the most salt-sensitive strains, such as Rhizobium leguminosarum (all biovars), Agrobacterium rhizogenes, Rhizobium etli, and Bradyrhizobium japonicum. Except for B. japonicum, all strains exhibit transport activity for glycine betaine and choline. When the medium osmolarity was raised, choline uptake activity was inhibited, whereas glycine betaine uptake was either increased in R. leguminosarum and S. meliloti or, more surprisingly, reduced in R. tropici, S. fredii, and M. loti. The transport of glycine betaine was increased by growing the cells in the presence of the substrate. With the exception of B. japonicum, all strains were able to use glycine betaine and choline as sole carbon and nitrogen sources. This catabolic function, reported for only a few soil bacteria, could increase competitiveness of rhizobial species in the rhizosphere. Choline dehydrogenase and betaine-aldehyde dehydrogenase activities were present in the cells of all strains with the exception of M. huakuii and B. japonicum. The main physiological role of glycine betaine in the family Rhizobiaceae seems to be as an energy source, while its contribution to osmoprotection is restricted to certain strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号