首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The time dependence of magnetic field effects on light absorption by triplet-state and radical ions in quinone-depleted reaction centers of Rhodopseudomonas sphaeroides strain R-26 has been investigated. Measurements on the time scale of the hyperfine interaction in the radical pair [(BChl)2+. ...BPh-.)] provided kinetic data characterizing the recombination process. The results have been interpreted in terms of a recently proposed model that assumes an intermediate electron acceptor (close site) between the bacteriochlorophyll "special pair" (BChl)2 and the bacteriopheophytin BPh (distant site). Recombination is assumed to proceed through this intermediate acceptor. The experiments led to effective recombination rates for the singlet and triplet channel: k(Seff) = 3.9 . 107 s-1 and k(Teff) = 7.4 . 10(8) s-1. These correspond to recombination rates ks = 1 . 10(1) s-1 and kT = 7.1 . 10(11) s-1 in the close configuration. The upper bound of the effective spin dephasing rate k2eff approximately equal to 1 . 10(9) s-1 is identical with the rate of the electron hopping between the distant site of zero spin exchange interaction and the close site of large interaction. Interpretation of data for the case of direct recombination yields the recombination rates, spin dephasing rate, and exchange interaction in a straightforward way.  相似文献   

2.
3.
This work describes fluorescence yield measurements in suspensions of strains of Rhodospirillum rubrum and Rhodopseudomonas sphaeroides in which the iron . quinone complex (X) was chemically reduced (state [PIX-]; P is the reaction center bacteriochlorophyll dimer, I is the long wavelength bacteriopheophytin), and compares these with the fluorescence observed when all the traps are open (state [PIX]) and with the fluorescence observed when all the traps are closed (state [P+IX]). At 77 K the amplitude and the shape of the fluorescence emission spectrum in [PIX-] are identical to those observed in [PIX]. This is a strong indication that all the extra fluorescence observed at room temperature in [PIX-] is, in fact, caused by an efficient back reaction [P+I-X-] leads to [P*IX-]. Using an equation similar to the original Vredenberg-Duysens relationship (Vredenburg, W.J. and Duysens, L.N.M. (1963) Nature 197, 355-357) but now assuming that a single reaction center has a probability pt of trapping an excitation and (1--pt) of re-emitting it to the surroundings, we are able to calculate pt as a function of the temperature by measuring the fluorescence in [PIX], [PIX-] and [P+IX] as a function of the temperature. The calculated pt values agree reasonably well with triplet yields measured in isolated reaction centers. Finally, we have measured the reaction center triplet yield (PTR) in intact systems and we have shown that the sum of the triplet yield and the remaining loss processes (PL) in the antenna bacteriochlorophyll including the bacteriochlorophyll dimer (such as fluorescence, internal conversion or direct triplet formation) is approximately constant; if we assume that at 77 K the only process which occurs in the reaction center is the formation of a reaction center triplet, than PTR + PL=1. The energy barrier between [P*IX-] and [P+I-X-] was estimated to be 0.11--0.15 eV for a set of preparations.  相似文献   

4.
Measurements of the triplet state zero-field splitting and intersystem crossing rate constants for isolated bacteriochlorophyll a and for chemically reduced photosynthetic bacteria are utilized to investigate the geometry of the bacteriochlorophyll dimer in the reaction center.  相似文献   

5.
Chromatophores from photosynthetic bacteria were excited with flashes lasting approx. 15 ns. Transient optical absorbance changes not associated with the photochemical electron-transfer reactions were interpreted as reflecting the conversion of bacteriochlorophyll or carotenoids into triplet states. Triplet states of various carotenoids were detected in five strains of bacteria; triplet states of bacteriochlorophyll, in two strains that lack carotenoids. Triplet states of antenna pigments could be distinguished from those of pigments specifically associated with the photochemical reaction centers. Antenna pigments were converted into their triplet states if the photochemical apparatus was oversaturated with light, if the primary photochemical reaction was blocked by prior chemical oxidation of P-870 or reduction of the primary electron acceptor, or if the bacteria were genetically devoid of reaction centers. Only the reduction of the electron acceptor appeared to lead to the formation of triplet states in the reaction centers.In the antenna bacteriochlorophyll, triplet states probably arise from excited singlet states by intersystem crossing. The antenna carotenoid triplets probably are formed by energy transfer from triplet antenna bacteriochlorophyll. The energy transfer process has a half time of approx. 20 ns, and is about 1 × 103 times more rapid than the reaction of the bacteriochlorophyll triplet states with O2. This is consistent with a role of carotenoids in preventing the formation of singlet O2 in vivo. In the absence of carotenoids and O2, the decay half times of the triplet states are 70 μs for the antenna bacteriochlorophyll and 6–10 μs for the reaction center bacteriochlorophyll. The carotenoid triplets decay with half times of 2–8 μs.With weak flashes, the quantum yields of the antenna triplet states are in the order of 0.02. The quantum yields decline severely after approximately one triplet state is formed per photosynthetic unit, so that even extremely strong flashes convert only a very small fraction of the antenna pigments into triplet states. The yield of fluorescence from the antenna bacteriochlorophyll declines similarly. These observations can be explained by the proposal that singlet-triplet fusion causes rapid quenching of excited singlet states in the antenna bacteriochlorophyll.  相似文献   

6.
7.
M Polm  K Brettel 《Biophysical journal》1998,74(6):3173-3181
Photoinduced electron transfer in photosystem I (PS I) proceeds from the excited primary electron donor P700 (a chlorophyll a dimer) via the primary acceptor A0 (chlorophyll a) and the secondary acceptor A1 (phylloquinone) to three [4Fe-4S] clusters, Fx, FA, and FB. Prereduction of the iron-sulfur clusters blocks electron transfer beyond A1. It has been shown previously that, under such conditions, the secondary pair P700+A1- decays by charge recombination with t1/2 approximately 250 ns at room temperature, forming the P700 triplet state (3P700) with a yield exceeding 85%. This reaction is unusual, as the secondary pair in other photosynthetic reaction centers recombines much slower and forms directly the singlet ground state rather than the triplet state of the primary donor. Here we studied the temperature dependence of secondary pair recombination in PS I from the cyanobacterium Synechococcus sp. PCC6803, which had been illuminated in the presence of dithionite at pH 10 to reduce all three iron-sulfur clusters. The reaction P700+A1- --> 3P700 was monitored by flash absorption spectroscopy. With decreasing temperature, the recombination slowed down and the yield of 3P700 decreased. In the range between 303 K and 240 K, the recombination rates could be described by the Arrhenius law with an activation energy of approximately 170 meV. Below 240 K, the temperature dependence became much weaker, and recombination to the singlet ground state became the dominating process. To explain the fast activated recombination to the P700 triplet state, we suggest a mechanism involving efficient singlet to triplet spin evolution in the secondary pair, thermally activated repopulation of the more closely spaced primary pair P700+A0- in a triplet spin configuration, and subsequent fast recombination (intrinsic rate on the order of 10(9) s(-1)) forming 3P700.  相似文献   

8.
We have investigated the effects of magnetic fields on the formation and decay of excited states in the photochemical reaction centers of Rhodopseudomonae sphaeroides. In chemically reduced reaction centers, a magnetic field decreases the fraction of the transient state PF that decays by way of the bacteriochlorophyll triplet state PR. At room temperature, a 2-kG field decreases the quantum yield of Pr by about 40%. In carotenoid-containing reaction centers, the yield of the carotenoid triplet state which forms via PR is reduced similarly. The effect of the field depends monotonically on field-strength, saturating at about 1 kG. The effect decreases at lower temperatures, when the yield of PR is higher. Magnetic fields do not significantly affect the formation of the triplet state of bacteriochlorophyll in vitro, the photooxidation of P870 in reaction centers at moderate redox potential, or the decay kinetics of states PF and PR. The effect of magnetic fields support in view that state PF is a radical pair which is born in a singlet state but undergoes a rapid transformation into a mixture of singlet and triplet states. A simple kinetic model can account for the effects of the field and relate them to the temperature dependence of the yield of PR.  相似文献   

9.
A key step in the photosynthetic reactions in photosystem II of green plants is the transfer of an electron from the singlet-excited chlorophyll molecule called P680 to a nearby pheophytin molecule. The free energy difference of this primary charge separation reaction is determined in isolated photosystem II reaction center complexes as a function of temperature by measuring the absolute quantum yield of P680 triplet formation and the time-integrated fluorescence emission yield. The total triplet yield is found to be 0.83 +/- 0.05 at 4 K, and it decreases upon raising the temperature to 0.30 at 200 K. It is suggested that the observed triplet states predominantly arise from P680 but to a minor extent also from antenna chlorophyll present in the photosystem II reaction center. No carotenoid triplet states could be detected, demonstrating that the contamination of the preparation with CP47 complexes is less than 1/100 reaction centers. The fluorescence yield is 0.07 +/- 0.02 at 10 K, and it decreases upon raising the temperature to reach a value of 0.05-0.06 at 60-70 K, increases upon raising the temperature to 0.07 at approximately 165 K and decreases again upon further raising the temperature. The complex dependence of fluorescence quantum yield on temperature is explained by assuming the presence of one or more pigments in the photosystem II reaction center that are energetically degenerate with the primary electron donor P680 and below 60-70 K trap part of the excitation energy, and by temperature-dependent excited state decay above 165 K. A four-compartment model is presented that describes the observed triplet and fluorescence quantum yields at all temperatures and includes pigments that are degenerate with P680, temperature-dependent excited state decay and activated upward energy transfer rates. The eigenvalues of the model are in accordance with the lifetimes observed in fluorescence and absorption difference measurements by several workers. The model suggests that the free energy difference between singlet-excited P680 and the radical pair state P680+l- is temperature independent, and that a distribution of free energy differences represented by at least three values of about 20, 40, and 80 meV, is needed to get an appropriate fit of the data.  相似文献   

10.
In photosynthetic bacteria, in which the iron-ubiquinone complex X is prereduced, a magnetic field induces an increase of the emmission yield, which is correlated with the decrease in reaction center triplet yield reported previously (Hoff, A.J., Rademaker, H., van Grondelle, R. and Duysens, L.N.M. (1977) Biochim. Biophys. Acta 460, 547--554). Our results support the hypothesis that under these conditions charge recombination of the oxidized primary donor and the reduced primary acceptor predominantly generates the excited singlet state of the reaction center bacteriochlorophyll. In Chlorella vulgaris and spinach chloroplasts, at 120 K, the magnetic field has an effect similar to that found in bacteria, which suggests that an intermediary electron acceptor between P-680 and Q is present in Photosystem II also.  相似文献   

11.
1. The curves representing the reciprocal fluorescence yield of chlorophyll alpha of Photosystem II (PS II) in Chlorella vulgaris as a function of the concentration of m-dinitrobenzene in the states P Q and P Q-, are found to be straight parallel lines; P is the primary donor and Q the primary acceptor of PS II. In the weakly trapping state P Q- the half-quenching of dinitrobenzene is about 0.2 mM, in vitro it is of the order of 10 mM. The fluorescence yield as a function of the concentration of a quencher is described for three models for the energy transfer between the units, and the matrix model. If it is assumed that the rate constant of quenching by dinitrobenzene is high and thus the number of dinitrobenzene molecules per reaction center low, it can be concluded that the pigment system of PS II in C. vulgaris is a matrix of chlorophyll molecules in which the reaction centers are embedded. Theoretical and experimental evidence is consistent with such an assumption. For Cyanidium caldarium the zero fluorescence yield phi 0 and its quenching by dinitrobenzene were found to be much smaller than the corresponding quantities for C. vulgaris. Nevertheless, our measurements on C. caldarium could be interpreted by the assumption that the essential properties (rate constants, dinitrobenzene quenching) of PS II are the same for these two species belonging to such widely different groups. 2. The measured dinitrobenzene concentrations required for half-quenching in vivo and other observations are explained by (non-rate-limiting) energy transfer between the chlorophyll alpha molecules of PS II and by the assumptions that dinitrobenzene is approximately distributed at random in the membrane and does not diffuse during excitation. 3. The fluorescence kinetics of C. vulgaris during a 350 ns laser flash of variable intensity could be simulated on a computer using the matrix model. From the observed fluorescence quenching by the carotenoid triplet (CT) and the measurement of the the number of CT per reaction center via difference absorption spectroscopy, the rate constant for quenching of CT is calculated to be kT = 3.3 . 10(11)s-1 which is almost equal to the rate constant of trapping by an open reaction center (Duysens, L.N.M. (1979) CIBA Foundation Symposium 61 (New Series), pp. 323--340). 4. The fluorescence quenching by CT in non-treated spinach chloroplasts after a 500 ns laser flash (Breton, J., Geacintov, N.E. and Swenberg, C.E. (1979) Biochim, Biophys. Acta 548, 616--635) could be explained within the framework of the matrix model when the value for kT is used as given in point 3. 5. The observations mentioned under point 1 indicate that the fluorescence yield phi 0 for centers in trapping state P Q is probably for a fraction exceeding 0.8 emitted by PS II.  相似文献   

12.
H. Rademaker  A.J. Hoff  L.N.M. Duysens 《BBA》1979,546(2):248-255
In photosynthetic bacteria, in which the iron-ubiquinone complex X is prereduced, a magnetic field induces an increase of the emission yield, which is correlated with the decrease in reaction center triplet yield reported previously (Hoff, A.J., Rademaker, H., van Grondelle, R. and Duysens, L.N.M. (1977) Biochim. Biophys. Acta 460, 547–554). Our results support the hypothesis that under these conditions charge recombination of the oxidized primary donor and the reduced primary acceptor predominantly generates the excited singlet state of the reaction center bacteriochlorophyll.In Chlorella vulgaris and spinach chloroplasts, at 120 K, the magnetic field has an effect similar to that found in bacteria, which suggests that an intermediary electron acceptor between P-680 and Q is present in Photosystem II also.  相似文献   

13.
In reaction centers from Rhodobacter sphaeroides (formerly called Rhodopseudomonas sphaeroides), light causes an electron-transfer reaction that forms the radical pair state (P+I-, or PF) from the initial excited singlet state (P) of a bacteriochlorophyll dimer (P). Subsequent electron transfer to a quinone (Q) produces the state P+Q-. Back electron transfer can regenerate P from P+Q-, giving rise to 'delayed' fluorescence that decays with approximately the same lifetime as P+Q-. The free-energy difference between P+Q- and P can be determined from the initial amplitude of the delayed fluorescence. In the present work, we extracted the native quinone (ubiquinone) from Rps. sphaeroides reaction centers, and replaced it by various anthraquinones, naphthoquinones, and benzoquinones. We found a rough correlation between the halfwave reduction potential (E1/2) of the quinone used for reconstitution (as measured polarographically in dimethylformamide) and the apparent free energy of the state P+Q- relatively to P. As the E1/2 of the quinone becomes more negative, the standard free-energy gap between P+Q- and P decreases. However, the correlation is quantitatively weak. Apparently, the effective midpoint potentials (Em) of the quinones in situ depend subtly on interactions with the protein environment in the reaction center. Using the value of the Em for ubiquinone determined in native reaction centers as a reference, and the standard free energies determined for P+Q- in reaction centers reconstituted with other quinones, the effective Em values of 12 different quinones in situ are estimated. In native reaction centers, or in reaction centers reconstituted with quinones that give a standard free-energy gap of more than about 0.8 eV between P+Q- and P*, charge recombination from P+Q- to the ground state (PQ) occurs almost exclusively by a temperature-insensitive mechanism, presumably electron tunneling. When reaction centers are reconstituted with quinones that give a free-energy gap between P+Q- and P* of less than 0.8 with quinones that give a free-energy gap between P+Q- and P* of less than 0.8 eV, part or all of the decay proceeds through a thermally accessible intermediate. There is a linear relationship between the log of the rate constant for the decay of P+Q- via the intermediate state and the standard free energy of P+Q-. The higher the free energy, the faster the decay. The kinetic and thermodynamic properties of the intermediate appear not to depend strongly on the quinone used for reconstitution, indicating that the intermediate is probably not simply an activated form of P+Q-.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Mayfair Chu Kung  Don Devault 《BBA》1978,501(2):217-231
We have observed fluorescence at visible wavelengths from chromatophores of photosynthetic bacteria excited with infrared radiation which we attribute to bacteriochlorophyll of the antenna system. The fluorescence is prompt (no delay greater than 5 ns). Its spectrum shows peaks at 445, 530 (broad) and 600 nm when excited with either 694 or 868 nm. Quantum yield is of the order of 10?9. The dependence on intensity indicates generation by mainly third-order processes which could involve triplet states in combination with excited singlets. Second-order single-singlet fusion could also contribute. The high-order fluorescence can also be explained as arising from absorption of a second photon by singlet excited states.  相似文献   

15.
We have observed fluorescence at visible wavelengths from chromatophores of photosynthetic bacteria excited with infrared radiation which we attribute to bacteriochlorophyll of the antenna system. The fluorescence is prompt (no delay greater than 5 ns). Its spectrum shows peaks at 445, 530 (broad) and 600 nm when excited with either 694 or 868 nm. Quantum yield is of the order of 10(-9). The dependence on intensity indicates generation by mainly third-order processes which could involve triplet state in combination with excited singlets. Second-order single-singlet fusion could also contribute. The high-order fluorescence can also be explained as arising from absorption of a second photon by singlet excited states.  相似文献   

16.
The photoreductive trapping of the transient, intermediate acceptor, I-, in purified reaction centers of Rhodopseudomonas sphaeroides R-26 was investigated for different external conditions. The optical spectrum of I- was found to be similar to that reported for other systems by Shuvalov and Klimov ((1976) Biochim. Biophys. Acta 400, 587--599) and Tiede et al. (P.M. Tiede, R.C. Prince, G.H. Reed and P.L. Dutton (1976) FEBS Lett. 65, 301--304). The optical changes of I- showed characteristics of both bacteriopheophytin (e.g. bleaching at 762, 542 nm and red shift at 400 nm) and bacteriochlorophyll (bleaching at 802 and 590 nm). Two types of EPR signals of I- were observed: one was a narrow singlet at g = 2.0035, deltaH = 13.5 G, the other a doublet with a splitting of 60 G centered around g = 2.00, which was only seen after short illumination times in reaction centers reconstituted with menaquinone. The optical and EPR kinetics of I- on illumination in the presence of reduced cytochrome c and dithionite strongly support the following three-step scheme in which the doublet EPR signal is due to the unstable state DI-Q-Fe2+ and the singlet EPR signal is due to DI-Q2-Fe2+. : formula: (see text), where D is the primary donor (BChl)2+. The above model was supported by the following observations: (1) During the first illumination, sigmoidal kinetics of the formation of I- was observed. This is a direct consequence of the three-sequential reactions. (2) During the second and subsequent illuminations first-order (exponential) kinetics were observed for the formation of I-. This is due to the dark decay, k4, to the state DIQ2-Fe2+ formed after the first illumination. (3) Removal of the quinone resulted in first-order kinetics. In this case, only the first step, k1, is operative. (4) The observation of the doublet signal in reaction centers containing menaquinone but not ubiquinone is explained by the longer lifetime of the doublet species I-(Q-Fe2%) in reaction centers containing menaquinone. The value of tau2 was determined from kinetic measurements to be 0.01 s for ubiquinone and 4 s for menaquinone (T = 20 degrees C). The temperature and pH dependence of the dark electron transfer reaction I-(Q-Fe2+) yields I(Q2-Fe2+) was studied in detail. The activation energy for this process was found to be 0.42 eV for reaction centers containing ubiquinone and 0.67 eV for reaction centers with menaquinone. The activation energy and the doublet splitting were used to calculate the rate of electron transfer from I- to MQ-Fe2+ using Hopfield's theory for thermally activated electron tunneling. The calculated rate agrees well with the experimentally determined rate which provides support for electron tunneling as the mechanism for electron transfer in this reaction. Using the EPR doublet splitting and the activation energy for electron transfer, the tunneling matrix element was calculated to be 10(-3) eV. From this value the distance between I- and MQ- was estimated to be 7.5--10 A.  相似文献   

17.
Single-photon counting techniques were used to measure the fluorescence decay from Rhodopseudomonas sphaeroides and Rhodospirillum rubrum chromatophores after excitation with a 25-ps, 600-nm laser pulse. Electron transfer was blocked beyond the initial radical-pair state (PF) by chemical reduction of the quinone that serves as the next electron acceptor. Under these conditions, the fluorescence decays with multiphasic kinetics and at least three exponential decay components are required to describe the delayed fluorescence. Weak magnetic fields cause a small increase in the decay time of the longest component. The components of the delayed fluorescence are similar to those found previously with isolated reaction centers. We interpret the multi-exponential decay in terms of two small (0.01-0.02 eV) relaxations in the free energy of PF, as suggested previously for reaction centers. From the initial amplitudes of the delayed fluorescence, it is possible to calculate the standard free-energy difference between the earliest resolved form of PF and the excited singlet state of the antenna complexes in R. rubrum strains S1 and G9. The free-energy gap is found to be about 0.10 eV. It also is possible to calculate the standard free-energy difference between PF and the excited singlet state of the reaction center bacteriochlorophyll dimer (P). Values of 0.17 to 0.19 eV were found in both R. rubrum strains and also in Rps. sphaeroides strain 2.4.1. This free-energy gap agrees well with the standard free-energy difference between PF and P determined previously for reaction centers isolated from Rps. sphaeroides strain R26. The temperature dependence of the delayed fluorescence amplitudes between 180 K and 295 K is qualitatively different in isolated reaction centers and chromatophores. However, the temperature dependence of the calculated standard free-energy difference between P* and PF is similar in reaction centers and chromatophores of Rps. sphaeroides. The different temperature dependence of the fluorescence amplitudes in reaction centers and chromatophores arises because the free-energy difference between P* and the excited antenna is dominated by the entropy change associated with delocalization of the excitation in the antenna. We conclude that the state PF is similar in isolated reaction centers and in the intact photosynthetic membrane. Chromatophores from Rps. sphaeroides strain R-26 exhibit an anomalous fluorescence component that could reflect heterogeneity in their antenna.  相似文献   

18.
Experimental evidence for electron transfer, photosensitized by bacteriochlorophyll, from cytochrome c to a pigment complex P-760 (involving bacteriopheophytin-760 and also bacteriochlorophyll-800) in the reaction centers of Chromatium minutissimum has been described. This photoreaction occurs between 77 and 293 degrees K at a redox potential of the medium between -250 and -530 mV. Photoreduction of P-760 is accompanied by development of a wide absorption band at 650 nm and of an EPR signal with g=2.0025+/-0.0005 and linewidth of 12.5+/-0.5 G, which are characteristic of the pigment radical anion. It is suggested that the photoreduction of P-760 occurs under the interaction of reduced cytochrome c with the reaction center state P+-890-P--760 which is induced by light. The existence of short-lived state P+-890-P--760 is indicated by the recombination luminescence with activation energy of 0.12 eV and t 1/2 less than or equal to 6 ns. This luminescence is exicted and emitted by bacteriochlorophyll and disappears when P-760 is reduced. At low redox potentials, the flash-induced absorbance changes related to the formation of the carotenoid triplet state with t 1/2 = 6 mus at 20 degreesC are observed. This state is not formed when P-760 is reduced at 293 and 160 degrees K. It is assumed that this state is formed from the reaction center state P+-890---760, which appears to be a primary product of light reaction in the bacterial reaction centers and which is probably identical with the state PF described in recent works.  相似文献   

19.
We have investigated the effects of magnetic fields on the formation and decay of excited states in the photochemical reaction centers of Rhodopseudomonas sphaeroides. In chemically reduced reaction centers, a magnetic field decreases the fraction of the transient state PF that decays by way of the bacteriochlorophyll triplet state PR. At room temperature, a 2-kG field decreases the quantum yield of PR by about 40%. In carotenoid-containing reaction centers, the yield of the carotenoid triplet state which forms via PR is reduced similarly. The effect of the field depends monotonically on field-strength, saturating at about 1 kG. The effect decreases at lower temperatures, when the yield of PR is higher. Magnetic fields do not significantly affect the formation of the triplet state of bacteriochlorophyll in vitro, the photooxidation of P-870 in reaction centers at moderate redox potential, or the decay kinetics of states PF and PR.The effects of magnetic fields support the view that state PF is a radical pair which is born in a singlet state but undergoes a rapid transformation into a mixture of singlet and triplet states. A simple kinetic model can account for the effects of the field and relate them to the temperature dependence of the yield of PR.  相似文献   

20.
The triplet state of isolated reaction centers of Rhodopseudomonas sphaeroides R-26 has been studied by fluorescence-detected electron spin resonance in zero magnetic field (FDMR) at 4.2 K. The sign of the FDMR resonance monitored at the long-wavelength fluorescence band is positive (fluorescence increase); this confirms the earlier interpretation (Hoff, A.J. and Gorter de Vries, H. (1978) Biochim. Biophys. Acta 503, 94–106) that the negative sign of the FDMR resonance of the reaction center triplet state in whole bacterial cells is caused by resonant transfer of the singlet excitations from the antenna pigments to the trap. By monitoring the FDMR response as a function of the wavelength of fluorescence, we have recorded microwave-induced fluorescence spectra. In addition to the positive microwave-induced fluorescence band peaking at 935 nm, at 905 nm a negative band was found. The resonant microwave frequencies for these two bands, i.e., the values of the zero-field splitting parameters |D| and |E| of the triplet state being monitored, were different, those of the 905 nm microwave-induced fluorescence band being identical to the resonant microwave frequencies measured with absorption-detected zero-field resonance (Den Blanken, H.J., Van der Zwet, G.P. and Hoff, A.J. (1982) Chem. Phys. Lett. 85, 335–338), a technique that monitors the bulk properties of the sample. From this result and its negative sign, we tentatively attribute the 905 nm microwave-induced fluorescence band to a small (possibly less than 1%) fraction of antenna bacteriochlorophylls that are in close contact with the trap. The positive 935 nm microwave-induced fluorescence band with resonant microwave frequencies deviating from the bulk material is ascribed to a minority of primary donor bacteriochlorophyll dimers, which have a higher than normal fluorescence yield because of a somewhat slower charge-separation reaction. Is it likely that practically all long-wavelength fluorescence of isolated reaction centers stems from such impaired reaction centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号