首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 96 毫秒
1.
Free radicals and other active derivatives of oxygen are inevitable by-products of biological redox reactions. Reduced oxygen species, such as hydrogen peroxide, the superoxide radical anion and hydroxyl radicals, inactivate enzymes and damage important cellular components. In addition, singlet oxygen, produced via formation of triplet state chlorophyll, is highly destructive. This oxygen species initiates lipid peroxidation, and produces lipid peroxy radicals and lipid hydroperoxides that are also very reactive. The increased production of toxic oxygen derivatives is considered to be a universal or common feature of stress conditions. Plants and other organisms have evolved a wide range of mechanisms to contend with this problem. The antioxidant defence system of the plant comprises a variety of antioxidant molecules and enzymes. Considerable interest has been focused on the ascorbate-glutathione cycle because it has a central role in protecting the chloroplasts and other cellular compartments from oxidative damage. It is clear that the capacity and activity of the antioxidative defence systems are important in limiting photo-oxidative damage and in destroying active oxygen species that are produced in excess of those normally required for signal transduction or metabolism. In our studies on this system, we became aware that the answers to many unresolved questions concerning the nature and regulation of the antioxidative defence system could not be obtained easily by either a purely physiological or purely biochemical approach. Transgenic plants offered us a means by which to achieve a more complete understanding of the roles of the enzymes involved in protection against stress of many types: environmental and man-made. The ability to engineer plants which express introduced genes at high levels provides an opportunity to manipulate the levels of these enzymes, and hence metabolism in vivo. Studies on transformed plants expressing increased activities of single enzymes of the antioxidative defence system indicate that it is possible to confer a degree of tolerence to stress by this means. However, attempts to increase stress resistance by simply increasing the activity of one of the antioxidant enzymes have not always been successful presumably because of the need for a balanced interaction of protective enzymes. The study of these transformed plants has allowed a more complete understanding of the roles of individual enzymes in metabolism. Protection against oxidative stress has become a feasible objective through the application of molecular genetic techniques in conjunction with a biochemical and physiological approach.  相似文献   

2.
Antioxidative defense under salt stress   总被引:1,自引:0,他引:1  
Salt tolerance is a complex trait involving the coordinated action of many gene families that perform a variety of functions such as control of water loss through stomata, ion sequestration, metabolic adjustment, osmotic adjustment and antioxidative defense. In spite of the large number of publications on the role of antioxidative defense under salt stress, the relative importance of this process to overall plant salt tolerance is still a matter of controversy. In this article, the generation and scavenging of reactive oxygen species (ROS) under normal and salt stress conditions in relation to the type of photosynthesis is discussed. The CO2 concentrating mechanism in C4 and CAM plants is expected to contribute to decreasing ROS generation. However, the available data supports this hypothesis in CAM but not in C4 plants. We discuss the specific roles of enzymatic and non enzymatic antioxidants in relation to the oxidative load in the context of whole plant salt tolerance. The possible preventive antioxidative mechanisms are also discussed.Key words: salt stress, generation of ROS, type of photosynthesis, scavenging of ROS, preventive antioxidative defense  相似文献   

3.
4.
Carbonic anhydrase (CA) catalyzes reversible hydration of CO2 and it can compensate for the lack of H2O and CO2 in plants under stress conditions. Antioxidative enzymes play a key role in scavenging reactive oxygen species and in protecting plant cells against toxic effects. Tomato represents a stress-sensitive plant while violet orychophragmus belongs to adversity-resistant plants. In order to study the drought responses in tomato and violet orychophragmus plants, CA and antioxidative enzyme activities, photosynthetic capacity, and water potential were determined in plants under drought stress. We found that there were similar change trends in CA activity and drought tolerance in violet orychophragmus, and in antioxidative enzymes and drought tolerance in tomato plants. Basic mechanisms of drought resistance should be identified for understanding of breeding measures in plants under stress conditions.  相似文献   

5.
Plant cell metabolism reactions upon biotic stress conditions are initiated via cellular signaling systems. At the same time, signaling pathways of phytohormonal mediators of biotic stress induction, salicylic acid and jasmonic acid, and their intracellular activities are implemented in cooperation with lipid-derived regulatory elements. In this work we have found that salicylic acid treatment evoke activation of phospholipase D responsible for the production of second messenger phosphatidic acid. Mediators of the defense reactions also affected the balance of active oxygen species and in particular induced accumulation of endogenous hydrogen peroxide and changes in the activities of antioxidant enzymes (catalase, peroxidases, and superoxide dismutase). Our results point out to the interactions between lipid signaling enzymes and cellular antioxidant systems required for realization of primary adaptation responses to biotic stress mediators in plants.  相似文献   

6.
Photosynthetic organisms need defense systems against photooxidative stress caused by the generation of highly reactive singlet oxygen (1O2). Here we show that the alternative sigma factor RpoHII is required for the expression of important defense factors and that deletion of rpoHII leads to increased sensitivity against exposure to 1O2 and methylglyoxal in Rhodobacter sphaeroides. The gene encoding RpoHII is controlled by RpoE, and thereby a sigma factor cascade is constituted. We provide the first in vivo study that identifies genes controlled by an RpoHII-type sigma factor, which is widely distributed in the Alphaproteobacteria. RpoHII-dependent genes encode oxidative-stress defense systems, including proteins for the degradation of methylglyoxal, detoxification of peroxides, 1O2 scavenging, and redox and iron homeostasis. Our experiments indicate that glutathione (GSH)-dependent mechanisms are involved in the defense against photooxidative stress in photosynthetic bacteria. Therefore, we conclude that systems pivotal for the organism's defense against photooxidative stress are strongly dependent on GSH and are specifically recognized by RpoHII in R. sphaeroides.  相似文献   

7.
Antioxidant activity of carotenoids   总被引:3,自引:0,他引:3  
Carotenoids are pigments which play a major role in the protection of plants against photooxidative processes. They are efficient antioxidants scavenging singlet molecular oxygen and peroxyl radicals. In the human organism, carotenoids are part of the antioxidant defense system. They interact synergistically with other antioxidants; mixtures of carotenoids are more effective than single compounds. According to their structure most carotenoids exhibit absorption maxima at around 450 nm. Filtering of blue light has been proposed as a mechanism protecting the macula lutea against photooxidative damage. There is increasing evidence from human studies that carotenoids protect the skin against photooxidative damage.  相似文献   

8.
Reactive oxygen species, antioxidants and signaling in plants   总被引:4,自引:0,他引:4  
Several reactive oxygen species (ROS) are continuously produced in plants as byproducts of many metabolic reactions, such as photosynthesis, photo respiration and respiration, Depending on the nature of the ROS species, some are highly toxic and rapidly detoxified by various cellular enzymatic and nonenzymatic mechanisms. Oxidative stress occurs when there is a serious imbalance between the production of ROS and antioxidative defence. ROS participate in signal transduction, but also modify cellular components and cause damage. ROS is highly reactive molecules and can oxidize all types of cellular components. Various enzymes involved in ROS-scavenging have been manipulated and over expressed or down regulated. An overview of the literature is presented in terms of primary antioxidant free radical scavenging and redox signaling in plant cells. Special attention is given to ROS and ROS-anioxidant interaction as a metabolic interface for different types of signals derived from metabolisms and from the changing environment.  相似文献   

9.
Furan fatty acids (F-acids) are heterocyclic fatty acids having a furan ring in their structure. Most existing studies on F-acids are related to either fish or other marine animals. Even though F-acids have been detected in many plant species, not much work has been done exclusively in plants of economic importance, especially oilseed crops. This review focuses mainly on the functions and roles of F-acids in plants. In plants, they are bound to phospholipids by substituting PUFA and function as free radical scavengers suggesting their role in defense against oxidative stress. Owing to their antioxidative property F-acids are highly unstable and their photooxidative products can contribute to the flavor of edible oils.  相似文献   

10.
Blue-green algae (cyanobacteria) have evolved as the most primitive, oxygenic, plant-type photosynthetic organisms. They were the first which produced molecular oxygen as a byproduct of photosynthetic activity. Also today they live in habitats with potentially damaging photooxidative conditions due to high irradiation and oxygen concentrations. Therefore, the cells must have evolved protective mechanisms to cope with reactive oxygen species produced by incomplete reduction of molecular oxygen via electron transport processes to prevent damage of biologically important macromolecules. Hydrogen peroxide and organic peroxides can be removed by enzymes called hydroperoxidases which on the one hand disproportionate it (catalases and catalase-peroxidases) and on the other hand use electron donors to reduce it to water or the corresponding alcohols. Until now the sequenced or partially sequenced genomes of six cyanobacteria are available in databases. Based on similarity searches and multiple sequence alignments, several cyanobacterial hydroperoxidases can be detected. All the cyanobacteria possess peroxiredoxins which use thioredoxin or other reduced thiols to get rid of hydrogen peroxide and lipid peroxides. Nearly all cyanobacteria contain an NADPH-dependent glutathione peroxidase-like protein which uses NADPH to reduce unsaturated fatty acid hydroperoxides. The best analyzed cyanobacterial antioxidative enzyme is the hemoprotein catalase-peroxidase which has a high catalase activity but concerning the sequence it is a typical peroxidase. Two species seem to encode a manganese-containing catalase and Nostoc punctiforme could use a monofunctional catalase. There are as well additional peroxidases encoded in cyanobacteria whose physiological relevance is unknown.  相似文献   

11.
Singlet oxygen and photo-oxidative stress management in plants and algae   总被引:9,自引:0,他引:9  
Photosynthetic organisms constantly face the threat of photo-oxidative stress from fluctuating light conditions and environmental stress. Plants and algae have developed an array of defences to protect the chloroplast from reactive oxygen species. Genetic and physiological studies have shown that antioxidant responses are important to high-light acclimation, both by directly scavenging or quenching reactive oxygen intermediates and by contributing reducing power for alternative electron transport pathways and excess energy dissipation. At present, the signalling events leading to up-regulation of antioxidant defences in high light remain a mystery. Recent advances toward understanding acclimation to oxidative stress in both photosynthetic and non-photosynthetic model organisms may illuminate how plants and algae respond to high-light stress. Although the role of hydrogen peroxide in high-light acclimation has been investigated, less is known about responses to singlet oxygen, a form of reactive oxygen that poses a significant threat specifically to photosynthetic organisms. This review will discuss some intriguing new findings in that area, focusing on recent findings regarding the nature of singlet-oxygen responses in the chloroplast.  相似文献   

12.
Temperature stress can have a devastating effect on plant metabolism, disrupting cellular homeostasis, and uncoupling major physiological processes. A direct result of stress-induced cellular changes is the enhanced accumulation of toxic compounds in cells that include reactive oxygen species (ROS). Although a considerable amount of work has shown a direct link between ROS scavenging and plant tolerance to temperature stress, recent studies have shown that ROS could also play a key role in mediating important signal transduction events. Thus, ROS, such as superoxide (O2), are produced by NADPH oxidases during abiotic stress to activate stress-response pathways and induce defense mechanisms. The rates and cellular sites of ROS production during temperature stress could play a central role in stress perception and protection. ROS levels, as well as ROS signals, are thought to be controlled by the ROS gene network of plants. It is likely that in plants this network is interlinked with the different networks that control temperature stress acclimation and tolerance. In this review paper, we attempt to summarize some of the recent studies linking ROS and temperature stress in plants and propose a model for the involvement of ROS in temperature stress sensing and defense.  相似文献   

13.
The bloom-forming cyanobacterium Nodularia spumigena produces toxic compounds, including nodularin, which is known to have adverse effects on various organisms. We monitored the primary effects of nodularin exposure on physiological parameters in Spinachia oleracea. We present the first evidence for the uptake of nodularin by a terrestrial plant, and show that the exposure of spinach to cyanobacterial crude water extract from nodularin-producing strain AV1 results in inhibition of growth and bleaching of the leaves. Despite drastic effects on phenotype and survival, nodularin did not disturb the photosynthetic performance of plants or the structure of the photosynthetic machinery in the chloroplast thylakoid membrane. Nevertheless, the nodularin-exposed plants suffered from oxidative stress, as evidenced by a high level of oxidative modifications targeted to various proteins, altered levels of enzymes involved in scavenging of reactive oxygen species (ROS), and increased levels of α-tocopherol, which is an important antioxidant. Moreover, the high level of cytochrome oxidase (COX II), a typical marker for mitochondrial respiratory protein complexes, suggests that the respiratory capacity is increased in the leaves of nodularin-exposed plants. Actively respiring plant mitochondria, in turn, may produce ROS at high rates. Although the accumulation of ROS and induction of the ROS scavenging network enable the survival of the plant upon toxin exposure, the upregulation of the enzymatic defense system is likely to increase energetic costs, reducing growth and the ultimate fitness of the plants.  相似文献   

14.
Impact of supplemental UV-B (sUV-B) has been investigated on photosynthetic pigments, antioxidative enzymes, metabolites, and protein profiling of radish plants under realistic field conditions. Exposure of sUV-B leads to oxidative damage in plants. However, plants possess a number of UV-protection mechanisms including a stimulation of antioxidant defense system. It caused alteration in reactive oxygen species metabolism primarily by decreasing catalase activity vis-à-vis enhanced activities of other enzymatic (superoxide dismutase, ascorbate peroxidase, and glutathione reductase) and non-enzymatic (ascorbic acid) antioxidants. Qualitative analysis of samples also showed significant reductions in photosynthetic pigments and protein content. After sUV-B exposure, protein profile showed differences mainly at eight points—126.8, 84.8, 71.9, 61.5, 47.8, 40.6, 38.9, and 17.5 kDa, whereas protein(s) of 38.9 kDa showed increment. Results of the present investigation clearly showed the adverse effect of sUV-B on total biomass at final harvest.  相似文献   

15.
Zeaxanthin (Z) has a role in the dissipation of excess excitation energy by participating in non‐photochemical quenching (NPQ) and is essential in protecting the chloroplast from photooxidative damage. To investigate the physiological effects and functional mechanism of constitutive accumulation of Z in the tomato at salt stress‐induced photoinhibition and photooxidation, antisense‐mediated suppression of zeaxanthin epoxidase transgenic plants and the wild‐type (WT) tomato were used. The ratio of Z/(V + A + Z) and (Z + 0.5A)/(V + A + Z) in antisense transgenic plants were maintained at a higher level than in WT plants under salt stress, but the value of NPQ in WT and transgenic plants was not significantly different under salt stress. However, the maximal photochemical efficiency of PSII (Fv/Fm) and the net photosynthetic rate (Pn) in transgenic plants decreased more slowly under salt stress. Furthermore, transgenic plants showed lower level of hydrogen peroxide (H2O2), superoxide anion radical (O2??) and ion leakage, lower malondialdehyde content. Compared with WT, the content of D1 protein decreased slightly in transgenic plants under salt stress. Our results suggested that the constitutive accumulation of Z in transgenic tomatoes can alleviate salt stress‐induced photoinhibition because of the antioxidant role of Z in the scavenging quenching of singlet oxygen and/or free radicals in the lipid phase of the membrane.  相似文献   

16.
Two winter triticale (x Triticosecale Wittm.) cultivars, Magnat (susceptible to pink snow mould) and Hewo (relatively resistant), were used in a model system to test the effect of prehardening and different cold‐hardening regimes on pro‐ and antioxidative activity in seedling leaves. The concentration of hydrogen peroxide and the activity of total superoxide dismutase, catalase, peroxidase and ascorbic peroxidase were analysed spectrophotometrically. As there has been no previous analysis of the pro/antioxidative reaction of cereals to Microdochium nivale infection has been undertaken to‐date, this is the first in the series describing our results. We confirmed that both exposure to abiotic stress of low temperature and subsequent low light intensity, as well as biotic stress of M. nivale infection, change the pro‐ and antioxidative activity in model plants. Genotypes differed substantially in their hydrogen peroxide content: susceptible cv. Magnat generally showed higher levels during all the experiments. This result can lead to the conclusion that cv. Magnat is also more susceptible to low temperature and low light intensity than cv. Hewo. Simultaneous measurements of antioxidative activity indicated that the increased activity of catalases and peroxidases and the consequent lower H2O2 level are correlated with a higher resistance to low temperature, low light intensity and pink snow mould in triticale seedlings. The higher H2O2 level observed in the susceptible line is likely to be derived from the imbalance of reactive oxygen species production and consumption in this genotype under stress conditions.  相似文献   

17.
18.
19.
The metabolism of reactive oxygen species in Nostoc flagelliforme and effects of exogenous oxidants on its photosynthetic recovery were investigated to obtain insight into oxidative stress in desiccation and its possible damaging impact on photosynthetic apparatus. No ascorbate was detected with ascorbate oxidase in N. flagelliforme. Superoxide dismutase (SOD) remained active even after three years drying storage and its activity was 78% of that in fully recovered samples. The SOD activity decreased during desiccation or in drying storage. Intracellular active oxygen production was studied by incubating samples in BG11 medium for 2 h and measuring the oxidation of 2,7 -dichlorohydrofluorescein diacetate. The production rate was 38.11 nmol DCFg (d.wt)-1 h-1 in dried field samples and was significantly higher than in fully recovered or air-dried samples. The balance between intracellular active oxygen production and the defense systems mightbreak down in air-dried and dried field samples. Treatment with exogenous oxidants slowed the photosynthetic recovery especially with singlet oxygen. Oxidative stress might play an important role in desiccationinduced damages to the photosynthetic apparatus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号