首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A cDNA encoding solanidine glucosyltransferase (SGT) was isolated from potato. The cDNA was selected from a yeast expression library using a positive selection based on the higher toxicity of steroidal alkaloid aglycons relative to their associated glycosylated forms. The cDNA contained an open reading frame encoding a 56 kDa polypeptide with regions of similarity to previously characterized UDP-glucosyltransferases. The enzyme activity and reaction products of recombinant SGT in yeast were consistent with those observed for the endogenous enzyme from potato. SGT mRNA and protein accumulated in tubers in response to wounding. The time course for SGT mRNA accumulation paralleled that of 3-hydroxy-3-methylglutaryl-coenzymeA isoform 1 ( hmg1 ) mRNA. Steady-state SGT mRNA levels also increased transiently upon wounding of leaves.  相似文献   

2.
We recently purified an alpha-glucosidase comprising 61-kDa and 31-kDa subunits from the fungus Mortierella alliacea and characterized its soluble starch-hydrolyzing activity. Here, the cDNA coding for this enzyme was cloned, revealing that it encodes a single polypeptide of 1,053 amino acids, with a calculated molecular mass of 117 kDa. Comparison between the deduced amino acid sequence and the partial sequences of the purified enzyme suggested that an immature protein can be converted into the two subunits of mature enzyme by post-translational processing at least three cleavage sites. Heterologous expression of recombinant alpha-glucosidase in yeast gave rise to a significant increase in hydrolytic activity toward maltose and soluble starch, in both intracellular and extracellular fractions. Immunoblot analysis using antiserum against the alpha-glucosidase revealed that the active enzyme expressed in yeast is also composed of two subunits. The yeast expression system provides a model suitable for investigating the polypeptide-processing event and structure-function relationship of the alpha-glucosidase with unique substrate specificity.  相似文献   

3.
A cDNA coding for a human phosphodiesterase 4C (PDE4C2) was isolated from the mRNA prepared from the glioblastoma cell line, U87. The cDNA contained an ORF of 1818 bp corresponding to a 605 amino acid polypeptide. The sequence differed at the 5′ end from the human PDE4C previously reported (Engels, P. et al, 1995 FEBs Letters 358, 305-310) indicating that it represents a novel splice variant of the human PDE4C gene. Evidence was also obtained for a third 5′ splice variant. The PDE4C2 cDNA was transfected into both COS 1 cells and yeast cells, and shown to direct the expression of an 80 kD polypeptide by Western blotting using a PDE4C specific antiserum. The activity of cell lysates was typical of PDE4 being specific for cAMP and inhibitable by the selective inhibitor, rolipram. However, the Km for cAMP of the enzyme produced in COS cells was 0.6 μM compared to 2.6 μM for the yeast 4C activity. In addition the COS cell PDE4 activity was much more sensitive to R rolipram than the yeast PDE4 enzyme (IC50 of 23 nM compared to 1648 nM). This difference in rolipram sensitivity was associated with the detection of a high affinity [3H] R rolipram binding site on the COS cell 4C enzyme but not on the yeast expressed enzyme. The results indicate that the enzyme can adopt more than one active conformation, which are distinguished by their interaction with rolipram.  相似文献   

4.
A cDNA clone encoding rat liver aspartyl-tRNA synthetase was isolated by probing a lambda gt11 recombinant cDNA expression library with antibodies directed against the corresponding polypeptide from sheep liver. The 1930-base pairs-long cDNA insert allowed the expression in Escherichia coli of an active enzyme of mammalian origin. The nucleotide sequence of that cDNA, corresponding to the DRS1 gene, was determined. The open reading frame of DRS1 corresponds to a protein of Mr = 57,061, in good agreement with the previously determined molecular weight of the purified enzyme. The deduced amino acid sequence shows extensive homologies with that of yeast cytoplasmic aspartyl-tRNA synthetase, more than 50% of the residues being identical. In rat liver, aspartyl-tRNA synthetase occurs in two distinct forms: a dimeric enzyme and a component of a multienzyme complex comprising the nine aminoacyl-tRNA synthetases specific for arginine, aspartic acid, glutamic acid, glutamine, isoleucine, leucine, lysine, methionine, and proline. The primary structure of the DRS1 gene product is discussed in relation to the occurrence of two distinct forms of that enzyme.  相似文献   

5.
Expression of human placental aromatase in Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
A full-length human placental aromatase cDNA clone, Aro 2, was isolated upon screening a human placental cDNA library with an aromatase cDNA probe and an oligonucleotide probe whose sequence was derived from a human aromatase genomic clone. Nucleotide sequence microheterogeneity was found in the 3'-untranslated region among Aro 2 and in two previously described human aromatase cDNA clones. Both the minor sequence differences and the expression of a single protein species in placental tissue suggest the presence of different alleles for aromatase. Northern blot analyses using one cDNA and two oligonucleotide probes are consistent with the two mRNA messages of 2.9 and 2.5 kilobases arising in human placenta as a consequence of differential processing. Several yeast expression plasmids containing the aromatase cDNA we cloned were constructed. The enzyme was expressed in Saccharomyces cerevisiae. The expressed activity was inhibited by the known aromatase inhibitor, 4-hydroxyandrostenedione. A level of 2 micrograms aromatase/mg partially purified yeast microsomes was estimated by analyses of carbon monoxide difference spectra on microsomal fractions from yeast carrying plasmid pHARK/VGAL. Using [1 beta, 2 beta-3H]androst-4-ene-3,17-dione as the substrate, an apparent Michaels-Menken constant (Km) of 34 nM and a maximum velocity (Vmax) of 23 pmol [3H]water formed per min/mg protein were obtained for the yeast synthesized aromatase by transformation with plasmid pHARK/VGAL. The kinetic results are similar to those determined for human placental aromatase, and suggest that the yeast synthesized aromatase will be useful for further structure-function studies.  相似文献   

6.
We synthesized a DNA probe specific for the gene encoding eucaryotic DNA topoisomerase I by the polymerase chain reaction. The sequences of the primers for this reaction were deduced from the regions with extensive homology among the enzymes from the fission and budding yeasts, and the human. From the clones isolated by screening a Drosophila cDNA library with this DNA probe, two cDNA clones of 3.8 and 5.2 kb were characterized and completely sequenced. Both cDNA sequences contain an identical open reading frame for 972 amino acid residues. The 3.8 kb messenger RNA is likely generated by using a polyadenylation site 5' upstream to that used in generating the 5.2 kb mRNA. The predicted amino acid sequence shows that a segment of 420 amino acid residues at the amino terminus is hydrophilic, similar to the amino terminal 200 residues in the yeast and human enzymes. Furthermore, the Drosophila enzyme is unique in that the amino terminal 200 residues are enriched in serine and histidine residues; most of them are present in clusters. The rest of the Drosophila sequence is highly homologous to those from yeast and human enzymes. The evolutionarily conserved residues are identified and are likely the critical elements for the structure and function of this enzyme. A plasmid vector containing the cloned cDNA was constructed for the expression of Drosophila protein in Escherichia coli. The enzymatic and immunochemical analysis of the polypeptide produced in this heterologous expression system demonstrated that the expressed protein shares similar enzymatic properties and antigenic epitopes with DNA topoisomerase I purified from Drosophila embryos or tissue culture cells, thus establishing the bacterial expression system being useful for the future structure/function analysis of the Drosophila enzyme.  相似文献   

7.
The cDNA coding for copper amine oxidase has been cloned from etiolated pea seedlings (Pisum sativum). The deduced amino acid sequence, consisting of 674 residues including the signal peptide, agreed well with those reported for the enzymes from a different cultivar of P. sativum and other plant sources, except for several evolutionary replacements located mostly on the molecular surface. A heterologous expression system for the cloned pea enzyme was constructed with the yeast Pichia pastoris, using the AOX1 promoter and the yeast alpha-factor secretion signal. Adding copper to the culture medium increased the secretion of an active, quinone-containing enzyme. Furthermore, the inactive enzyme produced in a copper-deficient medium was activated considerably by subsequent incubation with excess cupric ions. These results strongly suggest that the Tyr-derived redox cofactor, 2,4,5-trihydroxyphenylalanylquinone (topa quinone, TPQ), is produced in the plant enzyme by post-translational modification that proceeds through the copper-dependent, self-processing mechanism, as in the enzymes from bacteria and yeast.  相似文献   

8.
9.
An expression and secretion system for scytalidopepsin B, an acid protease from Scytalidium lignicolum, was constructed in yeast. Saccharomyces cerevisiae AH22 was transformed with an yeast-E. coli shuttle vector, pAM82, in which an yeast invertase signal segment and the cDNA encoding the pro- and mature enzyme regions were inserted. The transformant was found to secret a pepstatin-insensitive acid protease, when cultured aerobically in a low phosphate (Pi) medium. Amino terminal amino acid sequencing analysis indicated that the recombinant acid protease was accurately processed and secreted as a mature form.  相似文献   

10.
【目的】研究烟曲霉脯氨酰内肽酶cDNA基因的异源表达及重组酶性质。【方法】以烟曲霉CICIM F0044总RNA为模板,反转录合成cDNA;再以cDNA为模板,通过PCR扩增去除自身信号肽的脯氨酰内肽酶基因,构建表达载体pPIC9K-PEP;电转化酵母宿主菌Pichia pastoris GS115,获得重组菌PEP-09;纯化并分析重组酶性质。【结果】重组菌摇瓶发酵酶活力最高可达647.3 U/L。表达产物纯化后的分子量为63 kD左右。重组酶最适反应温度为65°C,有较好的温度稳定性,在55°C保温8 h能保留90%以上的酶活力。该酶最适pH为5.5,在pH 3.0 9.0范围内有很好稳定性,在pH 6.0 8.0的缓冲液中37°C保温10 d酶活没有明显变化。【结论】烟曲霉脯氨酰内肽酶cDNA基因在巴斯德毕赤酵母中实现了分泌表达,重组酶活性稳定,有一定的应用潜力。  相似文献   

11.
Orotidine-5'-monophosphate decarboxylase (OD-Case) catalyzes the conversion of orotidine 5'-monophosphate to UMP. In mammals, ODCase is present as part of a bifunctional protein which also contains orotate phosphoribosyltransferase; the preceding enzyme in the de novo UMP biosynthetic pathway. We have isolated a plasmid (pMEJ) which contains a cDNA for the ODCase domain of UMP synthase. Insertion of this sequence into an Escherichia coli expression vector (pUC12) has allowed for the expression of ODCase and not orotate phosphoribosyltransferase in E. coli. The molecular weight of the expressed protein is 26,000-27,300 from immunoblot analysis which corresponds closely to the molecular weight of the ODCase domain (28,500) isolated by tryptic digestion of UMP synthase. We have sequenced the cDNA insert of pMEJ and deduced the amino acid sequence. The molecular weight of the ODCase domain calculated from the amino acid sequence in 28,654. Comparison of the deduced amino acid sequence from pMEJ with that for yeast ODCase (a monofunctional protein) demonstrated that 52% of the amino acids were identical when the two sequences are compared. Furthermore, several stretches of the amino acid sequence have 80% or greater absolute homology.  相似文献   

12.
目的:利用酵母双杂交系统从人心肌cDNA文库中筛选与热激蛋白70(HSP70)相互作用的蛋白质。方法:从人心脏cDNA文库扩增Hsp70基因,克隆于pGBKT7载体上,酶切鉴定及序列分析,并检测pGBKT7-Hsp70酵母细胞AH109中的自激活活性;将构建的酵母表达诱饵质粒载体pGBKT7-Hsp70转化AH109酵母细胞,与转化有人心脏cDNA文库的酵母Yl87进行交配实验,筛选与HSP70相互作用的蛋白质,通过一对一的回复杂交实验排除假阳性,对阳性克隆进行序列测定和生物信息学分析。结果:构建了"诱饵"质粒栽体pGBKT7-Hsp70,并证明其在酵母双杂交系统中无自激活活性,筛选得到多个与Hsp70相互作用的阳性转化子,并最终得到HSP70的1个相互作用蛋白质HIP。结论:应用酵母双杂交系统筛选出与HSP70相互作用的1个蛋白质,它们的相互作用可能与HSP70发挥细胞分子伴侣作用有关。  相似文献   

13.
We have cloned and sequenced a full-length cDNA (1083 bp) encoding the human liver cystathionine-gamma-lyase enzyme (cystathionase). The human cystathionase sequence presented a substantial deletion of 132 bases (44 amino acids) compared to that reported for rat cystathionase, and of 135 bases (45 amino acids) compared to that reported for yeast cystathionase. After re-alignment for the missing nucleotides, the human cDNA sequence shows significant amino acid homology to that for the rat enzyme (85%) and the yeast enzyme (50%). A search for an undeleted cDNA, by the polymerase chain reaction, yielded a second clone which contained the missing 132 bases. Flanking nucleotides in the latter clone were identical to those in the cDNA clone containing the deletion. The two forms of human cystathionase deduced from the two cDNA clones may be derived from two different genes or may be splice variants.  相似文献   

14.
Human uracil-DNA glycosylase complements E. coli ung mutants.   总被引:3,自引:2,他引:1       下载免费PDF全文
We have previously isolated a cDNA encoding a human uracil-DNA glycosylase which is closely related to the bacterial and yeast enzymes. In vitro expression of this cDNA produced a protein with an apparent molecular weight of 34 K in agreement with the size predicted from the sequence data. The in vitro expressed protein exhibited uracil-DNA glycosylase activity. The close resemblance between the human and the bacterial enzyme raised the possibility that the human enzyme may be able to complement E. coli ung mutants. In order to test this hypothesis, the human uracil-DNA glycosylase cDNA was established in a bacterial expression vector. Expression of the human enzyme as a LacZ alpha-humUNG fusion protein was then studied in E. coli ung mutants. E. coli cells lacking uracil-DNA glycosylase activity exhibit a weak mutator phenotype and they are permissive for growth of phages with uracil-containing DNA. Here we show that the expression of human uracil-DNA glycosylase in E. coli can restore the wild type phenotype of ung mutants. These results demonstrate that the evolutionary conservation of the uracil-DNA glycosylase structure is also reflected in the conservation of the mechanism for removal of uracil from DNA.  相似文献   

15.
An expression and secretion system for scytalidopepsin B, an acid protease from Scytalidium lignicolum, was constructed in yeast. Saccharomyces cerevisiae AH22 was transformed with an yeast-E. coli shuttle vector, pAM82, in which an yeast invertase signal segment and the cDNA encoding the pro- and mature enzyme regions were inserted. The transformant was found to secret a pepstatin-insensitive acid protease, when cultured aerobically in a low phosphate (Pi) medium. Amino terminal amino acid sequencing analysis indicated that the recombinant acid protease was accurately processed and secreted as a mature form.  相似文献   

16.
We isolated the cDNA of the fission yeast mitochondrial endonuclease SpNUC1, which consists of 322 amino acids and has a significant homology with the budding yeast NUC1 and mammalian endonuclease G. Comparison of the cDNA sequence with the genomic sequence showed that the gene consists of three exons and two introns and spans 1.31 kb. The enzyme localization in mitochondria was demonstrated by expressing the SpNUC1-green fluorescent protein fusion in the yeast. The endonuclease was activated by truncation of the amino-terminal region of the protein, indicating that the enzyme is encoded as an inactive precursor. The active enzyme degraded single-stranded DNA and RNA, the activity being dependent on Mg(2+) (Mn(2+)).  相似文献   

17.
《Gene》1997,192(2):261-270
We have isolated and sequenced a genomic clone for a pancreatic α-amylase gene (amy) of the chicken (Gallus gallus). The gene is interrupted by nine introns, spans over 4 kb, and encodes a protein (AMY) of 512 aa that is 83% identical to the human pancreatic α-amylase enzyme. Southern blot analysis of chicken DNA revealed two distinct pancreatic amy loci. In addition, we have generated a cDNA from chicken pancreatic RNA corresponding to the coding sequence of the genomic clone. The cDNA was inserted into a yeast expression vector, and the resulting construct used to transform Saccharomyces cerevisiae cells. Transformed yeast cells synthesized and secreted active AMY enzyme, and the gel migration pattern of the α-amylase produced by the yeast cells was identical to that of the native chicken enzyme.  相似文献   

18.
A cDNA encoding a novel galactosyltransferase was identified based on BLAST analysis of expressed sequence tags, and the cDNA clones were isolated from a human melanoma line library. The new cDNA sequence encoded a type II membrane protein with 327 amino acid sequence and showed 38% homology to the Caenorhabditis elegans sqv-3 gene involved in the vulval invagination and oocyte development. Extracts from L cells transfected with the galactosyltransferase cDNA in an expression vector and a fusion protein with protein A exhibited marked galactosyltransferase activity specific for p-nitrophenyl-beta-D-xylopyranoside. Moreover, transfection with the cloned cDNA restored glycosaminoglycan synthesis of galactosyltransferase I-deficient Chinese hamster ovary mutant pgsB-761 cells. Analysis of the enzyme product by beta-galactosidase digestion, mass spectroscopy, and NMR spectroscopy revealed that the reaction product was formed via beta-1,4 linkage, indicating that the enzyme is galactosyltransferase I (UDP-galactose:O-beta-D-xylosylprotein 4-beta-D-galactosyltransferase, EC 2.4.1.133) involved in the synthesis of the glycosaminoglycan-protein linkage region of proteoglycans.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号