首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A murine interleukin-1 alpha (mIL-1 alpha) gene coding for amino acids 115 to 270 of the precursor protein (Lomedico, P.T., Gubler, U., Hellmann, C.P., Dukovich, M., Giri, J.G., Pan, Y.E., Collier, K., Semionow, R., Chua, A.O. and Mizel, S.B. (1984) Nature 312, 458-462) was chemically synthesized and expressed in Escherichia coli. mIL-1 alpha, in the form of insoluble inclusion bodies, accounted for approx. 30% of total cellular protein produced by the recombinant strain. A simple isolation protocol was developed in which inclusion body material was first solubilized in 3 M guanidine hydrochloride, and the mIL-1 alpha was then simultaneously purified and allowed to fold to its active conformation by dialysis against distilled water. This procedure yielded pure, biologically active mIL-1 alpha with 41% recovery of the mIL-1 alpha present in the guanidine hydrochloride extract. The purified preparation had the expected amino acid composition, a molar absorptivity of 28,200 M-1.cm-1 and a pI of 5.2. No methionyl-mIL-1 alpha was detected by N-terminal sequence analysis, and the endotoxin level was less than 10 pg per micrograms of mIL-1 alpha. The specific biological activity was 3.10(7) units/mg in a co-mitogenic thymocyte proliferation assay. In addition to full-length mIL-1 alpha, the preparation contained N-terminally truncated mIL-1 alpha species (mainly des-4 and des-6 amino acid forms). The truncated species were isolated and found to have the same biological activity as the complete polypeptide. Thus, the active fragment of mIL-1 alpha appears to consist of a proteinase-sensitive N-terminal region which is not essential for activity, and a proteinase-resistant core which harbors the essential determinants of its cytokine function.  相似文献   

2.
Recent studies have shown that the bovine cysteine proteinase inhibitor, cystatin C, is synthesized as a preprotein containing a 118-residue mature protein. However, the forms of the inhibitor isolated previously from bovine tissues had shorter N-terminal regions than expected from these results, and also lower affinity for proteinases than human cystatin C. In this work, we report the properties of recombinant, full-length bovine cystatin C having a complete N-terminal region. The general characteristics of this form of the inhibitor, as reflected by the isoelectric point, the far-ultraviolet circular dichroism spectrum, the thermal stability and the changes of tryptophan fluorescence on interaction with papain, resembled those of human cystatin C. The affinity and kinetics of inhibition of papain and cathepsins B, H and L by the bovine inhibitor were also comparable with those of the human inhibitor, although certain differences were apparent. Notably, the affinity of bovine cystatin C for cathepsin H was somewhat weaker than that of human cystatin C, and bovine cystatin C bound to cathepsin L with about a four-fold higher association rate constant than the human inhibitor. This rate constant is comparable with the highest values reported previously for cystatin-cysteine proteinase reactions. The full-length, recombinant bovine cystatin C bound appreciably more tightly to proteinases than the shorter form characterized previously. Digestion of the recombinant inhibitor with neutrophil elastase resulted in forms with truncated N-terminal regions and appreciably decreased affinity for papain, consistent with the forms of bovine cystatin C isolated previously having arisen by proteolytic cleavage of a mature, full-length inhibitor.  相似文献   

3.
Cystatin C, a major extracellular cysteine proteinase inhibitor, is deposited as amyloid in brain haemorrhage patients with hereditary cystatin C amyloid angiopathy (HCCAA). A disease-causing mutation on the genetic level results in the substitution Leu68-->Gln (L68Q) in cystatin C, which causes protein instability. Besides carrying the L68Q substitution, cystatin C in amyloid deposits isolated from patients is N-terminally truncated by 10 amino acids. To elucidate the role of the N-terminal truncation for protein stability and aggregation properties, (delta1-10,L68Q)-cystatin C was produced in an Escherichia coli expression system and characterised. Unlike wild-type cystatin C, this variant rapidly dimerised under physiological conditions. Two unfolding intermediates of (delta1-10,L68Q)-cystatin C were identified, under the same pH and ionic strength conditions as required to form intermediates of full-length L68Q cystatin C. No evidence was found that the N-terminal truncation per se alters protein stability and leads to higher forms of aggregation. Monomeric as well as dimeric L68Q cystatin C incubated with neutrophil elastase was truncated as in HCCAA patients' amyloid. A protein variant with a thrombin cleavage site placed in front of residue Gly11 in L68Q cystatin C was constructed and used to confirm that the N-terminal segment is similarly accessible to proteinases in the monomeric and dimeric states of L68Q cystatin C. Thus, the N-terminal segment of L68Q cystatin C is exposed to proteolytic attack and does not seem to be involved in intramolecular contacts leading to dimerisation or higher-order aggregation. We conclude that the N-terminal truncation likely is an event secondary to amyloid formation, and of no relevance for the development of HCCAA.  相似文献   

4.
All eukaryotic forms of DNA topoisomerase I contain an extensive and highly charged N-terminal domain. This domain contains several nuclear localization sequences and is essential for in vivo function of the enzyme. However, so far no direct function of the N-terminal domain in the in vitro topoisomerase I reaction has been reported. In this study we have compared the in vitro activities of a truncated form of human topoisomerase I lacking amino acids 1-206 (p67) with the full-length enzyme (p91). Using these enzyme forms, we have identified for the first time a direct role of residues within the N-terminal domain in modulating topoisomerase I catalysis, as revealed by significant differences between p67 and p91 in DNA binding, cleavage, strand rotation, and ligation. A comparison with previously published studies showing no effect of deleting the first 174 or 190 amino acids of topoisomerase I (Stewart, L., Ireton, G. C., and Champoux, J. J. (1999) J. Biol. Chem. 274, 32950-32960; Bronstein, I. B., Wynne-Jones, A., Sukhanova, A., Fleury, F., Ianoul, A., Holden, J. A., Alix, A. J., Dodson, G. G., Jardillier, J. C., Nabiev, I., and Wilkinson, A. J. (1999) Anticancer Res. 19, 317-327) suggests a pivotal role of amino acids 191-206 in catalysis. Taken together the presented data indicate that at least part(s) of the N-terminal domain regulate(s) enzyme/DNA dynamics during relaxation most probably by controlling non-covalent DNA binding downstream of the cleavage site either directly or by coordinating DNA contacts by other parts of the enzyme.  相似文献   

5.
Rat cystatin C was purified to apparent homogeneity from rat urine after induction of a tubular dysfunction with sodium chromate. Twentyfold concentrated urine was chromatographed by a rapid purification procedure. A two-step purification including affinity chromatography on carboxymethyl papain- Sepharose and high-resolution anion exchange chromatography was developed. The purified protein has an apparent molecular mass of 15 kDa and pI of 10.2; its aminoacid composition was similar to human cystatin C. As opposed to previous data, purified urinary rat cystatin C did not contain significant amounts of carbohydrate. Antisera against rat cystatin C, raised in rabbits, partially cross-reacted with human and mouse cystatin C, indicating their antigenic similarities. Like human cystatin C, native rat cystatin C, named slow form, is degraded into a more acidic form, called fast form, by a loss of N-terminal amino acids; fast form displayed a pI of 9.4.  相似文献   

6.
AmpC beta-lactamases from strains of Pseudomonas aeruginosa have previously been shown to be heterogeneous with respect to their isoelectric point (pI). In order to elucidate the origin of this heterogeneity enzymes were isolated from a clinical isolate of a multiresistant P. aeruginosa strain and biochemically characterized. The purification was accomplished in four chromatographic steps comprising dye-affinity, size-exclusion, hydrophobic interaction chromatography, and chromatofocusing; this resulted in five forms with pI values of 9.1, 8.7, 8.3, 8.2, and 7.6. When analysed by SDS/PAGE and agarose IEF each separated beta-lactamase appeared to be both size- and charge-homogeneous. The specific activities of the variants were very similar. MS of each isolated beta-lactamase form showed minor differences in molecular mass (range 40.0-40.8 kDa). MS of the beta-lactamase with a pI of 8.2 demonstrated the presence of two subforms. The N-terminal sequences of three of the beta-lactamases were identical to the published sequence [Lodge, J.M. , Minchin, S.D., Piddock, L.J.V. & Busby, J.W. (1990) Biochem. J. 272, 627-631], while two variants were truncated by two amino-acid residues, one of which was acidic. The previously published sequence contains an alanine as the ultimate residue, but two of the beta-lactamases showed a substitution of Ala371 for arginine, whereas in the remaining forms C-terminal truncations by one and three residues were found. Our results indicate that the P. aeruginosa strain does not harbour multiple copies of the ampC gene, but rather that the five beta-lactamase isoforms are products of a single structural gene. The combinations of the identified N- and/or C-terminal truncations explained the multiple pI values of the beta-lactamase isoforms.  相似文献   

7.
Human brain glutamate decarboxylase 65 (hGAD65) was found to exist as full-length and truncated forms when the glutathione S-transferase-tagged hGAD65 fusion protein was subjected to factor Xa cleavage. The truncated form is produced by cleavage at arginine 69 based on N-terminal amino acid sequence analysis, and has a molecular weight of 58 kD. It is resistant to further factor Xa cleavage or mild trypsin treatment and is more active and more stable than the full-length form. Both the full-length and truncated forms of GAD are also observed in brain preparations in the presence of protease inhibitors. Furthermore, full-length GAD could be converted to the truncated form by endogenous proteases, suggesting that the conversion of full-length to truncated GAD mediated by endogenous protease may represent an important mechanism in the regulation of GABA biosynthesis in the brain.  相似文献   

8.
ABSTRACT

Rat cystatin C was purified to apparent homogeneity from rat urine after induction of a tubular dysfunction with sodium chromate. Twentyfold concentrated urine was chromatographed by a rapid purification procedure. A two-step purification including affinity chromatography on carboxymethyl papain- Sepharose and high-resolution anion exchange chromatography was developped. The purified protein has an apparent molecular mass of 15 kDa and pI of 10.2; its aminoacid composition was similar to human cystatin C. As opposed to previous data, purified urinary rat cystatin C did not contain significant amounts of carbohydrate. Antisera against rat cystatin C, raised in rabbits, partially cross-reacted with human and mouse cystatin C, indicating their antigenic similarities. Like human cystatin C, native rat cystatin C, named slow form, is degraded into a more acidic form, called fast form, by a loss of N-terminal amino acids; fast form displayed a pI of 9.4.  相似文献   

9.
Human cystatin C (HCC) inhibits papain-like cysteine proteases by a binding epitope composed of two beta-hairpin loops and the N-terminal segment. HCC is found in all body fluids and is present at a particularly high level in the cerebrospinal fluid. Oligomerization of HCC leads to amyloid deposits in brain arteries at advanced age but this pathological process is greatly accelerated with a naturally occurring Leu68Gln variant, resulting in fatal amyloidosis in early adult life. When proteins are extracted from human cystatin C amyloid deposits, an N-terminally truncated cystatin C (THCC) is found, lacking the first ten amino acid residues of the native sequence. It has been shown that the cerebrospinal fluid may cause this N-terminal truncation, possibly because of disintegration of the leucocytes normally present in this fluid, and the release of leucocyte proteolytic enzymes. HCC is the first disease-causing amyloidogenic protein for which oligomerization via 3D domain swapping has been observed. The aggregates arise in the crystallization buffer and have the form of 2-fold symmetric dimers in which a long alpha-helix of one molecule, flanked by two adjacent beta-strands, has replaced an identical domain of the other molecule, and vice versa. Consistent with a conformational change at one of the beta-hairpin loops of the binding epitope, the dimers (and also any other oligomers, including amyloid aggregates) are inactive as papain inhibitors. Here, we report the structure of N-truncated HCC, the dominant form of cystatin C in amyloid deposits. Although the protein crystallized under conditions that are drastically different from those for the full-length protein, the structure reveals dimerization by the same act of domain swapping. However, the new crystal structure is composed of four independent HCC dimers, none of which has the exact 2-fold symmetry of the full-length dimer. While the four dimers have the same overall topology, the exact relation between the individual domains shows a variability that reflects the flexibility at the dimer-specific open interface, which in the case of 3D domain-swapped HCC consists of beta-interactions between the open hinge loops and results in an unusually long intermolecular beta-sheet. The dimers are engaged in further quaternary interactions resulting in spherical, closed octameric assemblies that are identical to that present in the crystal of the full-length protein. The octamers interact via hydrophobic patches formed on the surface of the domain-swapped dimers as well as by extending the dimer beta-sheet through intermolecular contacts.  相似文献   

10.
SK&F 107647, a previously described synthetic immunomodulatory peptide, indirectly stimulates bone marrow progenitor cells and phagocytic cells, and enhances host defense effector mechanisms in bacterial and fungal infection models in vivo. In vitro, SK&F 107647 induces the production of a soluble mediator that augments colony forming cell (CFU-GM) formation in the presence of CSFs. In this paper we purified and sequenced the stromal cell-derived hematopoietic synergistic factors (HSF) secreted from both murine and human cell lines stimulated with SK&F 107647. Murine HSF is an N-terminal 4-aa truncated form of the CXC chemokine, KC, while human HSF was identified as an N-terminal 4-aa truncated form of the CXC chemokine, GRO beta. In comparison to their full-length forms, truncated KC and truncated GRO beta were 10 million times more potent as synergistic growth stimulants for CFU-GM. Enhanced potency of these novel truncated chemokines relative to their full-length forms was also demonstrated in respiratory burst assays, CD11b Ag expression, and intracellular killing of the opportunistic pathogen, Candida albicans. Administration of truncated KC significantly enhanced survival of mice lethally infected with C. albicans. The results reported herein delineate the biological mechanism of action of SK&F 107647, which functions via the induction of unique specific truncated forms of the chemokines KC and GRO beta. To our knowledge, this represents the first example where any form of KC or GRO beta were purified from marrow stromal cells. Additionally, this is the first demonstration of in vivo efficacy of a CXC chemokine in an animal infectious fungal disease model.  相似文献   

11.
A cysteine proteinase inhibitor was found in culture media of Candida albicans. Purification to homogeneity of the inhibitor was performed by carboxymethyl-papain-Sepharose affinity, DE-52 ion-exchange, and reverse-phase high performance liquid chromatographies. The purified inhibitor had an M(r) of 15 kDa and a pI of 4.9. It was more stable to heat and pH than most proteins. The N-terminal sequence of the first 30 residues demonstrated high similarity with that of human cystatin A. Thus, C. albicans cysteine proteinase inhibitor seems to belong to the cystatin superfamily. The inhibitor activity of the yeast cellular form was 4.0 times higher than that of the hyphal cellular form in 7-day culture media. It is suggested that the inhibitor has regulatory functions similar to those of its counterpart proteinases in the invasion of host cells.  相似文献   

12.
13.
Yang Y  Cun S  Peng L  Xie X  Wei J  Yang W  Xu A 《Biochimie》2003,85(10):1033-1039
Cystatin is of interest from biochemical and evolutionary prospective, and also has been applied in biotechnology. In this paper, a novel cystatin was found by EST sequence analysis of the cDNA library of Cyanea capillata tentacle. The sequence of a full-length cDNA clone contained an open reading frame encoding a putative 18-residue signal peptide and a mature protein of 113 amino acids, which showed only 26% identities to Family 2 cystatins and had its own characteristic enzyme-binding motifs, Ser(97)-Trp(98), which had not been found in any other known cystatins. Thus, the novel cystatin cloned from jellyfish was designated as cystatin J, which may belong to a new family of cystatin, called Family 4. The mature cystatin J was produced in Escherichia coli as a thioredoxin (Trx) fusion protein using the pET expression system and purified by affinity and cation exchange chromatography. The recombinant cystatin J of approximately M(r) = 12,800 displayed an obvious inhibition of papain (K(i) value below 0.5 nM), in competition with substrate. Thus, the recombinant cystatin J was a functional cystatin in spite of relatively lower sequence similarity with other cystatins. Activity of the novel cystatin was stable at pH 4-11 at 4 degrees C, but unstable at neutral pH at >50 degrees C.  相似文献   

14.
We have expressed two forms of the Alzheimer's beta-amyloid precursor protein (beta APP), the 695-amino acid form (695 beta APP), and the 751-amino acid form (751 beta APP) in a baculovirus system. Both forms were expressed as full-length precursor, and were subsequently processed in vivo to release extracellular secreted proteins. The secreted forms were cleaved from the full-length beta APP in a manner analogous to the cleavage of beta APP during constitutive secretion in mammalian cells (Weidemann, A., K?nig, G., Bunke, D., Fischer, P., Salbaum, J. M., Masters, C. L., Beyreuther, K. (1989) Cell 57, 115-126; Oltersdorf, T., Ward, P. J., Henriksson, T., Beattie, E. C., Neve, R., Lieberburg, I., and Fritz, L. J. (1990) J. Biol. Chem. 265, 4492-4497). High levels of expression of 20-50 mg/liter were achieved. Both full-length and secreted forms of the beta-amyloid precursor proteins were purified using a combination of ion-exchange and immunoaffinity chromatography using a monoclonal antibody directed against beta APP. The 751 beta APP-derived full-length and secreted forms, which contain the Kunitz protease inhibitor domain, were shown to be as active in the inhibition of trypsin as is mammalian-derived secreted beta APP. The availability of purified full-length beta APP from the baculovirus system will be valuable for biochemical and cell biological analyses that may elucidate the mechanism of the inappropriate processing that leads to beta-amyloid formation in Alzheimer's disease.  相似文献   

15.
We have isolated from a constructed lambda gt11 expression library two classes of cDNA clones encoding the entire sequence of the maize GSH S-transferases GST I and GST III. Expression of a full-length GST I cDNA in E. coli resulted in the synthesis of enzymatically active maize GST I that is immunologically indistinguishable from the native GST I. Another GST I cDNA with a truncated N-terminal sequence is also active in heterospecific expression. Our GST III cDNA sequence differs from the version reported by Moore et al. [Moore, R. E., Davies, M. S., O'Connell, K. M., Harding, E. I., Wiegand, R. C., and Tiemeier, D. C. (1986) Nucleic Acids Res. 14:7227-7235] in eight reading frame shifts which result in partial amino acid sequence conservation with the rat GSH S-transferase sequences. The GST I and GST III sequences share approximately 45% amino acid sequence homology. Both the GST I and the GST III mRNAs contain different repeating motifs in front of the initiation codon ATG. Multiple poly(A) addition sites have been identified for these two classes of maize GSH S-transferase messages. Genomic Southern blotting results suggest that both GST I and GST III are present in single or low copies in the maize (GT112 RfRf) genome.  相似文献   

16.
Heparin lyase I has been purified from Flavobacterium heparinum and has been partially characterized (Yang, V. C., Linhardt, R. J., Berstein, H., Cooney, C. L., and Langer, R. (1985) J. Biol. Chem. 260, 1849-1857). There has been no report of the purification of the other polysaccharide lyases from this organism. Although all three of these heparin/heparan sulfate lyases are widely used, with the exception of heparin lyase I, there is no information on their purity or their physical and kinetic characteristics. The absence of pure heparin lyases and a lack of understanding of the optimal catalytic conditions and substrate specificity has stood in the way of the use of these enzymes as reagents for the specific depolymerization of heparin and heparan sulfate into oligosaccharides for structure and activity studies. This paper describes a single, reproducible scheme to simultaneously purify all three of the heparin lyases from F. heparinum to apparent homogeneity. Heparin lyase I (heparinase, EC 4.2.2.7), heparin lyase II (no EC number), and heparin lyase III (heparitinase, EC 4.2.2.8) have molecular weights (by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and isoelectric points (by isoelectric focusing) of M(r) 42,800, pI 9.1-9.2, M(r) 84,100, pI 8.9-9.1, M(r) 70,800, pI 9.9-10.1, respectively. Their amino acid analyses and peptide maps demonstrate that while these proteins are different gene products they are closely related. The kinetic properties of the heparin lyases have been determined as well as the conditions to optimize their activity and stability. These data should improve the application of these important enzymes in the study of heparin and heparan sulfate.  相似文献   

17.
The neuronal enzyme Calcium/calmodulin dependent protein kinase type II (CaMKII) is a key molecule in biochemical events necessary for learning and memory. The alpha-subunit of CaMKII expressed in E. coli as well as in insect cells shows similar catalytic behavior [Praseeda, M., Pradeep, K. K., Krupa, A., Sri Krishna, S., Leena, S., Rajeev Kumar, R., John Cheriyan, Mayadevi, M., Srinivasan, N., and Omkumar, R. V. (2003) Biochem. J. In Press]. The association domain of the enzyme has been crystallized in its native multimeric form after expression in E. coli [Hoelz, A., Nairn, A. C. and Kuriyan, J. (2003) Molecular Cell 11, 1241]. However a major truncation product accompanies the full-length protein when expressed in E. coli. We show by epitope labeling and immunoblotting that the truncation occurs at the C-terminal half of the protein so that the N-terminal catalytic domain is complete in the truncated product. This supports the use of the preparation of alpha-CaMKII expressed in E. coli for studies on functions of the catalytic site. Our data will also be helpful in designing modified prokaryotic expression systems for CaMKII devoid of the trun-cation product, which are easier to use compared to the insect cell system.  相似文献   

18.
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a newly described member of the epidermal growth factor (EGF) family that is mitogenic for BALB/c 3T3 cells, inhibits the binding of 125I-EGF to its receptor, and triggers autophosphorylation of the EGF receptor. HB-EGF was purified from the conditioned medium of U-937 cells using cation exchange, copper affinity, heparin affinity, and two rounds of C4 reversed phase liquid chromatography. The elution profile of the first round of C4 column chromatography contained four growth factor activity peaks with similar specific biological activities. N-terminal and tryptic fragment microsequencing demonstrated that these peaks contained different structural forms of the HB-EGF protein. Some of the differences in the various forms of HB-EGF were found to be due to N-terminal heterogeneity. Microsequencing of tryptic fragments indicated that the mature HB-EGF polypeptide can contain at least 86 of the 208 amino acids predicted by nucleotide sequence to be the HB-EGF precursor molecule. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicated that the various forms of HB-EGF have apparent molecular masses of 19-23 kDa. Further analysis of the most predominant form of HB-EGF found in U-937 cell conditioned medium indicated that it has a pI of 7.2-7.8 and is O-glycosylated.  相似文献   

19.
Two analogues of bovine growth hormone (BGH) have been produced in Escherichia coli by recombinant DNA techniques. In analogue Delta-1, the N-terminal alanine residue of the full-length bovine sequence is replaced by methionine. In analogue Delta-9, which is expressed at much higher levels than is Delta-1, the full-length bovine sequence is truncated at the N-terminus by eight residues and there is a serine-for-glycine substitution in the first position of the truncated protein. Both analogues, which were characterized by isoelectric focusing (i.e.f.), polyacrylamide-gel electrophoresis in the presence of SDS (SDS/PAGE), amino acid analysis and N-terminal amino acid sequence determination using combined g.l.c.-m.s., are compared with BGH isolated from pituitaries. In contrast with pituitary-derived BGH, the recombinant-derived proteins are homogeneous on SDS/PAGE and on i.e.f. In a radioimmunoassay, a radioreceptor assay and a bioassay in vivo (rat tibia), Delta-9 BGH showed very similar characteristics to the pituitary-derived hormone. Similar results have also been obtained with the Delta-1 analogue.  相似文献   

20.
Cystatin C with the 11 N-terminal amino acids truncated shows a much lower affinity for cysteine proteinases than the intact inhibitor. Such truncation of cystatin C is recorded after action of glycyl endopeptidase and cathepsin L. Incubation of cystatin C with papain, cathepsin B or cathepsin H led to no changes in the cystatin C molecule. Isoelectric focusing of the cathepsin L and cystatin C mixture showed the formation of two new bands. One of them appeared whether E-64 or PMSF was added or not, evidently representing a cystatin C/cathepsin L complex. The other band is the truncated cystatin C molecule. N-terminal sequencing after separation by HPLC showed that cystatin C is cleaved by cathepsin L at the Gly11-Gly12 bond. The action of cathepsin L on cystatin C may be explained by the cleavage of the scissile bond in an inappropriate complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号