首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanism of poly(ethylene glycol) interaction with proteins   总被引:10,自引:0,他引:10  
T Arakawa  S N Timasheff 《Biochemistry》1985,24(24):6756-6762
Poly(ethylene glycol) (PEG) is one of the most useful protein salting-out agents. In this study, it has been shown that the salting-out effectiveness of PEG can be explained by the large unfavorable free energy of its interaction with proteins. Preferential interaction measurements of beta-lactoglobulin with poly(ethylene glycols) with molecular weights between 200 and 1000 showed preferential hydration of the protein for those with Mr greater than or equal to 400, the degree of hydration increasing with the increase in poly(ethylene glycol) molecular weight. The preferential interaction parameter had a strong cosolvent concentration dependence, with poly(ethylene glycol) 1000 having the sharpest decrease with an increase in concentration. The preferential hydration extrapolated to zero cosolvent concentration increased almost linearly with increasing size of the additive, suggesting steric exclusion as the major factor responsible for the preferential hydration. The poly(ethylene glycol) concentration dependence of the preferential interactions could be explained in terms of the nonideality of poly(ethylene glycol) solutions. All the poly(ethylene glycols) studied, when used at levels of 10-30%, decreased the thermal stability of beta-lactoglobulin, suggesting that caution must be exercised in the use of this additive at extreme conditions such as high temperature.  相似文献   

2.
Protein stabilization and destabilization by guanidinium salts   总被引:8,自引:0,他引:8  
T Arakawa  S N Timasheff 《Biochemistry》1984,23(25):5924-5929
Preferential interactions of bovine serum albumin were measured with guanidine sulfate, guanidine acetate, and guanidine hydrochloride. The results showed an increasing preferential hydration with increasing salt concentration for the sulfate, positive preferential salt binding for the hydrochloride, and an intermediate situation for the acetate. These results correlate well with the known effects of the three salts on protein stability, namely, the stabilizing effect of guanidine sulfate and the denaturing effect of guanidine hydrochloride. Comparison of guanidinium and magnesium salts indicated that the substitution of guanidinium ion for Mg2+ decreases the preferential hydration and increases the preferential salt binding, suggesting that the perturbation by guanidinium ion binding of the surface free energy is greater than that by Mg2+ ion. It was concluded that guanidine salts are not a special class, but their activity toward proteins is modulated by the same fine balance between hydration and salt binding to protein as in the case of other salts, with the second factor being stronger in guanidine salts.  相似文献   

3.
An attempt was made to explain the effect of concentrated salts on protein interaction with hydrophobic columns. From the previously observed results of preferential interactions for salting-out salts with proteins, it was shown that the free energy of the protein is increased by addition of the salts and this unfavorable free energy is smaller for the proteins bound to the columns because of their smaller surface area exposed to solvent; i.e., the bound form of the proteins is thermodynamically more stable. This explains the protein binding to the hydrophobic columns at high salt concentrations and the elution by decreasing the salt concentration. The unfavorable interaction free energy was greater for Na2SO4 or (NH4)2SO4 than for NaCl, which explains the stronger effect of the former salts on the protein binding to the columns. The observed favorable interaction between KSCN or guanidine hydrochloride and the proteins explains the decreasing effect of these salts on the protein binding to the hydrophobic columns.  相似文献   

4.
The stabilization of proteins by a variety of co-solvents can be related to their property of increasing the surface tension of water. It is demonstrated that, during the thermal unfolding of proteins, this increase of the surface tension can be overcome by the increase in the temperature of the solution at the midpoint of the transition, Tm, and the weak binding of co-solvent molecules. Three such co-solvents were studied: trehalose, lysine hydrochloride (LysHCl), and arginine hydrochloride (ArgHCl). Trehalose and LysHCl increase the midpoint of Tm. The increase of the surface tension by addition of trehalose is completely compensated by its decrease due to the increase in Tm. However, for LysHCl, the increase of the surface tension by the co-solvent is partly reduced by its binding to the protein. For trehalose, preferential interaction measurements with RNaseA demonstrate that it is totally excluded from the protein. In contrast, LysHCl gives evidence of binding to RNaseA. ArgHCl also increases the surface tension of water. Nevertheless, Tm of RNaseA decreases on addition of ArgHCl to the solution. Preferential interaction measurements showed very small values of preferential hydration of the native protein, indicating extensive binding of ArgHCl to the protein. During unfolding, the amount of additional ArgHCl binding is sufficiently large to counteract the surface tension effects, and the protein is destabilized. Therefore, although surface tension appears to be a critical factor in the stabilization of proteins, its increase by co-solvent does not ensure increased stabilization. The binding of ligands can reduce significantly, or even overwhelm, its effects.  相似文献   

5.
Solvent conditions play a major role in a wide range of physical properties of proteins in solution. Organic solvents, including dimethyl sulfoxide (DMSO), have been used to precipitate, crystallize and denature proteins. We have studied here the interactions of DMSO with proteins by differential refractometry and amino acid solubility measurements. The proteins used, i.e., ribonuclease, lysozyme, beta-lactoglobulin and chymotrypsinogen, all showed negative preferential DMSO binding, or preferential hydration, at low DMSO concentrations, where they are in the native state. As the DMSO concentration was increased, the preferential interaction changed from preferential hydration to preferential DMSO binding, except for ribonuclease. The preferential DMSO binding correlated with structural changes and unfolding of these proteins observed at higher DMSO concentrations. Amino acid solubility measurements showed that the interactions between glycine and DMSO are highly unfavorable, while the interactions of DMSO with aromatic and hydrophobic side chains are favorable. The observed preferential hydration of the native protein may be explained from a combination of the excluded volume effects of DMSO and the unfavorable interaction of DMSO with a polar surface, as manifested by the unfavorable interactions of DMSO with the polar uncharged glycine molecule. Such an unfavorable interaction of DMSO with the native protein correlates with the enhanced self-association and precipitation of proteins by DMSO. Conversely, the observed conformational changes at higher DMSO concentration are due to increased binding of DMSO to hydrophobic and aromatic side chains, which had been newly exposed on protein unfolding.  相似文献   

6.
T Arakawa  R Bhat  S N Timasheff 《Biochemistry》1990,29(7):1914-1923
The correlation between protein solubility and the preferential interactions of proteins with solvent components was critically examined with aqueous MgCl2 as the solvent system. Preferential interaction and solubility measurements with three proteins, beta-lactoglobulin, bovine serum albumin, and lysozyme, resulted in similar patterns of interaction. At acid pH (pH 2-3) and lower salt concentrations (less than 2 M), the proteins were preferentially hydrated, while at higher salt concentrations, the interaction was either that of preferential salt binding or low salt exclusion. At pH 4.5-5, all three proteins exhibited either very low preferential hydration or preferential binding of MgCl2. These results were analyzed in terms of the balance between salt binding and salt exclusion attributed to the increase in the surface tension of water by salts, which is invariant with conditions. It was shown that the increase in salt binding at high salt concentration is a reflection of mass action, while its decrease at acid pH is due to the electrostatic repulsion between Mg2+ ions and the high net positive charge on the protein. The preferential interaction pattern was paralleled by the variation of protein solubility with solvent conditions. Calculation of the transfer free energies from water to the salt solutions for proteins in solution and in the precipitate showed dependencies on salt concentration. This indicates that the nature of interactions between proteins and solvent components is the same in solution and in the solid state, which implies no change in protein structure during precipitation. Analysis of the transfer free energies and preferential interaction parameter in terms of the salting-in, salting-out, and weak ion binding contributions has led to the conclusions that, when the weak ion binding contribution is small, the predominant protein-salt interaction must be that of preferential salt exclusion most probably caused by the increase of the surface tension of water by addition of the salt. A necessary consequence of this is salting-out of the protein, if the protein structure is to remain unaltered.  相似文献   

7.
Protein-protein interactions were measured for ovalbumin and for lysozyme in aqueous salt solutions. Protein-protein interactions are correlated with a proposed potential of mean force equal to the free energy to desolvate the protein surface that is made inaccessible to the solvent due to the protein-protein interaction. This energy is calculated from the surface free energy of the protein that is determined from protein-salt preferential-interaction parameter measurements. In classical salting-out behavior, the protein-salt preferential interaction is unfavorable. Because addition of salt raises the surface free energy of the protein according to the surface-tension increment of the salt, protein-protein attraction increases, leading to a reduction in solubility. When the surface chemistry of proteins is altered by binding of a specific ion, salting-in is observed when the interactions between (kosmotrope) ion-protein complexes are more repulsive than those between the uncomplexed proteins. However, salting-out is observed when interactions between (chaotrope) ion-protein complexes are more attractive than those of the uncomplexed proteins.  相似文献   

8.
Additives are widely used to suppress aggregation of therapeutic proteins. However, the molecular mechanisms of effect of additives to stabilize proteins are still unclear. To understand this, we herein perform molecular dynamics simulations of lysozyme in the presence of three commonly used additives: arginine, lysine, and guanidine. These additives have different effects on stability of proteins and have different structures with some similarities; arginine and lysine have aliphatic side chain, while arginine has a guanidinium group. We analyze atomic contact frequencies to study the interactions of the additives with individual residues of lysozyme. Contact coefficient, quantified from contact frequencies, is helpful in analyzing the interactions with the guanidine groups as well as aliphatic side chains of arginine and lysine. Strong preference for contacts to the additives (over water) is seen for the acidic followed by polar and the aromatic residues. Further analysis suggests that the hydration layer around the protein surface is depleted more in the presence of arginine, followed by lysine and guanidine. Molecular dynamics simulations also reveal that the internal dynamics of protein, as indicated by the lifetimes of the hydrogen bonds within the protein, changes depending on the additives. Particularly, we note that the side-chain hydrogen-bonding patterns within the protein differ with the additives, with several side-chain hydrogen bonds missing in the presence of guanidine. These results collectively indicate that the aliphatic chain of arginine and lysine plays a critical role in the stabilization of the protein.  相似文献   

9.
T Arakawa  S N Timasheff 《Biochemistry》1987,26(16):5147-5153
The causes of the salting-in of beta-lactoglobulin by glycine and NaCl, a solubility behavior contrary to expectations, were probed by a detailed study of the interactions between these solvent components and the protein. The preferential interactions of beta-lactoglobulin with solvent components in aqueous glycine and NaCl systems have been compared with those of bovine serum albumin and lysozyme. At neutral pH, beta-lactoglobulin exhibited insignificant preferential interactions in glycine and NaCl at low cosolvent concentrations and an increasing preferential hydration at higher concentrations, the levels approaching the values expected from the other two proteins. These results indicate considerable binding of the electrolytes to beta-lactoglobulin, sufficient to compensate for the exclusion due to perturbation of the solvent surface tension. The difference between the preferential interactions of beta-lactoglobulin and the other proteins with these two solvent additives was shown to be the cause of the increase of beta-lactoglobulin solubility even at high concentrations of the additives, at which they have salting-out effects on the other proteins. The preferential interactions of NaCl with the three proteins were examined as a function of pH. The results showed no pH dependence of the preferential hydration for bovine serum albumin and lysozyme, while this parameter increased significantly for beta-lactoglobulin at lower pH. This suggests that the binding of electrolytes to beta-lactoglobulin is due to a unique charge distribution on the surface of the protein around neutral pH, which imparts to this protein a large dipole moment.  相似文献   

10.
The preferential interaction of calf brain tubulin with glycerol in an aqueous buffer (0.01 m-NaPi, 0.02 m-NaCl, 10?4m-GTP, pH 7.0) has been investigated by densimetry. The apparent specific volumes of tubulin at constant chemical potential of the diffusible components were determined at 0, 10, 20 and 30% (vv) glycerol. Application of multicomponent solution thermodynamics shows that tubulin is preferentially hydrated in aqueous glycerol solvent and that such interaction results in thermodynamic destabilization of the system by raising the chemical potentials of both glycerol and tubulin. Interpreted in terms of the Wyman linkage function, the unfavorable free energy change brought about by the preferential protein-glycerol interaction can account for the glycerol enhancement of tubulin self-assembly in vitro into microtubules as well as offer a rationale for glycerol stabilization of the native tubulin conformation.  相似文献   

11.
A method for calculating the isopotential partial specific volumes of proteins in concentrated salt, sugar, and amino acid solutions has been developed. It is based on the finding that the preferential hydration of the protein in these solutions is relatively independent of the concentration of the additive and is proportional to the specific surface area of the proteins, i.e., to the ratio of the total accessible surface area to molecular weight. Agreement between the calculated and experimental values was satisfactory, indicating the reliability of the proposed method. These calculations show that the isopotential partial specific volume increases greatly with the concentration of the additive, in particular in the case of Na2SO4, (NH4)2SO4 and sucrose, and for smaller proteins.  相似文献   

12.
Auton M  Bolen DW  Rösgen J 《Proteins》2008,73(4):802-813
Protein stability and solubility depend strongly on the presence of osmolytes, because of the protein preference to be solvated by either water or osmolyte. It has traditionally been assumed that only this relative preference can be measured, and that the individual solvation contributions of water and osmolyte are inaccessible. However, it is possible to determine hydration and osmolyte solvation (osmolation) separately using Kirkwood-Buff theory, and this fact has recently been utilized by several researchers. Here, we provide a thermodynamic assessment of how each surface group on proteins contributes to the overall hydration and osmolation. Our analysis is based on transfer free energy measurements with model-compounds that were previously demonstrated to allow for a very successful prediction of osmolyte-dependent protein stability. When combined with Kirkwood-Buff theory, the Transfer Model provides a space-resolved solvation pattern of the peptide unit, amino acids, and the folding/unfolding equilibrium of proteins in the presence of osmolytes. We find that the major solvation effects on protein side-chains originate from the osmolytes, and that the hydration mostly depends on the size of the side-chain. The peptide backbone unit displays a much more variable hydration in the different osmolyte solutions. Interestingly, the presence of sucrose leads to simultaneous accumulation of both the sugar and water in the vicinity of peptide groups, resulting from a saccharide accumulation that is less than the accumulation of water, a net preferential exclusion. Only the denaturing osmolyte, urea, obeys the classical solvent exchange mechanism in which the preferential interaction with the peptide unit excludes water.  相似文献   

13.
The preferential interactions of proteins with solvent components in concentrated amino acid solutions were measured by high-precision densimetry. Bovine serum albumin and lysozyme were preferentially hydrated in all of the amino acids examined, glycine, α- and β-alanine, and betaine i.e., addition of these amino acids resulted in an unfavorable free energy change. It was shown that, for the former three amino acids, known to have a positive surface tension increment, their perturbation of the surface free energy of water is consistent with their preferential exclusion from the protein surface. In the case of betaine, which does not increase the surface tension of water, preferential exclusion from protein surface must reflect the chemical structure of this cosolvent, which is considerably more hydrophobic than that of the other three amino acids.  相似文献   

14.
Interaction of non-electrolytes such as urea with proteins especially at lower concentrations is opening-up newer concepts in the understanding of protein stability and folding in proteomics. In this study, the secondary and tertiary structural characteristics and thermal stability of human serum albumin at lower concentrations of urea have been monitored. The protein attains a molten globule like structure at concentration urea below 2 M. This structural state also shows an increase in the alpha-helical content as compared to the native state. At concentrations of urea above 2 M, human serum albumin starts unfolding, resulting in a three-state transition with two mid points of transitions at around 4 M and 7 M urea concentrations. The characteristics of the partially folded intermediates are discussed with respect to the three component system analyses. Preferential hydration dominates over preferential interaction at lower concentration of urea (up to 2.5 M) and at higher concentration, the preferential interaction overtakes preferential hydration in a competitive manner. Formation of structural intermediates at lower concentration of urea is hypothesized as a general phenomenon in proteins and fits in with the observation with preferential interaction parameters by Timasheff and co-workers in the case of lysozyme and ribonuclease at different pH values.  相似文献   

15.
Recombinant proteins are often expressed in the form of insoluble inclusion bodies in bacteria. To facilitate refolding of recombinant proteins obtained from inclusion bodies, 0.1 to 1 M arginine is customarily included in solvents used for refolding the proteins by dialysis or dilution. In addition, arginine at higher concentrations, e.g., 0.5-2 M, can be used to extract active, folded proteins from insoluble pellets obtained after lysing Escherichia coli cells. Moreover, arginine increases the yield of proteins secreted to the periplasm, enhances elution of antibodies from Protein-A columns, and stabilizes proteins during storage. All these arginine effects are apparently due to suppression of protein aggregation. Little is known, however, about the mechanism. Various effects of solvent additives on proteins have been attributed to their preferential interaction with the protein, effects on surface tension, or effects on amino acid solubility. The suppression of protein aggregation by arginine cannot be readily explained by either surface tension effects or preferential interactions. In this review we show that interactions between the guanidinium group of arginine and tryptophan side chains may be responsible for suppression of protein aggregation by arginine.  相似文献   

16.
Hydrophobic interaction chromatography is a very powerful protein purification technique which is dependent on strong salting-out salts to increase the hydrophobic interactions between the protein and the ligand. Ammonium sulfate is the salt most commonly used for this purpose, but it cannot be used at very alkaline pH. Monosodium glutamate was therefore tested as a salt for hydrophobic interaction chromatography at pH 9.5. When ribonuclease A, ovalbumin, and beta-lactoglobulin were individually applied to a phenyl superose column in 2 M monosodium glutamate, all three proteins bound to the column and could be subsequently eluted by decreasing the salt concentration. Using this salt, it was possible to separate commercially obtained beta-lactoglobulin into authentic protein and contaminants and to purify the individual proteins from a mixture of ovalbumin and beta-lactoglobulin. These results demonstrate that monosodium glutamate is a useful salt for hydrophobic interaction chromatography. Guanidine and sodium sulfate and sodium aspartate were also examined at the same pH, demonstrating that they also resulted in the binding and elution of the proteins examined.  相似文献   

17.
The covalent binding of [14C]acetaldehyde to purified beef brain tubulin was characterized. As we have found for several other proteins, tubulin bound acetaldehyde to form both stable and unstable adducts. Unstable adducts (Schiff bases) were stabilized, and rendered detectable, by treating incubated reaction mixtures with the reducing agent sodium borohydride. In short-term incubations, the majority of the adducts formed were unstable, but the percentage of total adducts that were stable gradually increased with time. Stable adduct formation was greatly increased by the inclusion of sodium cyanoborohydride in reaction mixtures (reductive ethylation). When reaction mixtures were submitted to sodium dodecyl sulfate-polyacrylamide gel electrophoresis to separate the alpha- and beta-chains of the heterodimeric tubulin molecule, the alpha-chain of free tubulin, but not intact microtubules, was the preferential site of stable adduct formation under both reductive and nonreductive conditions. Denaturation studies showed that the native tubulin conformation was necessary for the alpha-chain to show enhanced reactivity toward acetaldehyde. Competition binding studies showed that alpha-tubulin could effectively compete with beta-tubulin and bovine serum albumin for a limited amount of acetaldehyde. Unstable acetaldehyde adducts with free tubulin or microtubules did not exhibit alpha-chain selectivity. Analysis of reaction mixtures indicates that lysine residues are the major group of the protein participating in adduct formation. These data indicate that the alpha-chain of free tubulin is the preferential site of stable acetaldehyde-tubulin adduct formation. Further, these data raise the possibility that alpha-tubulin may be a selective target for acetaldehyde adduct formation in cellular systems.  相似文献   

18.
We have studied the reaction native left arrow over right arrow denatured for the 33-kDa protein isolated from photosystem II. Sucrose and glycerol have profound effects on pressure-induced unfolding. The additives shift the equilibrium to the left; they also cause a significant decrease in the standard volume change (DeltaV). The change in DeltaV was related to the sucrose and glycerol concentrations. The decrease in DeltaV varied with the additive: sucrose caused the largest effect, glycerol the smallest. The theoretical shift of the half-unfolding pressure (P1/2) calculated from the net increase in free energy by addition of sucrose and glycerol was lower than that obtained from experimental mea- surements. This indicates that the free energy change caused by preferential hydration of the protein is not the unique factor involved in the protein stabilization. The reduction in DeltaV showed a large contribution to the theoretical P1/2 shift, suggesting that the DeltaV change, caused by the sucrose or glycerol was associated with the protein stabilization. The origin of the DeltaV change is discussed. The rate of pressure-induced unfolding in the presence of sucrose or glycerol was slower than the refolding rate although both were significantly slower than that observed without any stabilizers.  相似文献   

19.
cAMP and cGMP differentially bind to and regulate a variety of proteins, including cyclic nucleotide-gated (CNG) channels and hyperpolarization-activated cyclic nucleotide-regulated (HCN) channels. Previous site-directed mutagenesis studies have isolated two conserved residues that are critical for enabling certain channels to selectively bind cGMP relative to cAMP. However, no definitive mechanism has been identified that explains the preferential activation of other channels by cAMP. Here we apply computational binding free energy methods, including thermodynamic integration, linear interaction energy, and continuum electrostatic calculations, to gain insights into the mechanisms of cyclic nucleotide selectivity. Consistent with experimental observations, computational results for the cAMP-selective HCN channels show that the binding free energy of cAMP is lower (more favorable) than that of cGMP. Surprisingly, cAMP selectivity is not due to its preferential contacts with protein, but rather reflects the greater hydration energy of cGMP relative to cAMP, resulting in a greater energetic cost for cGMP binding.  相似文献   

20.
The intracellular polymerization of cytoskeletal proteins into their supramolecular assemblies raises many questions regarding the regulatory patterns that control this process. Binding experiments using the ELISA solid phase system, together with protein assembly assays and electron microscopical studies provided clues on the protein-protein associations in the polymerization of tubulin and actin networks. In vitro reconstitution experiments of these cytoskeletal filaments using purified tau, tubulin, and actin proteins were carried out. Tau protein association with tubulin immobilized in a solid phase support system was inhibited by actin monomer, and a higher inhibition was attained in the presence of preassembled actin filaments. Conversely, tubulin and assembled microtubules strongly inhibited tau interaction with actin in the solid phase system. Actin filaments decreased the extent of in vitro tau-induced tubulin assembly. Studies on the morphological aspects of microtubules and actin filaments coexisting in vitro, revealed the association between both cytoskeletal filaments, and in some cases, the presence of fine filamentous structures bridging these polymers. Immunogold studies showed the association of tau along polymerized microtubules and actin filaments, even though a preferential localization of labeled tau with microtubules was revealed. The studies provide further evidence for the involvement of tau protein in modulating the interactions of microtubules and actin polymers in the organization of the cytsokeletal network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号