首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the medial dorsolateral portion of the semilunar ganglion of curarized and anaesthetized lambs a cellular pool has been identified which contains the perikarya of the first-order neurons of the eye muscle proprioception. Responses to moderate manual stretch of individual eye muscles were recorded by means of tungsten microelectrodes, from single units of the ganglion. They were of the type induced by muscle spindle excitation. Such responses showed a somatotopic localization. The superior rectus and the superior oblique muscles were represented in the most dorsal layers of the ganglion, while the inferior rectus and the inferior oblique muscles projected on the most ventral portion of the pool. The medial and the lateral recti were represented in the medial and lateral parts and occasionally wedged themselves between the cells innervating the superior and the inferior muscles. Thus a somatotopic arrangement of the eye muscle proprioception has been demonstrated for the first time in the semilunar ganglion.  相似文献   

2.
The present research shows that sensory ganglion cells are located within the oculomotor nerve of monkeys and man. Furthermore, afferent fibers have been found in the IIIrd nerve of all the animals examined (lamb, pig, cat, dog and monkey). These fibers have their perikarya prevalently in the semilunar ganglion. Their pathway could be studied after section of either the trigeminal ophthalmic branch or of the intracranial portion of the IIIrd nerve. Following these operations, degenerating fibers were found entering the brain stem through the oculomotor nerve. In the brain stem, they were traced through the pons and the medulla and were seen to end in the spinal cord, within the subnucleus gelatinosus of the nucleus caudalis trigemini. Their degenerating endings found in the neuropil of the SG Rolandi, represented peripheral axonal endings of the glomeruli, rather than central axonal endings, as was the case after trigeminal rhizotomy. On the basis of these different degenerating patterns, the conclusion can be reached that the perikarya of the afferent fibers located in the semilunar ganglion represent, in reality, a ganglion of the IIIrd nerve.  相似文献   

3.
After injection of HRP in the oculomotor nerve labelled cells were found in the dorsal most part of the ophthalmo-maxillary area of the semilunar ganglion. Below this area a labelled cellular pool was detected following the injection of the enzyme in the extrinsic eye muscles. A clear somatotopic arrangement of these muscles was noticeable.  相似文献   

4.
The motor and proprioceptive innervation of the retractor bulbi muscle of the lamb has been studied. The motor innovation of the muscles supplied only by the abducens never. The proprioceptive nervous fibers coming from the muscle spindles of this extraocular muscle enter the brain stem through the ophthalmic branch of the trigeminal nerve and have their perikarya in the semilunar ganglion.  相似文献   

5.
The distribution in the dorsal roots of proprioceptive afferent fibres from tibialis anterior (TA) and extensor digitorum longus (EDL) muscles of the rat and the physiological characteristics of the related nervous endings have been investigated. Axons of proprioceptive endings from TA and EDL were found mainly in L4, only a few in L5. Afferent proprioceptive fibres from posterior superficial crural muscles (gastrocnemius, soleus, plantaris) pass mainly through root L5; axons of extrafusal motor units are distributed in a similar way. Sensory endings in TA and EDL were examined, after identification, by means of their static threshold to passive stretch. Almost all steady-state responses to passive stretch, within the physiological extension range, came from muscle spindles. 1-2 to 20 g loads were necessary to obtain steady-state discharges from these receptors. Spindle endings were classified as primary or secondary by measuring the conduction velocity of the afferent fibres, and according to the features of their passive behaviour. Threshold difference cannot be regarded as a fundamental characteristic, because of the considerable overlapping of the values obtained from the two types of endings. Conduction velocities of 50 to 80 m/sec for primary and of 20 to 40 m/sec for secondary afferent fibres were observed. Afferent fibres conducting at intermediate velocity often behave like primary ones. As a rule, tendon organs showed a higher static threshold to passive stretch; the loads employed only rarely elicited a steady-state response. As for these receptors, which usually showed marked adaptation characteristics, passive force is a less effective stimulus than active contraction. The conduction velocity range of afferent fibres from tendon organs is the same as that of primary afferents. The results are discussed.  相似文献   

6.
Single unit activity was recorded from the anterior lobe of the cerebellum during ramp and hold stretches of limb muscles in chloralose anesthetized cats. The activity of 95 "phasic" units showed a transient response during dynamic stretch of at least one muscle usually lasting for less than 350 ms following the stimulus onset. The activity of 59 phasic-tonic units was modified not only during dynamic stretch but also during the 1 s of maintained muscle length. All Purkinje cells, identified by their complex spikes, that responded to muscle stretch demonstrated exclusively phasic changes in discharge. Fourteen of 25 Purkinje cells (56%) responded to stretch of both antagonist muscles and these responses were always similar rather than reciprocal. From the 129 units without complex spikes, 70 demonstrated phasic discharge patterns whereas 59 had tonic responses. Seventy-five (59%) of these unidentified units revealed convergent responses to stretch of both antagonists, compared with 54 which responded to stretch of one muscle only. Of the unidentified units receiving convergent afferents from antagonist muscles, 62 (83%) had similar responses and only 13 (17%) had reciprocal reactions. There appeared to be no evidence that muscle afferents alone can induce reciprocal discharge patterns in Purkinje neurons of the cerebellar cortex. The firing frequency of some phasic-tonic units was correlated with both the velocity and amplitude of muscle stretch. No Purkinje cells were found with activity related to either velocity or amplitude of muscle stretch. One phasic and seven phasic-tonic unidentified units were activated at fixed latencies following trains of electrical stimulation applied to the thoracic spinal cord at frequencies exceeding 200 Hz, implying they were terminal portions of mossy fibers originating from direct spinocerebellar tracts. A few recordings of compound potentials were presumed to arise from the cerebellar glomeruli. The changing form of one of these potentials suggested that the glomerulus might be a site at which somatosensory peripheral information is modified by the cerebellar cortex.  相似文献   

7.
Several investigations have shown that the vagal nerve can affect the reflex responses of the masticatory muscles acting at level either of trigeminal motoneurons or of the mesencephalic trigeminal nucleus (MTN). The present experiments have been devoted to establish the origin of the vagal afferent fibres involved in modulating the masseteric reflex. In particular, the gastric vagal afferents were taken into consideration and selective stimulations of such fibres were performed in rabbit. Conditioning electrical stimulation of truncus vagalis ventralis (TVV) reduced the excitability of the MTN cells as shown by a decrease of the antidromic response recorded from the semilunar ganglion and elicited by MTN single-shock electrical stimulation. Sympathetic and cardiovascular influences were not involved in these responses. Mechanical stimulation of gastric receptors, by means of gastric distension, clearly diminished the amplitude of twitch tension of masseteric reflex and inhibited the discharge frequency of proprioceptive MTN units. The effect was phasic and depended upon the velocity of distension. Thus the sensory volleys originating from rapid adapting receptors reach the brain stem through vagal afferents and by means of a polysynaptic connection inhibits the masseteric reflex at level of MTN cells.  相似文献   

8.
Harmonic distortion (HD) from 1,055 responses of muscle spindles sensory endings to sinusoidal stretches (frequency range 0.0008 to 0.8333 Hz, amplitude range 0.019 to 3.09 mm) has been studied in the cat soleus muscle. Sixty-six per cent were primary afferents (Ia) and 34% secondary (II). HD mean value (0.28) did not show any significant differences between both types of endings. Analysis of variance for HD versus stimulation amplitude showed a greater HD when stretch amplitudes were beyond 1.599 mm or less than 0.031 mm on primary afferents (p less than 0.001) and less than 0.070 mm on secondary (p less than 0.001). The effect of stimulus frequency was also significant (p less than 0.01 Ia and p less than 0.001 II), however only at 0.8333 Hz and in secondary endings HD was significantly higher. The silent period in the response, at release of stretch, caused by half wave rectification could explain about 50% of measured HD.  相似文献   

9.
Auditory interneurone responses in the mesothoracic ganglion of the cricket Gryllus bimaculatus were investigated with special regard to temporal features of the calling song. Units representing five response types were found. One type codes verse syllables and intensity. The second codes syllables of highfrequency verses. The third responds as a pulse marker. The fourth shows adaptation and the response pattern depends on the verse frequency. The fifth fires a burst at verse onset.Responses of mesothoracic units recorded in two other cricket species do not differ markedly from those of Gryllus bimaculatus. Particularly, no tuning is found to species-specific differences in their calling songs.The stimulus direction can affect the threshold in different ways: dependence at all frequencies, dependence only between 3 and 6 kHz, and independence are found. The dependence is mainly expressed by a higher threshold for contralateral sounds.The mesothoracic branching of a few neurones was demonstrated by extracellular CoS-staining. These cells pass through the ganglion as connective fibres giving off small branches into the ventro-medial and dorso-medial neuropiles.  相似文献   

10.
Unit response in the superior colliculus and underlying structures has been examined in the choralose-anaesthetized cat following passive movement of an occluded eye. One group of units was sensitive to small saccadic movements, responded regardless of the initial postion of the eye, and in most instances responded to movements in opposit directions. A second numerically smaller group also responded when they eye was moved at saccadic velocity but only when the eye passed a fixed point. Such units with fixed positional thresholds were found following movements in both nasal and temporal directions as well as to both upward and downward movement. Both types of unit response were found after transection of the optic nerve and were also recorded when individual extraocular muscles were subjected to controlled stretch. It is assumed that most unit activity seen after passive movement of the occluded eye is due to activity in extraocular muscle receptors. In the deep layers of the superior colliculus responses to small eye movements were found to be due to the activation of very low threshold receptors sensitive to vibration in the facial area.  相似文献   

11.
The exercise pressor reflex is evoked by both mechanical and metabolic stimuli. Tendon stretch does not increase muscle metabolism and therefore is used to investigate the mechanical component of the exercise pressor reflex. An important assumption underlying the use of tendon stretch to study the mechanical component of the exercise pressor reflex is that stretch stimulates the same group III mechanosensitive muscle afferents as does static contraction. We have tested the veracity of this assumption in decerebrated cats by comparing the responses of group III and IV muscle afferents to tendon stretch with those to static contraction. The tension-time indexes as well as the peak tension development for both maneuvers did not significantly differ. We found that static contraction of the triceps surae muscles stimulated 18 of 30 group III afferents and 8 of 11 group IV afferents. Similarly, tendon stretch stimulated 14 of 30 group III afferents and 3 of 11 group IV afferents. However, of the 18 group III afferents that responded to static contraction and the 14 group III afferents that responded to tendon stretch, only 7 responded to both stimuli. On average, the conduction velocities of the 18 group III afferents that responded to static contraction (11.6 +/- 1.6 m/s) were significantly slower (P = 0.03) than those of the 14 group III afferents that responded to tendon stretch (16.7 +/- 1.5 m/s). We have concluded that tendon stretch stimulated a different population of group III mechanosensitive muscle afferents than did static contraction. Although there is some overlap between the two populations of group III mechanosensitive afferents, it is not large, comprising less than half of the group III afferents responding to static contraction.  相似文献   

12.
Functional properties of skin afferents were studied by the method of registration of spike activity from single nerve fibres, innervated non-hairy skin in white rats. It was found that mechanoreceptor units varied by the threshold intensity of applied stimulus. These units were divided to three functional groups: low-, medium- and high-threshold units. Transcranial electrical stimulation (TES) strongly affected on the functional characteristics of skin afferents. Full suppression of responses was observed in 18-20 min. irrespective of the category of units. A local intracutaneous injection of naloxon eliminated the effect of TES. It is supposed that endogenous opioid peptides regulate an afferent discharge on the level of sensory endings during TES.  相似文献   

13.
Visual Adaptation in the Retina of the Skate   总被引:21,自引:16,他引:5  
The electroretinogram (ERG) and single-unit ganglion cell activity were recorded from the eyecup of the skate (Raja erinacea and R. oscellata), and the adaptation properties of both types of response compared with in situ rhodopsin measurements obtained by fundus reflectometry. Under all conditions tested, the b-wave of the ERG and the ganglion cell discharge showed identical adaptation properties. For example, after flash adaptation that bleached 80% of the rhodopsin, neither ganglion cell nor b-wave activity could be elicited for 10–15 min. Following this unresponsive period, thresholds fell rapidly; by 20 min after the flash, sensitivity was within 3 log units of the dark-adapted level. Further recovery of threshold was slow, requiring an additional 70–90 min to reach absolute threshold. Measurements of rhodopsin levels showed a close correlation with the slow recovery of threshold that occurred between 20 and 120 min of dark adaptation; there is a linear relation between rhodopsin concentration and log threshold. Other experiments dealt with the initial unresponsive period induced by light adaptation. The duration of this unresponsive period depended on the brightness of the adapting field; with bright backgrounds, suppression of retinal activity lasted 20–25 min, but sensitivity subsequently returned and thresholds fell to a steady-state value. At all background levels tested, increment thresholds were linearly related to background luminance.  相似文献   

14.
Experiments were performed in precollicular decerebrate cats to investigate whether proprioceptive volleys originating from Golgi tendon organs and muscle spindles may activate supraspinal descending inhibitory mechanisms. Conditioning stimulation of the distal stump of ventral root filaments of L7 or S1 leading to isometric contraction of the gastrocnemius-soleus (GS) muscle inhibited the monosynaptic reflex elicited by stimulation of the ipsilateral plantaris-flexor digitorum and hallucis longus (Pl-FDHL) nerve. The amount and the time course of this Golgi inhibition were greatly increased by direct cross-excitation of the intramuscular branches of the group Ia afferents due to ephaptic stimulation of the sensory fibers, which occurred when a large number of a fibers had been synchronously activated. The postsynaptic and the presynaptic nature of these inhibitory effects, as well as their segmental origin, have been discussed. In no instance, however, did the stimulation of Golgi tendon organs elicit any late inhibition of the test monosynaptic reflex, which could be attributed to a spino-bulbo-spinal (SBS) reflex. Conditioning stimulation of both primary and secondary endings of muscle spindles, induced by dynamic stretch of the lateral gastrocnemius-soleus (LGS) muscle, was unable to elicit any late inhibition of the medial gastrocnemius (MG) monosynaptic reflex. The only changes observed in this experimental condition were a facilitation of the test reflex during the dynamic stretch of the LGS, followed at the end of the stimulus by a prolonged depression. These effects however were due to segmental interactions, since they persisted after postbrachial section of the spinal cord. Intravenous injection of an anticholinesterase, at a dose which greatly potentiated the SBS reflex inhibition produced by conditioning stimulation of the dorsal root L6, did not alter the changes in time course of the test reflex induced either by muscle contraction or by dynamic muscle stretch. Conditioning stimulation of a muscle nerve activated the supraspinal descending mechanism responsible for the inhibitory phase of the SBS reflex only when the high threshold group III muscle afferents (innervating pressure-pain receptors) had been recruited by the electric stimulus. This finding contrasts with the great availability of the system to the low threshold cutaneous afferents. The proprioceptive afferent volleys originating from Golgi tendon organs as well as from both primary and secondary endings of muscle spindles, contrary to the cutaneous and the high threshold muscle afferent volleys, were apparently unable to elicit not only a SBS reflex inhibition, but also any delayed facilitation of monosynaptic extensor reflexes attributable to inhibition of the cerebellar Purkinje cells.  相似文献   

15.
Weber and noise adaptation in the retina of the toad Bufo marinus   总被引:2,自引:1,他引:1       下载免费PDF全文
Responses to flashes and steps of light were recorded intracellularly from rods and horizontal cells, and extracellularly from ganglion cells, in toad eyecups which were either dark adapted or exposed to various levels of background light. The average background intensities needed to depress the dark-adapted flash sensitivity by half in the three cell types, determined under identical conditions, were 0.9 Rh*s-1 (rods), 0.8 Rh*s-1 (horizontal cells), and 0.17 Rh*s-1 (ganglion cells), where Rh* denotes one isomerization per rod. Thus, there is a range (approximately 0.7 log units) of weak backgrounds where the sensitivity (response amplitude/Rh*) of rods is not significantly affected, but where that of ganglion cells (1/threshold) is substantially reduced, which implies that the gain of the transmission from rods to the ganglion cell output is decreased. In this range, the ganglion cell threshold rises approximately as the square root of background intensity (i.e. in proportion to the quantal noise from the background), while the maintained rate of discharge stays constant. The threshold response of the cell will then signal light deviations (from a mean level) of constant statistical significance. We propose that this type of ganglion cell desensitization under dim backgrounds is due to a post-receptoral gain control driven by quantal fluctuations, and term it noise adaptation in contrast to the Weber adaptation (desensitization proportional to the mean background intensity) of rods, horizontal cells, and ganglion cells at higher background intensities.  相似文献   

16.
Photopic action of thyrotropin-releasing hormone in the cat retina   总被引:1,自引:0,他引:1  
The effects of iontophoretically applied thyrotropin-releasing hormone (TRH) on cat retinal brisk-sustained(X) and brisk-transient(Y) ganglion cells were studied in the intact eye in vivo. Under photopic illumination we found a differential action of TRH on ON- and OFF-centre cells: the maintained activity and light response were suppressed in ON-centre cells and enhanced in OFF-centre cells. This was true for both brisk-sustained(X) and brisk-transient(Y) cells. In contrast, TRH did not influence the ganglion cell discharge under scotopic stimulus conditions. These results indicate that TRH acts on neurons presynaptic to ganglion cells and these neurons are only active under photopic conditions. We suggest that a possible functional role of this specific action of TRH is in light adaptation.  相似文献   

17.
The functional role of the different classes of visceral afferents that innervate the large intestine is poorly understood. Recent evidence suggests that low-threshold, wide-dynamic-range rectal afferents play an important role in the detection and transmission of visceral pain induced by noxious colorectal distension in mice. However, it is not clear which classes of spinal afferents are activated during naturally occurring colonic motor patterns or during intense contractions of the gut smooth muscle. We developed an in vitro colorectum preparation to test how the major classes of rectal afferents are activated during spontaneous colonic migrating motor complex (CMMC) or pharmacologically induced contraction. During CMMCs, circular muscle contractions increased firing in low-threshold, wide-dynamic-range muscular afferents and muscular-mucosal afferents, which generated a mean firing rate of 1.53 ± 0.23 Hz (n = 8) under isotonic conditions and 2.52 ± 0.36 Hz (n = 17) under isometric conditions. These low-threshold rectal afferents were reliably activated by low levels of circumferential stretch induced by increases in length (1-2 mm) or load (1-3 g). In a small proportion of cases (5 of 34 units), some low-threshold muscular and muscular-mucosal afferents decreased their firing rate during the peak of the CMMC contractions. High-threshold afferents were never activated during spontaneous CMMC contractions or tonic contractions induced by bethanechol (100 μM). High-threshold rectal afferents were only activated by intense levels of circumferential stretch (10-20 g). These results show that, in the rectal nerves of mice, low-threshold, wide-dynamic-range muscular and muscular-mucosal afferents are excited during contraction of the circular muscle that occurs during spontaneous CMMCs. No activation of high-threshold rectal afferents was detected during CMMCs or intense contractile activity in na?ve mouse colorectum.  相似文献   

18.
Summary The occurrence of neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP) and peptide histidine isoleucine (PHI) in the sympathetic and parasympathetic innervation of the nasal mucosa was studied in various species including man. A dense network of NPY-immunoreactive (IR) fibres was present around arteries and arterioles in the nasal mucosa of all species studied. NPY was also located in nerves around seromucous glands in pig and guinea-pig, but not in rat, cat and man. The NPY-IR glandular innervation corresponded to about 20% of the NPY content of the nasal mucosa as revealed by remaining NPY content determined by radioimmunoassay after sympathectomy. These periglandular NPY-positive fibres had a distribution similar to the VIP-IR and PHI-IR nerves but not to the noradrenergic markers tyrosine hydroxylase (TH) or dopamine--hydroxylase (DBH). The NPY nerves around glands and some perivascular fibres were not influenced by sympathectomy and probably originated in the sphenopalatine ganglion where NPY-IR and VIP-IR ganglion cells were present. The venous sinusoids were innervated by NPY-positive fibres in all species except the cat. Dense NPY and DBH-positive innervation was seen around thick-walled vessels in the pig nasal mucosa; the latter may represent arterio-venous shunts. Double-labelling experiments using TH and DBH, and surgical sympathectomy revealed that the majority of NPY-IR fibres around blood vessels were probably noradrenergic. The NPY-positive perivascular nerves that remained after sympathectomy in the pig nasal mucosa also contained VIP/PHI-IR. The major nasal blood vessels, i.e. sphenopalatine artery and vein, were also densely innervated by NPY-IR fibres of sympathetic origin. Perivascular VIP-IR fibres were present around small arteries, arterioles, venous sinusoids and arterio-venous shunt vessels of the nasal mucosa whereas major nasal vessels received only single VIP-positive nerves. The trigeminal ganglion of the species studied contained only single TH-IR or VIP-IR but no NPY-positive ganglion cells. It is concluded that NPY in the nasal mucosa is mainly present in perivascular nerves of sympathetic origin. In some species, such as pig, glandular and perivascular parasympathetic nerves, probably of VIP/PHI nature, also contain NPY.  相似文献   

19.
The effects of muscle spindle secondary ending activity on the stretch reflex were studied in unanesthetized decerebrate cats. Activation of secondary endings was accomplished by reducing the muscle temperature. This has been shown to cause a sustained asynchronous discharge from secondary endings. Cooling of the medial gastrocnemius or lateral gastrocnemius-soleus muscles caused an increase in the phasic and tonic components of their stretch reflexes. Cooling of the relaxed medial gastrocnemius muscle caused similar increases in the components of the stretch reflex of the synergistic lateral gastrocnemius-soleus muscle and an increase in its monosynaptic reflex. It was concluded that the facilitatory autogenetic and synergistic effects of muscle cooling on the stretch and monosynaptic reflexes were brought about by activity in group II afferents from muscle spindle secondary endings and could not be ascribed to any other type of muscle receptor. These results support the concept of an excitatory role for the secondary endings of the muscle spindle in the stretch reflex of the decerebrate cat.  相似文献   

20.
Recent studies suggest that the capsaicin receptor [transient receptor potential vanilloid (TRPV)1] may play a role in visceral mechanosensation. To address the potential role of TRPV1 in vagal sensory neurons, we developed a new in vitro technique allowing us to determine TRPV1 expression directly in physiologically characterized gastric sensory neurons. Stomach, esophagus, and intact vagus nerve up to the central terminations were carefully dissected and placed in a perfusion chamber. Intracellular recordings were made from the soma of nodose neurons during mechanical stimulation of the stomach. Physiologically characterized neurons were labeled iontophoretically with neurobiotin and processed for immunohistochemical experiments. As shown by action potential responses triggered by stimulation of the upper thoracic vagus with a suction electrode, essentially all abdominal vagal afferents in mice conduct in the C-fiber range. Mechanosensitive gastric afferents encode stimulus intensities over a wide range without apparent saturation when punctate stimuli are used. Nine of 37 mechanosensitive vagal afferents expressed TRPV1 immunoreactivity, with 8 of the TRPV1-positive cells responding to stretch. A small number of mechanosensitive gastric vagal afferents express neurofilament heavy chains and did not respond to stretch. By maintaining the structural and functional integrity of vagal afferents up to the nodose ganglion, physiological and immunohistochemical properties of mechanosensory gastric sensory neurons can be studied in vitro. Using this novel technique, we identified TRPV1 immunoreactivity in only one-fourth of gastric mechanosensitive neurons, arguing against a major role of this ion channel in sensation of mechanical stimuli under physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号