首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Functionally active human interferon-gamma (IFN gamma) receptors require the presence of at least two polypeptides: the IFN gamma receptor and an accessory molecule encoded by a gene on human chromosome 21. Here we have used a murine L cell line that stably contains human chromosome 21 (SCC16-5) to determine whether the receptor's cytoplasmic domain is important for receptor function. SCC16-5 stably transfected with the full-length human IFN gamma receptor cDNA bound, internalized, and responded to human IFN gamma. In contrast, SCC16-5 expressing human IFN gamma receptors lacking a cytoplasmic domain bound human IFN gamma but did not internalize or respond to it. Using a family of IFN gamma receptor deletion mutants, two functionally important regions within the intracellular domain were identified: (a) a membrane proximal region (residues 256-303) required for ligand processing and biologic responsiveness and (b) the carboxyl-terminal 39 amino acids (residues 434-472) needed exclusively for biologic responses.  相似文献   

3.
4.
5.
The geminiviral replication-associated protein (Rep) is the only viral protein required for viral DNA replication. Tomato leaf curl virus (TLCV) Rep was expressed in Escherichia coli as a histidine-tagged fusion protein and purified to homogeneity in non-denaturing form. The fusion protein was used in in vitro binding experiments to identify the Rep-binding elements within the origin of replication of TLCV. Electrophoretic mobility shift assays demonstrated that the Rep binds specifically to a 120 bp fragment within the TLCV intergenic region. Fine resolution of the binding regions within the 120 bp fragment, using DNase I footprinting, demonstrated two footprints covering the sequences GCAATTGGTGTCTCTCAA and TGAATCGGTGTCTGGGG containing a direct repeat of the motif GGTGTCT (underlined). Our results suggest that the repeated motif is involved in virus-specific Rep-binding, but may not constitute the entire binding element. This is the first demonstration of geminivirus sequence elements involved in Rep-binding by direct protein-DNA interaction assays.  相似文献   

6.
Although all EGF receptors in EGF receptor-expressing cells are molecularly identical, they can be subdivided in two different classes that have either a high or a low affinity for EGF. Specifically the high-affinity class is associated with filamentous actin. To determine whether the interaction of the EGF receptor with actin induces its high-affinity state, we studied EGF-binding properties of an EGF receptor mutant that lacks the actin-binding site. Interestingly, we found that cells expressing this mutant receptor still display both high- and low-affinity classes of EGF receptors, indicating that the actin-binding domain does not determine the high-affinity binding state. By further mutational analysis we identified a receptor domain, within the tyrosine kinase domain, that regulates the affinity for EGF.  相似文献   

7.
8.
9.
The nod kinesin-like protein is localized along the arms of meiotic chromosomes and is required to maintain the position of achiasmate chromosomes on the developing meiotic spindle. Here we show that the localization of ectopically expressed nod protein on mitotic chromosomes precisely parallels that observed for wild-type nod protein on meiotic chromosomes. Moreover, the carboxyl-terminal half of the nod protein also binds to chromosomes when overexpressed in mitotic cells, whereas the overexpressed amino-terminal motor domain binds only to microtubules. Chromosome localization of the carboxyl-terminal domain of nod depends upon an 82-amino acid region comprised of three copies of a sequence homologous to the DNA-binding domain of HMG 14/17 proteins. These data map the two primary functional domains of the nod protein in vivo and provide a molecular explanation for the directing of the nod protein to a specific subcellular component, the chromosome.  相似文献   

10.
11.
12.
13.
The binding of Campylobacter jejuni to fibronectin (Fn), a component of the extracellular matrix, is mediated by a 37 kDa outer membrane protein termed CadF for Campylobacter adhesion to Fn. Previous studies have indicated that C. jejuni binds to Fn on the basolateral surface of T84 human colonic cells. To further characterize the interaction of the CadF protein with Fn, enzyme-linked immunosorbent assays were performed to identify the Fn-binding domain (Fn-BD). Using overlapping 30-mer and 16-mer peptides derived from translated cadF nucleotide sequence, maximal Fn-binding activity was localized to four amino acids (AA 134-137) consisting of the residues phenylalanine-arginine-leucine-serine (FRLS). A mouse alpha-CadF peptide polyclonal antibody (M alpha-CadF peptide pAb) was generated using FRLS containing peptides and found to react with viable C. jejuni as judged by indirect fluorescent microscopy, suggesting that the FRLS residues are surface-exposed. Binding of CadF to purified Fn and INT 407 human epithelial cells was significantly inhibited with peptides containing the Fn-BD. Moreover, a CadF recombinant variant protein, in which the Phe-Arg-Leu residues (CadF AA 134-136) were altered to Ala-Ala-Gly, exhibited a 91% decrease in Fn-binding activity as compared with the wild-type CadF protein. Collectively, these data indicate that the FRLS residues (CadF AA 134-137) of the C. jejuni CadF protein possess Fn-binding activity.  相似文献   

14.
Multiprotein complexes mediate static and dynamic functions to establish and maintain cell polarity in both epithelial cells and neurons. Membrane-associated guanylate kinase (MAGUK) proteins are thought to be scaffolding molecules in these processes and bind multiple proteins via their obligate postsynaptic density (PSD)-95/Disc Large/Zona Occludens-1, Src homology 3, and guanylate kinase-like domains. Subsets of MAGUK proteins have additional protein-protein interaction domains. An additional domain we identified in SAP97 called the MAGUK recruitment (MRE) domain binds the LIN-2,7 amino-terminal (L27N) domain of mLIN-2/CASK, a MAGUK known to bind mLIN-7. Here we show that SAP97 binds two other mLIN-7 binding MAGUK proteins. One of these MAGUK proteins, DLG3, coimmunoprecipitates with SAP97 in lysates from rat brain and transfected Madin-Darby canine kidney cells. This interaction requires the MRE domain of SAP97 and surprisingly, both the L27N and L27 carboxyl-terminal (L27C) domains of DLG3. We also demonstrate that SAP97 can interact with the MAGUK protein, DLG2, but not the highly related protein, PALS2. The ability of SAP97 to interact with multiple MAGUK proteins is likely to be important for the targeting of specific protein complexes in polarized cells.  相似文献   

15.
Interleukin-1 receptor type I (IL-1RI) belongs to a superfamily of proteins characterized by an intracellular Toll/IL-1 receptor (TIR) domain. This domain harbors three conserved regions called boxes 1-3 that play crucial roles in mediating IL-1 responses. Boxes 1 and 2 are considered to be involved in binding of adapter molecules. Amino acids possibly crucial for IL-1RI signaling were predicted via homology models of the IL-1RI TIR domain based on the crystal structure of IL-1RAPL. The role of ten of these residues was investigated by site-directed mutagenesis and a functional luciferase assay reflecting NF-κB activity in transiently transfected Jurkat cells. In particular, the mutants E437K/D438K, E472A/E473A and S465A/S470A/S471A/E472A/E473A showed decreased and the mutant E437A/D438A increased IL-1 responsiveness compared to the mouse IL-1RI wild type. In conclusion, the αC′ helix (Q469-E473 in mouse IL-1RI) is probably involved in heterotypic interactions of IL-1RI with IL-1RAcP or MyD88.  相似文献   

16.
CED-4, a pro-apoptotic factor in Caenorhabditis elegans, activates the cell death protease CED-3. CED-9 directly binds to CED-4 and represses this. However, it has remained unclear whether a mammalian CED-9 homologue, Bcl-XL, inhibits the function of the mammalian CED-4 homologue, Apaf-1, by direct binding. To analyze the interaction, we adopted a yeast two-hybrid system. Since Bcl-XL and the CED-4-like portion of Apaf-1 failed to exhibit a positive result in the assay, we prepared "fragment libraries" of bcl-XL or apaf-1 cDNA. By screening of the apaf-1 "fragment library," we obtained nine clones interacting with Bcl-XL, all containing the same region within the ATPase domain, designated BBR: the Bcl-XL binding region. Binding of BBR to Bcl-XL was also confirmed by immunoprecipitation assays. Bcl-2, Bcl-w, A1/Bfl-1, and Boo/Diva failed to show the same capacity for binding to BBR as Bcl-XL. These results indicate that Bcl-XL directly binds to a specific region in Apaf-1.  相似文献   

17.
18.
FDCP-1 cells are hematopoietic progenitor cells which require interleukin-3 for survival and proliferation. FDCP-1 cells stably transfected with the murine erythropoietin receptor cDNA survive and proliferate in the presence of erythropoietin. Erythropoietin induces the activation of the short forms (80 kDa) of STAT5 in the cells. Erythropoietin-induced activation of STAT5 was strongly reduced in cells expressing mutated variants of the erythropoietin receptors in which tyrosine residues in their intracellular domain have been eliminated. We determined that the erythropoietin receptor tyrosine residues 343 and 401 are independently necessary for STAT5 activation. The amino acid sequences surrounding these two tyrosine residues are very similar. Peptides comprising either phosphorylated Tyr343 or phosphorylated Tyr401, but not their unphosphorylated counterparts, inhibited the STAT5 activation. We propose that these two tyrosine residues of the erythropoietin receptor constitute docking sites for the STAT5 SH2 domain. The growth stimulus mediated by erythropoietin was decreased in cells expressing erythropoietin receptors lacking both Tyr343 and Tyr401. This suggests that STAT5 activation could be involved in the growth control of FDCP-1 cells.  相似文献   

19.
Using polymerase chain reaction-amplified fragments of cubilin, an endocytic receptor of molecular mass 460 kDa, we have identified two distinct ligand binding regions. Region 1 of molecular mass 71 kDa, which included the 113-residue N terminus along with the eight epidermal growth factor (EGF)-like repeats and CUB domains 1 and 2, and region 2 of molecular mass 37 kDa consisting of CUB domains 6-8 bound both intrinsic factor-cobalamin (vitamin B(12); Cbl) (IF-Cbl) and albumin. Within these two regions, the binding of both ligands was confined to a 110-115-residue stretch that encompassed either the 113-residue N terminus or CUB domain 7 and 8. Ca(2+) dependence of ligand binding or the ability of cubilin antiserum to inhibit ligand binding to the 113-residue N terminus was 60-65%. However, a combination of CUB domains 7 and 8 or 6-8 was needed to demonstrate significant Ca(2+) dependence or inhibition of ligand binding by cubilin antiserum. Antiserum to EGF inhibited albumin but not IF-Cbl binding to the N-terminal cubilin fragment that included the eight EGF-like repeats. While the presence of excess albumin had no effect on binding to IF-Cbl, IF-Cbl in excess was able to inhibit albumin binding to both regions of cubilin. Reductive alkylation of the 113-residue N terminus or CUB 6-8, CUB 7, or CUB 8 domain resulted in the abolishment of ligand binding. These results indicate that (a) cubilin contains two distinct regions that bind both IF-Cbl and albumin and that (b) binding of both IF-Cbl and albumin to each of these regions can be distinguished and is regulated by the nonassisted formation of local disulfide bonds.  相似文献   

20.
Different amounts of Suppressor of Hairless (SuH)-dependent Notch (N) signaling is often used during animal development to produce two different tissues from a population of equipotent cells. During Drosophila melanogaster embryogenesis, cells with high amounts of this signaling differentiate the larval epidermis whereas cells with low amounts, or none, differentiate the central nervous system (CNS). The mechanism by which SuH-dependent N signaling is increased or decreased in these different cells is obscure. The developing epidermis is known to get enriched for the full-length N (NFull) and the developing CNS for the carboxyl terminus-truncated N (NdeltaCterm). Results described here indicate that this differential accumulation of N receptors is part of a mechanism that would promote SuH-dependent N signaling in the developing epidermis but suppress it in the developing CNS. This mechanism involves SuH-dependent stability of NFull, NFull-dependent accumulation of SuH, stage specific stability of SuH, and NdeltaCterm-dependent loss of SuH and NFull.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号