首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The effect of Ba2+ (0.5 mM, corial side) upon the transport characteristics of the frog skin epithelium was investigated. It was observed that Ba2+ decreased the conductance of the preferably K+-permeable basolateral border to less than 30% of its control value. Furthermore, Ba2+ abolished the K+ electrode-like behaviour, existing at the basolateral membrane under conditions of zero transcellular current flow, for [K+] below 10–15 mM. Effects upon other parameters of transepithelial transport (electromotive forces and resistance of outer or basolateral border and shunt pathway, respectively) were small and might represent secondary events. It is concluded that Ba2+ inhibits passive fluxes of K+ across basolateral membranes of tight, Na+ transporting epithelia, similar to its influence upon membranes of nonpolar cells.  相似文献   

3.
Summary The ratio between the unidirectional fluxes of K+ across the frog skin with K-permeable outer membranes was determined in the absence of Na+ in the apical solutions. The experiments were performed under presteady-state conditions to be able to separate the flux ratio for K+ through the cells from contributions to the fluxes through extracellular leaks. The cellular flux ratio deviated strongly from the value calculated from the flux ratio for electrodiffusion. The experiments can be explained if the passive K transport through the epithelial cells proceeds through specific channels by single-file diffusion with a flux ratio exponent of about 2.5.  相似文献   

4.
Inhibition of potassium conductance by barium in frog skin epithelium.   总被引:4,自引:0,他引:4  
The effect of Ba2+ (0.5 mM, corial side) upon the transport characteristics of the frog skin epithelium was investigated. It was observed that Ba2+ decreased the conductance of the preferably K+-permeable basolateral border to less than 30% of its control value. Furthermore, Ba2+ abolished the K+ electrode-like behaviour, existing at the basolateral membrane under conditions of zero transcellular current flow, for [K+] below 10--15 mM. Effects upon other parameters of transepithelial transport (electromotive forces and resistance of outer or basolateral border and shunt pathway, respectively) were small and might represent secondary events. It is concluded that Ba2+ inhibits passive fluxes of K+ across basolateral membranes of tight, Na+ transporting epithelia, similar to its influence upon membranes of nonpolar cells.  相似文献   

5.
We determined the current-voltage (I-V) relations of the apical and basolateral barriers of frog skins by impaling the cells with an intracellular microelectrode and assuming that the current across the cellular pathway was equal to the amiloride-inhibitable current. We found that: (a) The responses in transepithelial current and intracellular potential to square pulses of transepithelial potential (VT) varied markedly with time. (b) As a consequence of these transient responses, the basolateral I-V relation was markedly dependent on the time of sampling after the beginning of each pulse. The apical I-V plot was much less sensitive to the time of sampling within the pulse. (c) The I-V data for the apical barrier approximated the I-V relations calculated from the Goldman constant field equation over a relatively wide range of membrane potentials (+/- 100 mV). (d) A sudden reduction in apical bath [Na+] resulted in an increase in apical permeability and a shift in the apical barrier zero-current potential (Ea) toward less positive values. The shift in Ea was equivalent to a change of 45 mV for a 10-fold change in apical [Na+]. (e) The transient responses of the skin to square VT pulses were described by the sum of two exponentials with time constants of 114 and 1,563 ms, which are compatible with the time constants that would be produced by an RC circuit with capacitances of 65 and 1,718 microF. The larger capacitance is too large to identify it comfortably with a true dielectric membrane capacitance.  相似文献   

6.
7.
8.
9.
Summary The effect of ADH upon the intracellular potential and the resistance of inner and outer borders of the transport pathway was investigated on isolated skins ofRana temporaria. Within 40 min after ADH (100-300 mU/ml), the intracellular potential under short-circuit conditions decreased to about 40% of the control value (–79±4 mV), concomitant with an increase in the short-circuit current to about 160% of the control value. Amiloride, applied when steady values under ADH had been reached, caused an immediate rise of the intracellular potential to values typical for control conditions. This confirms (i) the intracellular location of the microelectrode and the absence of impalement artifacts, and (ii) the ineffectiveness of ADH upon the electromotive forces of the inner border. ADH had no effect upon the intracellular potential after blockage of the Na entry by Amiloride. The equilibrium potential of the outer border was estimated to be about +20 mV under the influence of ADH. As this value is considerably less positive than might be expected for the chemical potential of Na, a significant contribution of ions other than Na to the outer border conductance and equilibrium potential is implicated. The resistance of the outer border was more significantly decreased than that of the active transcellular pathway after ADH due to an increase in the inner border resistance, which exceeded that of the outer border after ADH. The effect of ADH upon the outer membrane characteristics would be underestimated by a factor of two, if the alterations of the electrical potential difference were not taken into consideration.  相似文献   

10.
11.
12.
Acidification of the external medium by isolated frog skin epithelium (Rana catesbeiana, Rana temporaria, and Caudiververa caudiververa) and its relationship to Na+ uptake was studied. Acidification was measured by the pH-stat technique under short-circuit or open-circuit conditions. The results of this study demonstrate that (a) acidification by these species of in vitro frog skins is not directly coupled to Na+ or anion transport; (b) acidification can be inhibited by the diuretic drug amiloride, but only at high external Na+ concentrations; (c) acidification rate in these species of frog skin is controlled in part by the metabolic production of CO2; and (d) the positive correlation between net Na+ absorption and net acidification observed in whole animal studies could not be replicated in the in vitro skin preparation, even when the frogs were first chronically stressed by salt depletion, a physiological state comparable to that used in the in vivo experiments.  相似文献   

13.
Summary Transepithelial Li+ influx was studied in the isolated epithelium from abdominal skin ofRana catesbeiana. With Na+-Ringer's as inside medium and Li+-Ringer's as outside medium, the Li+ influx across the epithelium was 15.6 A/cm2. This influx was considerably reduced by removal of either Na+ or K+ from the inside bath or by the addition of ouabain or amiloride. Epithelial K+ or Na+ concentration was respectively lower in epithelia bathed in K+-free Ringer's or Na+-free Ringer's. In conditions of negligible Na+ transport, a 20mm Li+ gradient (outin) produced across the short-circuited epithelium a Li+ influx of 11.8 A/cm2 and a mean short-circuit current of 10.2 A/cm2. The same Li+ gradient in the opposite direction produced a Li+ outflux of only 1.9 A/cm2. With equal Li+ concentration (10.3 and 20.6mm) on both sides of the epithelium, plus Na+ in the inside solution only, a stable Li+-dependent short-circuit current was observed. Net Li+ movement (outin) was also indirectly determined in the presence of an opposing Li+ gradient. Although Li+ does not substitute for Na+ as an activator of the (Na++K+)-ATPase from frog skin epithelium, Li+ influx appears to be related to Na+–K+ pump activity. It is proposed that the permeability of the outer barrier to Na+ and Li+ is regulated by the electrical gradient produced by electrogenic Na+–K+ pumps located in the membrane of the deeper epithelial cells.  相似文献   

14.
Adult amphibian skin actively transports Na+ from its apical to basolateral side while in turn, K+ is recycled through Na+, K+-ATPase and K+ channels located in the basolateral membrane. We previously found that PRL stimulates Na+ transport in the skin of the adult tree frog (Hyla arborea japonica) via an increase in the open-channel density of the epithelial Na+ channel (ENaC). If PRL also activates basolateral K+ channels, this activation would help to stimulate Na+ transport, too. Whether PRL does indeed stimulate basolateral K+ channels in the adult tree frog was examined by measuring the short-circuit current across nystatin-treated skin. Both tolbutamide, a K(ATP) channel blocker, and tetrapentylammonium (TPA), a KCa channel blocker, blocked the current, the effect of TPA being more powerful than that of tolbutamide. Contrary to expectation, PRL inhibited the basolateral K+ channels in this skin. In the presence of basolateral amiloride, PRL still inhibited the basolateral K+ current, suggesting that the (Na+)-H+ exchanger located in the basolateral membrane does not mediate the inhibitory effect of PRL on the basolateral K+ channels in Hyla.  相似文献   

15.
16.
Benzodiazepine binding sites are present in a variety of non-neuronal tissues including the kidney where they are localized to distal nephron segments. It is postulated that renal binding sites are involved in modulating ion transport. This study examined the effects of two benzodiazepines on sodium transport in frog skin epithelium, a model system for sodium transport in renal collecting duct. Treatment of short-circuited frog skin with diazepam (a non-selective benzodiazepine agonist) stimulated amiloride-sensitive short-circuit current, reflecting stimulation of active sodium transport. The diazepam response was equally effective with either serosal or mucosal application of the drug. Maximal stimulation of the current (42 +/- 8%) was achieved with 10 microM diazepam (serosal). Short-circuit current was similarly augmented by serosal or mucosal addition of Ro5-4864, a benzodiazepine agonist with selective activity at peripheral (non-neuronal) receptors. The natriferic response to diazepam was additive to that of vasopressin or cyclic AMP suggesting that the mode of action of benzodiazepines is probably distinct from the cyclic AMP pathway. Thus, frog skin appears to be a useful model to examine the epithelial effects of benzodiazepines. Whether stimulation of sodium transport, however, involves peripheral-type benzodiazepine receptors in this tissue requires further studies.  相似文献   

17.
Summary The transepithelial water permeability in frog urinary bladder is believed to be essentially dependent on the ADH-regulated apical water permeability. To get a better understanding of the transmural water movement, the diffusional water permeability (P d) of the basolateral membrane of urinary bladder was studied. Access to this post-luminal barrier was made possible by perforating the apical membrane with amphotericin B. The addition of this antibiotic increasedP d from 1.12±0.10×10–4 cm/sec (n=7) to 4.08±0.33×10–4 cm/sec (n=7). The effect of mercuric sulfhydryl reagents, which are commonly used to characterize water channels, was tested on amphotericin B-treated bladders. HgCl2 (10–3 m) decreasedP d by 52% andpara-chloromercuribenzoic acid (pCMB) (1.4×10–4 m) by 34%. The activation energy for the diffusional water transport was found to increase from 4.52±0.23 kcal/mol (n=3), in the control situation, to 9.99±0.91 kcal/mol (n=4) in the presence of 1.4×10–4 m pCMB. Our second approach was to measure the kinetics of water efflux, by stop-flow light scattering, on isolated epithelial cells from urinary bladders.pCMB (0.5 or 1.4×10–4 m) was found to inhibit water exit by 91±2%. These data strongly support the existence of proteins responsible for water transport across the basolateral membrane, which are permanently present.  相似文献   

18.
19.
Summary The pathway for movement of chloride ions across frog skin is not well understood. Mitochondria-rich (MR) cells have been proposed as the route for chloride across the skin. To test this hypothesis we studied the MR cells of the skin of the frog,Rana pipiens, by quantitative light microscopic determination of cell volume. MR cell volume was influenced by changes in the chloride concentration or osmolality of the outside bathing solution. MR cells shrank about 23% when all chloride was removed from the outside (mucosal) bathing solution. MR cells were also shown to be responsive to changes in the osmolality of either the mucosal or serosal bath. Osmotically-induced swelling caused by dilution of the serosal bath resulted in volume regulatory decrease. These results are consistent with the hypothesis that MR cells constitute the pathway for chloride movement across frog skin.  相似文献   

20.
The effect of phloretin (20-100 M), a dipolar organic compound, on the voltage clamp currents of the frog node of Ranvier has been investigated. The Na currents are simply reduced in size but not otherwise affected. Phloretin has no effect on the slow 4-aminopyridine-resistant K channels. However, the voltage dependence and time course of the fast K conductance (g K) is markedly altered. The g K(E) curve, determined by measuring fast tail currents at different pulse potentials, normally exhibits a bend at –50 mV indicating the existence of two types of fats K channels. Phloretin shifts the g K (E) curve to more positive potentials, reduces its slope and its maximum and abolishes the distinction between the two tpyes of fast K channels. The effect becomes more pronounced with time. Phloretin also markedly slows the opening of the fast K channels, but has much less effect on the closing. Opening can be accelerated again by a long depolarizing prepulse which presumably removes part of the phloretin block. It is concluded that phloretin selectively affects the fast K channels of the nodal membrane. The results are compared with similar observations on the squid giant axon. Offprint requests to: H. Meves  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号