首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, weinvestigated the mechanism that links activation ofN-methyl-D-aspartate (NMDA) receptors to inhibition ofvoltage-gated sodium channels in isolated catfish cone horizontal cells. NMDA channels were activated in voltage-clamped cells incubated in low-calcium saline or dialyzed with the calcium chelator BAPTA todetermine that calcium influx through NMDA channels is required forsodium channel modulation. To determine whether calcium influx throughNMDA channels triggers calcium-induced calcium release (CICR), cellswere loaded with the calcium-sensitive dye calcium green 2 and changesin relative fluorescence were measured in response to NMDA. Responseswere compared with measurements obtained when caffeine depleted stores.Voltage-clamp studies demonstrated that CICR modulated sodium channelsin a manner similar to that of NMDA. Blocking NMDA receptors with AP-7,blocking CICR with ruthenium red, depleting stores with caffeine, ordialyzing cells with calmodulin antagonists W-5 or peptide 290-309all prevented sodium channel modulation. These results support thehypothesis that NMDA modulation of voltage-gated sodium channels inhorizontal cells requires CICR and activation of a calmodulin-dependentsignaling pathway.

  相似文献   

2.
Abstract: We have studied the effect of glutamate and the glutamatergic agonists N-methyl-d -aspartate (NMDA), kainate, and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) on [3H]GABA release from the external plexiform layer of the olfactory bulb. The GABA uptake blocker nipecotic acid significantly increased the basal [3H]GABA release and the release evoked by a high K+ concentration, glutamate, and kainate. The glutamate uptake blocker pyrrolidine-2,4-dicarboxylate (2,4-PDC) inhibited by 50% the glutamate-induced [3H]GABA release with no change in the basal GABA release. The glutamatergic agonists NMDA, kainate, and AMPA also induced a significant [3H]GABA release. The presence of glycine and the absence of Mg2+ have no potentiating effect on NMDA-stimulated release; however, when the tissue was previously depolarized with a high K+ concentration, a significant increase in the NMDA response was observed that was potentiated by glycine and inhibited by the NMDA receptor antagonist 2-amino-5-phosphonoheptanoic acid (AP-7). The kainate and AMPA effects were antagonized by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) but not by AP-7. The glutamate effect was also inhibited by CNQX but not by the NMDA antagonist 2-amino-5-phosphonopentanoic acid (AP-5); nevertheless, in the presence of glycine, [3H]GABA release evoked by glutamate was potentiated, and this response was significantly antagonized by AP-5. Tetrodotoxin inhibited glutamate- and kainate-stimulated [3H]GABA release but not the NMDA-stimulated release. The present results show that in the external plexiform layer of the olfactory bulb, glutamate is stimulating GABA release through a presynaptic, receptor-mediated mechanism as a mixed agonist on NMDA and non-NMDA receptors; glutamate is apparently also able to induce GABA release through heteroexchange.  相似文献   

3.
Excitatory synaptic currents in Purkinje cells   总被引:13,自引:0,他引:13  
The N-methyl-D-aspartate (NMDA) and non-NMDA classes of glutamate receptor combine in many regions of the central nervous system to form a dual-component excitatory postsynaptic current. Non-NMDA receptors mediate synaptic transmission at the resting potential, whereas NMDA receptors contribute during periods of postsynaptic depolarization and play a role in the generation of long-term synaptic potentiation. To investigate the receptor types underlying excitatory synaptic transmission in the cerebellum, we have recorded excitatory postsynaptic currents (EPSCS), by using whole-cell techniques, from Purkinje cells in adult rat cerebellar slices. Stimulation in the white matter or granule-cell layer resulted in an all-or-none synaptic current as a result of climbing-fibre activation. Stimulation in the molecular layer caused a graded synaptic current, as expected for activation of parallel fibres. When the parallel fibres were stimulated twice at an interval of 40 ms, the second EPSC was facilitated; similar paired-pulse stimulation of the climbing fibre resulted in a depression of the second EPSC. Both parallel-fibre and climbing-fibre responses exhibited linear current-voltage relations. At a holding potential of -40 mV or in the nominal absence of Mg2+ these synaptic responses were unaffected by the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (APV), but were blocked by the non-NMDA receptor antagonist 6-cyano-2,3-dihydro-7-nitroquinoxalinedione (CNQX). NMDA applied to the bath failed to evoke an inward current, whereas aspartate or glutamate induced a substantial current; this current was, however, largely reduced by CNQX, indicating that non-NMDA receptors mediate this response. These results indicate that both types of excitatory input to adult Purkinje cells are mediated exclusively by glutamate receptors of the non-NMDA type, and that these cells entirely lack NMDA receptors.  相似文献   

4.
The membrane potential of Chara corallina Klein ex Willd, emR.D.W. displays an oscillatory behaviour in response to an appliedcurrent step. The relative amplitude and the frequency of oscillationof the overshoot increase with the strength of the current. Increasing temperature from 10 °C to 30 °C decreasesboth the relative overshoot amplitude and the static membraneresistance. The activation energy calculated from the Arrheniusplot of the frequency of the overshoot has a value of 36.1±2.3kJ mol–1. Raising the external pH from 5.0 to 6.0 decreases the relativeamplitude of the overshoot and increases the steady state membraneresistance. Treating the cells for 30 s with 0.1 mol m–3 N-ethylmaleimideinduces a rapid fall in both static membrane resistance andovershoot. These results are interpreted in terms of changes in potassiumchannels conductance. Key words: Chara corallina, Membrane potential, Potassium channels conductance  相似文献   

5.
Summary. Glutamate increases the extracellular adenosine levels, an important endogenous neuromodulator. The neurotoxicity induced by glutamate increases the ecto-5′-nucleotidase activity in neurons, which produces adenosine from AMP. L- and D-aspartate (Asp) mimic most of the actions of glutamate in the N-methyl-D-aspartate (NMDA) receptors. In the present study, both amino acids stimulated the ecto-5′-nucleotidase activity in cerebellar granule cells. MK-801 and AP-5 prevented the L- and D-Asp-evoked activation of ecto-5′-nucleotidase. Both NMDA receptor antagonists prevented completely the damage induced by L-Asp, but partially the D-Asp-induced damage. The antagonist of adenosine A2A receptors (ZM 241385) prevented totally the L- Asp-induced cellular death, but partially the neurotoxicity induced by D-Asp and the antagonist of adenosine A1 receptors (CPT) had no effect. The results indicated a different involvement of NMDA receptors on the L- or D-Asp-evoked activation of ecto-5′-nucleotidase and on cellular damage. The adenosine formed from ecto-5′-nucleotidase stimulation preferentially acted on adenosine A2A receptor which is probably co-operating with the neurotoxicity induced by amino acids.  相似文献   

6.
The hormone bombesin(BBS) and its mammalian equivalent gastrin-releasing peptide (GRP) actthrough specific GRP receptors (GRP-R) to affect multiple cellularfunctions in the gastrointestinal tract; the intracellular signalingpathways leading to these effects are not clearly defined. Previously,we demonstrated that the human gastric cancer SIIA possesses GRP-R andthat BBS stimulates activator protein-1 (AP-1) gene expression. Thepurpose of our present study was to determine the signaling pathwaysleading to AP-1 induction in SIIA cells. A rapid induction ofc-jun and jun-B gene expression was noted afterBBS treatment; this effect was blocked by specific GRP-R antagonists,indicating that BBS is acting through the GRP-R. The signaling pathwaysleading to increased AP-1 gene expression were delineated using phorbol12-myristate 13-acetate (PMA), which stimulates protein kinase C(PKC)-dependent pathways, by forskolin (FSK), which stimulates proteinkinase A (PKA)-dependent pathways, and by the use of various protein kinase inhibitors. Treatment with PMA stimulated AP-1 gene expression and DNA binding activity similar to the effects noted with BBS; FSKstimulated jun-B expression but produced only minimalincreases of c-jun mRNA and AP-1 binding activity.Pretreatment of SIIA cells with either H-7 or H-8 (primarily PKCinhibitors) inhibited the induction of c-jun andjun-B mRNAs in response to BBS, whereas H-89 (PKA inhibitor)exhibited only minimal effects. Pretreatment with tyrphostin-25, aprotein tyrosine kinase (PTK) inhibitor, attenuated the BBS-mediatedinduction of c-jun and jun-B, but the effect wasnot as pronounced as with H-7. Collectively, our results demonstratethat BBS acts through its receptor to produce a rapid induction of bothc-jun and jun-B mRNA and AP-1 DNA binding activity in the SIIA human gastric cancer. Moreover, this induction ofAP-1, in response to BBS, is mediated through both PKC- and PTK-dependent signal transduction pathways with only minimalinvolvement of PKA.

  相似文献   

7.
We proposed that acute ammonia toxicity is mediated by activation of NMDA receptors. To confirm this hypothesis we have tested whether different NMDA receptor antagonists, acting on different sites of NMDA receptors, prevent death of mice induced by injection of 14 mmol/Kg of ammonium acetate, a dose that induces death of 95% of mice. MK-801, phencyclidine and ketamine, which block the ion channel of NMDA receptors, prevent death of at least 75% of mice. CPP, AP-5, CGS 19755, and CGP 40116, competitive antagonists acting on the binding site for NMDA, also prevent death of at least 75% of mice. Butanol, ethanol and methanol which block NMDA receptors, also prevent death of mice. There is an excellent correlation between the EC50 for preventing ammonia-induced death and the IC50 for inhibiting NMDA-induced currents. Acute ammonia toxicity is not prevented by antagonists of kainate/AMPA receptors, of muscarinic or nicotinic acetylcholine receptors or of GABA receptors. Inhibitors of nitric oxide synthase afford partial protection against ammonia toxicity while inhibitors of calcineurin, of glutamine synthetase or antioxidants did not prevent ammonia-induced death of mice. These results strongly support the idea that acute ammonia toxicity is mediated by activation of NMDA receptors.  相似文献   

8.
The processes of N-methyl-d-aspartate (NMDA) receptor subunits expression were examined in cortical neurons and rat brain in order to investigate how the concanavalin A (Con A) modulates neuronal cells. Con A modulated the expression of NMDA receptor subunits in cultured cortical cells. Con A augmented the level of intracellular Ca2+ by α-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA). We determined whether activation of AMPA receptors was involved in the regulation of NMDA receptor expression with Con A by blocking the desensitization of AMPA receptors. The results showed that AMPA receptor antagonists suppressed NMDA receptor subunits expression in Con A-treated cortical neuronal cells. PMA elevated the expression of NMDA receptor subunits, while PKC inhibitor and tyrosine kinases inhibitor suppressed the expression of NMDA receptor subunits. Furthermore, it was shown that NMDA receptor subunits expression was modulated in a region-specific manner after the sustained microinfusion of Con A into the cerebroventricle of the rat brain. Collectively, it could be presumed that the AMPA receptor activation was involved in Con A-induced modulation of NMDA receptor subunits expression.  相似文献   

9.
Several neurotransmitters, including GABA, serotonin, glutamate, and cholecystokinin, modulate defensive behaviors in the dorsolateral periaqueductal gray (dlPAG). Although both glutamate and cholecystokinin have been shown to facilitate these behaviors, a possible interaction between them remains to be examined. The present study investigates whether activation or antagonism of N-methyl-D-aspartic acid (NMDA) glutamate and cholecystokinin 2 (CCK(2)) receptors located in the dlPAG would interact in animals tested in the elevated T-maze. The effect of the NMDA (50 pmol) was evaluated in rats pretreated with the CCK(2) receptor antagonist LY225910 (0.05 nmol). In addition, the effect of the CCK(2) receptor agonist CCK-4 (0.08 nmol) was evaluated in rats pretreated with the NMDA receptor antagonist AP-7 (1.0 nmol). Intra-dlPAG injection of NMDA increased risk assessment and inhibitory avoidance behaviors. This NMDA anxiogenic-like effect was unaltered by the pretreatment with LY225910. Similarly, the shortening of escape latencies induced by CCK-4 was unaffected by AP-7. No drug changed the general exploratory activity as assessed in the open-field. These results, showing that the activation of dlPAG NMDA or CCK(2) receptors facilitate anxiety- and fear-related behaviors, further implicate glutamate and cholecystokinin-mediated neurotransmission in this midbrain area on modulation of defensive behaviors. However, the regulatory action of these two excitatory neurotransmitters seems to be exerted through independent mechanisms.  相似文献   

10.
Glutamate receptors of the N-methyl-D-aspartate (NMDA) and non-NMDA type serve different functions during excitatory synaptic transmission. Although many central neurons bear both types of receptor, the evidence concerning the sensitivity of cerebellar Purkinje cells to NMDA is contradictory. To investigate the receptor types present in Purkinje cells, we have used whole-cell and outside-out patch-clamp methods to record from cells in thin cerebellar slices from young rats. At a holding potential of -70 mV (in nominally Mg(2+)-free medium, with added glycine) NMDA caused a whole-cell current response which consisted of a dramatic increase in the frequency of synaptic currents. In the presence of tetrodotoxin (TTX) and the gamma-aminobutyric acidA (GABAA) receptor antagonist bicuculline, spontaneous synaptic currents and responses to NMDA were inhibited. In a proportion of cells a small polysynaptic response to NMDA persisted, which was further reduced by the non-NMDA receptor antagonist 6-cyano-2,3-dihydro-7-nitroquinoxalinedione (CNQX). The non-NMDA glutamate receptor agonists kainate (KA), quisqualate (QA) and s-alpha-amino-3-hydroxy-5-methyl-4-isoazolepropionic acid (s-AMPA), evoked large inward currents due to the direct activation of receptors in Purkinje cells. NMDA applied to excised membrane patches failed to evoke any single-channel currents, whereas s-AMPA and QA caused small inward currents accompanied by marked increases in current noise. Spectral analysis of the s-AMPA noise in patches gave an estimated mean channel conductance of approximately 4 pS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Abstract: Synaptosomes from rat cerebellum were used to investigate the involvement of different glutamate receptor subtypes in the control of the synthesis of nitric oxide (NO), measured as its breakdown product nitrite (NO2-). Synaptosomes incubated in the presence of NAD|PH and l -arginine produced measurable levels of NO2-, which were reduced by addition of Nω-nitro-l -arginine methyl ester, an inhibitor of nitric oxide synthase. The selective ionotropic glutamate receptor agonist N-methyl-d -aspartate (NMDA) induced a pronounced increase in NO2-formation, which was prevented by Nω-nitro-l -arginine methyl ester and by the specific NMDA receptor antagonist Dl -2-amino-5-phosphonovaleric acid (AP-5). The NMDA-induced increase in NO2-formation was blocked by chelation of extracellular Ca2+ with EGTA. Both l -glutamate and the selective agonist for the metabotropic glutamate receptors (β)-1-aminocyclopentane-trans-1,3-dicarboxylic acid raised NO2-production, which retumed to control levels after addition of Nω-nitro-l -arginine methyl ester. The selective glutamate ionotropic receptor agonist (R,S)-α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid did not cause any change in NO2 formation. The stimulatory effect of l -glutamate was blocked by the metabotropic glutamate receptor antagonist Dl -2-amino-4-phosphonobutyric acid but was unaffected by the selective NMDA receptor blocker AP-5. Removal of extracellular Ca2+ by EGTA did not affect the action of l -glutamate; whereas W-7, an inhibitor of calmodulin, and dantrolene, a compound that blocks the mobilization of Ca2+ from intracellular stores, abolished the effect of l -glutamate on NO2-formation. It is suggested that stimulation of ionotropic NMDA receptors activates NO metabolism by causing an influx of Ca2+ from the extracellular space, whereas activation of metabotropic receptors by l -glutamate provokes a mobilization of Ca2+ from intracellular stores, which stimulates nitric oxide synthase activity by forning Ca2+/calmodulin complexes.  相似文献   

12.
Shen Y  Zhang M  Jin Y  Yang XL 《Neuro-Signals》2006,15(4):174-179
Glutamate works as a major excitatory neurotransmitter in the vertebrate retina. Whole-cell recordings made from isolated carp cone horizontal cells (H1 cells) showed that N-methyl-D-aspartate (NMDA), co-applied with glycine, induced inward currents that were blocked by the NMDA receptor competitive antagonist D-2-amino-5-phosphonopentanoate (D-AP5) and 5,7-dichlorokynurenic acid (DCKA), a selective NMDA receptor antagonist acting at the glycine site on the NMDA receptor complex. Moreover, calcium imaging showed that NMDA caused a significant elevation of intracellular calcium levels ([Ca(2+)](i)) of H1 cells, which was also blocked by D-AP5. In contrast, neither inward currents nor changes in [Ca(2+)](i) could be induced by NMDA in rod horizontal cells (H4 cells). Intracellular recordings made from H1 cells in the isolated retina, superfused with Ringer's containing 1 mM Mg(2+), in the dark demonstrated that NMDA reduced the light-off overshoot of H1 cells. We therefore conclude that the functional NMDA receptor is expressed in carp H1 cells, from which this receptor has been thought to be absent, and this receptor may play a role in modulating cone-driven signal of horizontal cells in the dark.  相似文献   

13.
To examine the neurochemistry underlying the firing of the RPeD1 neuron in the respiratory central pattern generator of the pond snail, Lymnaea stagnalis, we examined electrophysiologically and pharmacologically either “active” or “silent” preparations by intracellular recording and pharmacology. GABA inhibited electrical firing by hyperpolarizing RPeD1, while picrotoxin, an antagonist of GABAA receptors, excited silent cells and reversed GABA-induced inhibition. Action potential activity was terminated by 1 mM glutamate (Glu) while silent cells were depolarized by the GluR agonists, AMPA, and NMDA. Kainate exerted a complex triphasic effect on membrane potential. However, only bath application of AMPA desensitized the firing. These data indicate that GABA inhibits RPeD1 via activation of GABAA receptors, while Glu stimulates the neuron by activating AMPA-sensitive GluRs.  相似文献   

14.
A previously advanced hypothesis, according to which the transmitter which depolarizes the membrane of horizontal cells is continually liberated in the dark, and ceases to be liberated in the light, is tested experimentally. The data presented show that a current acting on presynatic receptor endings evokes a depolarizing response in horizontal cells to short current impulses passing through the retina (anode on receptor surface, cathode in vitreous body). These receptor endings are depolarized, which evidently leads to liberation of the transmitter from the receptors. Experiments with electrical stimulation of the retina have shown that treatment of the retina with potassium cyanide disrupts synaptic transmission between the receptor and horizontal cell. A potential equal to their membrane potential is established in horizontal cells in bright light; this potential is evidently the true rest potential of these cells. The relative stability of the membrane potential of horizontal cells in light with change in temperature is evidence in support of this assumption. In the dark, the membrane potential increases considerably with increase in temperature; this effect is possibly due to a rise in the rate of decomposition of the depolarizing transmitter. Evidence in support of this hypothesis is the rise in steepness of the falling phase of the response of the horizontal cells to electrical stimulation observed on elevation of the temperature.Institute for Problems of Information Transmission of the Academy of Sciences of the USSR, and Institute of Higher Nervous Activity and Neurophysiology of the Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 2, No. 1, pp. 79–86, January–February, 1970.  相似文献   

15.
The vertebrate retina is a “genuine neural center” (Ramón y Cajal), in which glutamate is a major excitatory neurotransmitter. Both N-methyl-d-aspartate (NMDA) and non-NMDA receptors are expressed in the retina. Although non-NMDA receptors and/or metabotropic glutamate receptors are generally thought to be responsible for mediating the transfer of visual signals in the outer retina, there is recent evidence suggesting that NMDA receptors are also expressed in photoreceptors, as well as horizontal and bipolar cells. In the inner retina, NMDA receptors, in addition to other glutamate receptor subtypes, are abundantly expressed to mediate visual signal transmission from bipolar cells to amacrine and ganglion cells, and could be involved in modulation of inhibitory feedback from amacrine cells to bipolar cells. NMDA receptors are extrasynaptically expressed in ganglion cells (and probably amacrine cells) and may play physiological roles in a special mode. Activity of NMDA receptors may be modulated by neuromodulators, such as d-serine and others. This article discusses retinal excitotoxicity mediated by NMDA receptors.  相似文献   

16.
To investigate thepossible role of members of the mammalian transient receptor potential(TRP) channel family (TRPC1-7) in vasoconstrictor-inducedCa2+ entry in vascular smooth muscle cells, we studied[Arg8]-vasopressin (AVP)-activated channels in A7r5aortic smooth muscle cells. AVP induced an increase in free cytosolicCa2+ concentration ([Ca2+]i)consisting of Ca2+ release and Ca2+ influx.Whole cell recordings revealed the activation of a nonselective cationcurrent with a doubly rectifying current-voltage relation strikinglysimilar to those described for some heterologously expressed TRPCisoforms. The current was also stimulated by direct activation of Gproteins as well as by activation of the phospholipase C-coupledplatelet-derived growth factor receptor. Currents were not activated bystore depletion or increased [Ca2+]i.Application of 1-oleoyl-2-acetyl-sn-glycerol stimulated the current independently of protein kinase C, a characteristic property ofthe TRPC3/6/7 subfamily. Like TRPC6-mediated currents, cation currentsin A7r5 cells were increased by flufenamate. Northern hybridizationrevealed mRNA coding for TRPC1 and TRPC6. We therefore suggest thatTRPC6 is a molecular component of receptor-stimulated Ca2+-permeable cation channels in A7r5 smooth muscle cells.

  相似文献   

17.
We hypothesized that blocking the activation of N-methyl-D-aspartate (NMDA) receptors prevents the initiation of walking-like activity and abolishes the ongoing rhythmic activity in the spinal cord-forelimb preparation from the mudpuppy. Robust walking-like movements of the limb and rhythmic alternating elbow flexor-extensor EMG pattern characteristic of walking were elicited when continuous perfusion of the spinal cord with solution containing D-glutamate. The frequency of the walking-like activity was dose-dependent on the concentration of D-glutamate in the bath over a range of 0.2 to 0.9 mmol/L. Elevation of potassium concentrations failed to induce walking-like activity. Application of the selective antagonist 2-amino-5-phosphonovalerate (AP-5) produced dose-dependent block of the initiation and maintenance of walking-like activity induced by D-glutamate. Complete block of the activity was achieved when the concentration of AP-5 reached 20 micromol/L. Furthermore, application of L-701,324 (a selective antagonist of the strychnine-insensitive glycine site of NMDA receptor) (1-10 micromol/L) also resulted in complete block of the walking-like activity. In contrast, application of the non-NMDA receptor antagonist 6-cyno-7-nitroquinoxaline-2,3-dione (CNQX) (1-50 micromol/L) induced a dose-dependent inhibition of the burst frequency but failed to result in a complete block. Only at concentration as high as 100 micromol/L, did CNQX cause complete block of the rhythmic activity, presumably through nonspecific action on the strychnine-insensitive glycine site of NMDA receptors. These results suggest that activation of NMDA receptors is required for the initiation and maintenance of walking-like activity. Operation of non-NMDA receptors plays a powerful role in the modulation of the walking-like activity in the mudpuppy.  相似文献   

18.
Summary 1. The effects of restraint stress on c-fos mRNA expression in the dentate gyrus were investigated byin situ hybridization.2. Confirming previous findings, c-fos mRNA expression increased after 30 min of forced restraint.3. This effect was attenuated by a previous i.c.v. injection of the anxiolytic benzodiazepine midazolam (20 nmol/2 µl) or theN-methyl-d-aspartate (NMDA) receptor antagonist 2-amino-7-phosphonoheptanoic acid (AP-7; 5 nmol/2 µl).4. These results suggest that the dentate gyrus is activated during restraint stress and that this activation may be modulated by benzodiazepine -aminobutyric acidA (GABAA) or NMDA receptors.  相似文献   

19.
It is not knownif, in polarized cells, desensitization events can be influenced by thedomain on which the receptor resides. Desensitization was induced by5'-(N-ethylcarboxamido)adenosine (NECA) and wasquantitated by measurement of short-circuit current (Isc) in response to adenosine. NECA addedto either the apical or basolateral compartments rapidly desensitizedreceptors on these respective domains. Although apical NECA had noeffect on the basolateral receptor stimulation, basolateral NECAinduced a complete desensitization of the apical receptor. Wehypothesized that desensitization of apical receptor by basolateraldesensitization could relate to a trafficking step in which A2breceptor is first targeted basolaterally upon synthesis and transportedto the apical surface via vesicular transport/microtubules. Becausedesensitization is associated with downregulation of receptors, apicaladenosine receptor can thus be affected by basolateral desensitization. Both low temperature and nocodazole inhibited Iscinduced by apical and not basolateral adenosine. In conclusion:1) a single receptor subtype, here modeled by the A2b receptor,differentially desensitizes based on the membrane domain on which it isexpressed, 2) agonist exposure on one domain can result indesensitization of receptors on the opposite domain, 3)cross-domain desensitization can display strict polarity, and4) receptor trafficking may play a role in thecross-desensitization process.

  相似文献   

20.
Sodium (Na+) is the major cation in extracellular space and, with its entry into cells, may act as a critical intracellular second messenger that regulates many cellular functions. Through our investigations of mechanisms underlying the activity-dependent regulation of N-methyl-d-aspartate (NMDA) receptors, we recently characterized intracellular Na+ as a possible signaling factor common to processes underlying the upregulation of NMDA receptors by non-NMDA glutamate channels, voltage-gated Na+ channels, and remote NMDA receptors. Furthermore, although Ca2+ influx during the activation of NMDA receptors acts as a negative feedback mechanism that downregulates NMDA receptor activity, Na+ influx provides an essential positive feedback mechanism to overcome Ca2+-induced inhibition, thereby potentiating both NMDA receptor activity and inward Ca2+ flow. NMDA receptors may be recruited to cause excitoxicity through a Na+-dependent mechanism. Therefore, the further characterization of mechanisms underlying the regulation of NMDA receptors by intracellular Na+ is essential to understanding activity-dependent neuroplasticity in the nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号