共查询到20条相似文献,搜索用时 0 毫秒
1.
CD38 has been widely characterised both as an ectoenzyme and as a receptor. In the present paper, we investigated the role of CD38 as possible modulator of apoptosis. CD38-positive (CD38(+)) and negative (CD38(-)) fractions, obtained by sorting CD38(+) cells from lymphoma T (Jurkat) and lymphoma B (Raji) and by transfecting lymphoma LG14 and myeloid leukemia K562 cell lines, were used. Cellular subpopulations were exposed to different triggers (H(2)O(2), UV-B, alpha-TOS and hrTRAIL) and the extent of apoptosis was determined by Annexin V-FITC/PI assay. Our data showed that, in lymphoma cells, propensity to apoptosis was significantly linked to CD38 expression and that, remarkably, such response was independent of the nature of the trigger used. Inhibition of CD38 expression by antisense oligonucleotides treatment resulted in CD38-silenced fractions which were as prone to apoptosis as CD38(-) ones. Notably, susceptibility of K562 to apoptosis-inducing challenges was not affected by CD38 expression. 相似文献
2.
Polychronis Kotoglou Alexandros Kalaitzakis Patra Vezyraki Theodore Tzavaras Lampros K. Michalis Francoise Dantzer Jae U. Jung Charalampos Angelidis 《Cell stress & chaperones》2009,14(4):391-406
For many years, there has been uncertainty concerning the reason for Hsp70 translocation to the nucleus and nucleolus. Herein,
we propose that Hsp70 translocates to the nucleus and nucleoli in order to participate in pathways related to the protection
of the nucleoplasmic DNA or ribosomal DNA from single-strand breaks. The absence of Hsp70 in HeLa cells, via Hsp70 gene silencing
(knockdown), indicated the essential role of Hsp70 in DNA integrity. Therefore, HeLa Hsp70 depleted cells were very sensitive
in heat treatment and their DNA breaks were multiple compared to that of control HeLa cells. The molecular mechanism with
which Hsp70 performs its role at the level of nucleus and nucleolus during stress was examined. Hsp70 co-localizes with PARP1
in the nucleus/nucleoli as was observed in confocal studies and binds to the BCRT domain of PARP1 as was revealed with protein–protein
interaction assays. It was also found that Hsp70 binds simultaneously to XRCC1 and PARP-1, indicating that Hsp70 function
takes place at the level of DNA repair and possibly at the base excision repair system. Making a hypothetical model, we have
suggested that Hsp70 is the molecule that binds and interrelates with PARP1 creating the repair proteins simultaneously, such
as XRCC1, at the single-strand DNA breaks. Our data partially clarify a previously unrecognized cellular response to heat
stress. Finally, we can speculate that Hsp70 plays a role in the quality and integrity of DNA.
Outlining prior scientific knowledge on the subject and novel information: The role of Hsp70 translocation to the nucleus
and nucleolus during heat stress has been nearly unknown. It has been proposed that this biological phenomenon is correlated
to Hsp70-chaperoning activity. Furthermore, some previous observations in yeast have revealed that Rad9 complexes—Rad9 being
the prototype DNA-damage checkpoint gene—contain Ssa1 and or Ssa2 chaperone proteins, both reconstituting the functions of
the corresponding Hsp70 in mammalian cells. Here, we propose that Hsp70 translocates to the nuclei/nucleoli during heat stress,
binds to PARP-1 and/or XRCC1, and protects HeLa cells from increased single-strand DNA breaks. 相似文献
3.
Role of Neu4L sialidase and its substrate ganglioside GD3 in neuronal apoptosis induced by catechol metabolites 总被引:1,自引:0,他引:1
Hasegawa T Sugeno N Takeda A Matsuzaki-Kobayashi M Kikuchi A Furukawa K Miyagi T Itoyama Y 《FEBS letters》2007,581(3):406-412
Mammalian sialidases are key enzymes in the degradation of glycoconjugates. Neu4L sialidase is localized to mitochondria and specifically expressed in brain. To elucidate the pathophysiological roles of Neu4L in the nervous system, we investigated the possible involvement of Neu4L in the apoptotic neurodegeneration under the existence of catechol metabolites generated by tyrosinase. We demonstrated that: (i) the expression level of Neu4L was dramatically decreased prior to apoptosis; (ii) the apoptotic phenotype was characterized by cytochrome c release into cytosol concomitant with the trafficking of ganglioside GD3 to mitochondria; and (iii) the inhibitor of glucosylceramide synthase partially recovered cell viability. Neu4L and its substrate GD3 may act as key molecules in the mitochondrial apoptotic pathway in neuronal cells. 相似文献
4.
Yang S Wang Z Farquharson C Alkasir R Zahra M Ren G Han B 《Biochemical and biophysical research communications》2011,410(4):910-915
Chronic excessive fluoride intake is known to be toxic and can lead to fluorosis and bone pathologies. However, the cellular mechanisms underlying NaF-induced cytotoxicity in osteoblasts are not well understood. The objectives of this study were to determine the effects of fluoride treatment on MC3T3-E1 osteoblastic cell viability, cell cycle analysis, apoptosis and the expression levels of bcl-2 family members: bcl-2 and bax. MC3T3-E1 cells were treated with 10−5; 5 × 10−5; 10−4; 5 × 10−4 and 10−3 M NaF for up to 48 h. NaF was found to reduce cell viability in a temporal and concentration dependent manner and promote apoptosis even at low concentrations (10−5 M). This increased apoptosis was due to alterations in the expression of both pro-apoptotic bax and anti-apoptotic bcl-2. The net result was a decrease in the bcl-2/bax ratio which was found at both the mRNA and protein levels. Furthermore, we also noted that NaF-induced S-phase arrest during the cell cycle of MC3T3-E1 cells. These data suggest that fluoride-induced osteoblast apoptosis is mediated by direct effects of fluoride on the expression of bcl-2 family members. 相似文献
5.
Yang JY Della-Fera MA Hartzell DL Nelson-Dooley C Hausman DB Baile CA 《Obesity (Silver Spring, Md.)》2006,14(10):1691-1699
Objective: To determine the effects of esculetin, a plant phenolic compound with apoptotic activity in cancer cells, on 3T3‐L1 adipocyte apoptosis and adipogenesis. Research Methods and Procedures: 3T3‐L1 pre‐confluent preadipocytes and lipid‐filled adipocytes were incubated with esculetin (0 to 800 μM) for up to 48 hours. Viability was determined using the Cell Titer 96 Aqueous One Solution cell proliferation assay; apoptosis was quantified by measurement of single‐stranded DNA. Post‐confluent preadipocytes were incubated with esculetin for up to 6 days during maturation. Adipogenesis was quantified by measuring lipid content using Nile Red dye; cells were also stained with Oil Red O for visual confirmation of effects on lipid accumulation. Results: In mature adipocytes, esculetin caused a time‐ and dose‐related increase in adipocyte apoptosis and a decrease in viability. Apoptosis was increased after only 6 hours by 400 and 800 μM esculetin (p < 0.05), and after 48 hours, as little as 50 μM esculetin increased apoptosis (p < 0.05). In preadipocytes, apoptosis was detectable only after 48 hours (p < 0.05) with 200 μM esculetin and higher concentrations. However, results of the cell viability assay indicated a reduction in preadipocyte number in a time‐ and dose‐related manner, beginning as early as 6 hours with 400 and 800 μM esculetin (p < 0.05). Esculetin also inhibited adipogenesis of 3T3‐L1 preadipocytes. Esculetin‐mediated inhibition of adipocyte differentiation occurred during the early, intermediate, and late stages of the differentiation process. In addition, esculetin induced apoptosis during the late stage of differentiation. Discussion: These findings suggest that esculetin can alter fat cell number by direct effects on cell viability, adipogenesis, and apoptosis in 3T3‐L1 cells. 相似文献
6.
The larval midgut in holometabolous insects must undergo a remodeling process during metamorphosis to form the pupal-adult midgut. However, the molecular mechanism of larval midgut cell dissociation remains unknown. Here, we show that the expression and activity of Helicoverpa armigera cathepsin L (Har-CatL) are high in the midgut at the mid-late stage of the 6th-instar larvae and are responsive to the upstream hormone ecdysone. Immunocytochemistry shows that signals for Har-CatL-like are localized in midgut cells, and an inhibitor experiment demonstrates that Har-CatL functions in the dissociation of midgut epithelial cells. Mechanistically, Har-CatL can cleave pro-caspase-1 into the mature peptide, thereby increasing the activity of caspase-1, which plays a key role in apoptosis, indicating that Har-CatL is also involved in the apoptosis of midgut cells by activating caspase-1. We believe that this is the first report that Har-CatL regulates the dissociation and apoptosis of the larval midgut epithelium for midgut remodeling. 相似文献
7.
Liu PC Moreno-Aliaga MJ Dunlap DY Hu XM Denison MS Matsumura F 《Journal of biochemical and molecular toxicology》2002,16(2):70-83
We compared the ability of two clonally derived murine preadipocyte cell lines, 3T3-L1(L1) and 3T3-F442A (F442A), to differentiate after treatment by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and found that the former cell line was clearly suppressed by TCDD but the latter was not. It was initially postulated that the easiest way to explain the lack of response to TCDD in F442A cells could be an alteration in aryl hydrocarbon receptor (AhR) functionality. This hypothesis was tested first, but no differences were found in the levels or functions of AhR. To find an alternate explanation for such a differential effect of TCDD, we tested the action of several diagnostic agents on the process of adipocyte differentiation of these two cells. No differences were found between these two lines of cells in the susceptibility to the antiadipogenic action of 12-0-tetradecanoylphorbol-13-acetate (TPA), or to TNFalpha, indicating that the basic biochemical components engaged in the antiadipogenic actions of these agents in these two cell lines are similar. In contrast, F442A cells were found to be more resistant to the antiadipogenic action of EGF or TGFbeta than L1 cells which were tested side by side. Based on the knowledge that TNFalpha preferentially affects C/EBPalpha and that TGFbeta specifically controls C/EBPbeta and delta in their antiadipogenic action, we hypothesized that the major cause for the differential response of these two similar cell lines could be the insensitivity of C/EBPbeta and/or delta of F442A cells to the action of TCDD. We could obtain supporting data for this hypothesis, showing that in F442A cells, the level of C/EBPbeta is already high even before the addition of adipocyte differentiation factors and that TCDD did not cause any significant changes in the titer of C/EBPbeta. 相似文献
8.
Xu G Zhang Y Zhang L Ren G Shi Y 《Biochemical and biophysical research communications》2008,375(4):666-670
Bone marrow stromal cells (BMSCs) have been shown to promote the growth and survival of a wide variety of tumors. However, in the present study, we found that BMSCs induced apoptosis of lymphoma cells in the presence of INFγ and TNF. IFNγ and TNF dramatically induced the expression of inducible nitric oxide synthase (iNOS) by BMSCs in culture, and BMSCs generated from iNOS knockout mice did not induce apoptosis of lymphoma cells in the presence of IFNγ and TNF. In addition, we found that IFNγ and TNF also increased IL-6 expression by BMSCs, and anti-IL-6 further increased the killing of tumor cells by BMSCs. Taken together, our findings indicate that BMSCs induce apoptosis of lymphoma cells in the presence of IFNγ and TNF, and that the proapoptotic effect of BMSCs is mediated by nitric oxide. Our findings suggest a possibility to harness this proapoptotic feature of BMSCs for the development of novel therapeutic strategy to eliminate tumor cells, especially tumor cells in bone marrow. 相似文献
9.
Kim IK Copeland RL Lee JH Kim HS Asafo-Adjei E Brown ND Estrada JS Gordon RK Garcia GE Chiang PK 《Journal of biomedical science》1994,1(3):154-157
High concentrations of adenosine (Ado), when added to L1210 lymphocytic leukemia cells, resulted in apoptosis or programmed cell death. The apoptotic process was accompanied by distinct morphological changes including chromatin condensation and blebbing of plasma membranes. Extensive DNA fragmentation was correlated with Ado concentrations. Furthermore, apoptosis in these cells was preceded by an early but transient expression of c-myc proto-oncogene, and was not influenced by homocysteine thiolactone added to the cells. Since severe combined immunodeficiency (SCID) is associated with a deficiency of adenosine deaminase, leading to defects in both cellular and humoral immunity, Ado-induced apoptosis may thus be a contributing factor in the pathology of SCID. 相似文献
10.
Post-translational modifications of autophagy-related (ATG) genes are necessary to modulate their functions. However, ATG protein methylation and its physiological role have not yet been elucidated. The methylation of non-histone proteins by SETD7, a SET domain-containing lysine methyltransferase, is a novel regulatory mechanism to control cell protein function in response to various cellular stresses. Here we present evidence that the precise activity of ATG16L1 protein in hypoxia/reoxygenation (H/R)-treated cardiomyocytes is regulated by a balanced methylation and phosphorylation switch. We first show that H/R promotes autophagy and decreases SETD7 expression, whereas autophagy inhibition by 3-MA increases SETD7 level in cardiomyocytes, implying a tight correlation between autophagy and SETD7. Then we demonstrate that SETD7 methylates ATG16L1 at lysine 151 while KDM1A/LSD1 (lysine demethylase 1A) removes this methyl mark. Furthermore, we validate that this methylation at lysine 151 impairs the binding of ATG16L1 to the ATG12–ATG5 conjugate, leading to inhibition of autophagy and increased apoptosis in H/R-treated cardiomyocytes. However, the cardiomyocytes with shRNA-knocked down SETD7 or inhibition of SETD7 activity by a small molecule chemical, display increased autophagy and decreased apoptosis following H/R treatment. Additionally, methylation at lysine 151 inhibits phosphorylation of ATG16L1 at S139 by CSNK2 which was previously shown to be critical for autophagy maintenance, and vice versa. Together, our findings define a novel modification of ATG16L1 and highlight the importance of an ATG16L1 phosphorylation-methylation switch in determining the fate of H/R-treated cardiomyocytes. 相似文献
11.
Tahara E Tahara H Kanno M Naka K Takeda Y Matsuzaki T Yamazaki R Ishihara H Yasui W Barrett JC Ide T Tahara E 《Cancer immunology, immunotherapy : CII》2005,54(8):729-740
Expression of an interferon inducible gene 6-16, G1P3, increases not only in type I interferon-treated cells but also in human senescent fibroblasts. However, the function of 6-16 protein is unknown. Here we report that 6-16 is 34 kDa glycosylated protein and localized at mitochondria. Interestingly, 6-16 is expressed at high levels in gastric cancer cell lines and tissues. One of exceptional gastric cancer cell line, TMK-1, which do not express detectable 6-16, is sensitive to apoptosis induced by cycloheximide (CHX), 5-fluorouracil (5-FU) and serum-deprivation. Ectopic expression of 6-16 gene restored the induction of apoptosis and inhibited caspase-3 activity in TMK-1 cells. Thus 6-16 protein has anti-apoptotic function through inhibiting caspas-3. This anti-apoptotic function is expressed through inhibition of the depolarization of mitochondrial membrane potential and release of cytochrome c. By two-hybrid screening, we found that 6-16 protein interacts with calcium and integrin binding protein, CIB/KIP/Calmyrin (CIB), which interacts with presenilin 2, a protein involved in Alzheimers disease. These protein interactions possibly play a pivotal role in the regulation of apoptosis, for which further detailed analyses are need. These results overall indicate that 6-16 protein may have function as a cell survival protein by inhibiting mitochondrial-mediated apoptosis. 相似文献
12.
13.
PU.1 is one of key regulators of hematopoietic cell development, a tightly-regulated lineage-specific process. Here we provide the first evidence that PU.1 protein is cleaved into two fragments of 24 kDa and 16 kDa during apoptosis progression in leukemic cell lines and primary leukemic cells. Further experiments with specific capase-3 inhibitor Z-DEVD-fmk and the in vitro proteolytic system confirmed that PU.1 is a direct target of caspase-3. Using site-directed mutagenesis analyses, the aspartic acid residues at positions 97 and 151 of PU.1 protein were identified as capsase-3 target sites. More intriguingly, the suppression of PU.1 expression by small interfering RNAs (siRNAs) significantly inhibits DNA-damaging agents NSC606985 and etoposide-induced apoptosis in leukemic cells, together with the up-regulated expression of anti-apoptotic bcl-2 gene. These results would provide new insights for understanding the mechanism of PU.1 protein in hematopoiesis and leukemogenesis. 相似文献
14.
The effects of adrenocorticotropic hormones on murine CGI-105 gene expression were investigated in 3T3-L1 cells. Expression was markedly increased in differentiated cells and it was up-regulated 2-fold in cells induced to differentiate with dexamethasone. 相似文献
15.
To improve the existing human papillomavirus type 16 (HPV16) virus-like particle (VLP) preparation, the Drosophila inducible/secreted expression system, a highly efficient, economical method, was used to produce HPV16 VLPs. Drosophila Schneider-2 cells were cotransfected with pMT/BiP/V5-His expression vector containing the target gene encoding HPV16L1 protein without nucleus localization sequence and the selection vector pCoHygro plasmids at the ratio of 4:1. The stabled hygromycin-resistant cell line was obtained 1 month later, and the protein expression was induced by copper sulfate. The molecular mass of expressed HPV16L1 protein was 66 kDa, as revealed by SDS-PAGE, and confirmed by Western blot analysis. The yield of HPV16L1 protein was 0.554 mg per 1×107 cells. The characteristics of HPV16L1 protein were further analyzed by mouse erythrocyte hemagglutination assay, hemagglutination inhibition assay, and transmission electron microscopy. Results showed that the truncated protein was as biologically active as natural HPVL1 protein, inducing murine erythrocyte agglutination and VLP formation. These findings indicate that the Drosophila inducible/secreted expression system is promising as a convenient and economical method for the preparation of HPV16VLP vaccine. 相似文献
16.
Hamedi-Asl P Halabian R Bahmani P Mohammadipour M Mohammadzadeh M Roushandeh AM Jahanian-Najafabadi A Kuwahara Y Roudkenar MH 《Cell stress & chaperones》2012,17(2):181-190
The capacity of mesenchymal stem cells (MSCs) to survive and engraft in the target tissue may lead to promising therapeutic
effects. However, the fact that the majority of MSCs die during the first few days following transplantation complicates cell
therapy. Hence, it is necessary to strengthen the stem cells to withstand the rigors of the microenvironment to improve the
efficacy of cell therapy. In this study, we manipulated MSCs to express a cytoprotective factor, heme oxygenase-1 (HO-1),
to address this issue. Full-length cDNA of human HO-1 was isolated and cloned into TOPO vector by TOPO cloning reaction. Then,
the construct was ligated to gateway adapted adenovirus expression vector by LR recombination reaction. Afterwards, the recombinant
virus expressing HO-1 was produced in appropriate mammalian cell line and used to infect MSCs. The HO-1 engineered MSCs were
exposed to hypoxic and oxidative stress conditions followed by evaluation of the cells’ viability and apoptosis. Transient
expression of HO-1 was detected within MSCs. It was observed that HO-1 expression could protect MSCs against cell death and
the apoptosis triggered by hypoxic and oxidative stress conditions. The MSCs-HO-1 retained their ability to differentiate
into adipogenic, chondrogenic, or osteogenic lineages. These findings could be applied as a strategy for prevention of graft
cell death in MSCs-based cell therapy and is a good demonstration of how an understanding of cellular stress responses can
be used for practical applications. 相似文献
17.
Guixiang Sun Yanni Zhou Hongsheng Li Yingjia Guo Juan Shan Mengjuan Xia Youping Li Shengfu Li Dan Long Li Feng 《Journal of biomedical science》2013,20(1):100
Background
Hypoxia-inducible factor-1 alpha (HIF-1α) is one of the key regulators of hypoxia/ischemia. MicroRNA-494 (miR-494) had cardioprotective effects against ischemia/reperfusion (I/R)-induced injury, but its functional relationship with HIF-1α was unknown. This study was undertaken to determine if miR-494 was involved in the induction of HIF-1α.Results
Quantitative RT-PCR showed that miR-494 was up-regulated to peak after 4 hours of hypoxia in human liver cell line L02. To investigate the role of miR-494, cells were transfected with miR-494 mimic or miR-negative control, followed by incubation under normoxia or hypoxia. Our results indicated that overexpression of miR-494 significantly induced the expression of p-Akt, HIF-1α and HO-1 determined by qRT-PCR and western blot under normoxia and hypoxia, compared to negative control (p < 0.05). While treatment markedly abolished miR-494-inducing Akt activation, HIF-1α and HO-1 increase under both normoxic and hypoxic conditions (p < 0.05). Moreover, apoptosis detection using Annexin V indicated that overexpression of miR-494 significantly decreased hypoxia-induced apoptosis in L02 cells, compared to control (p < 0.05). MiR-494 overexpression also decreased caspase-3/7 activity by 1.27-fold under hypoxia in L02 cells. LY294002Conclusions
Overexpression of miR-494 upregulated HIF-1α expression through activating PI3K/Akt pathway under both normoxia and hypoxia, and had protective effects against hypoxia-induced apoptosis in L02 cells. Thus, these findings suggested that miR-494 might be a target of therapy for hepatic hypoxia/ischemia injury. 相似文献18.
19.
L1AD3 is a small cyclic synthetic peptide designed to resemble the first loop of a cobra venom cytotoxin. Instead of inducing membrane disruption similar to that caused by the parent toxin, L1AD3 promotes extensive and unusually rapid apoptosis in leukemic T-cells without making the plasma membrane permeable to small fluorescent dyes. Within 4 h, micromolar concentrations of L1AD3 almost totally inhibit thymidine incorporation, and ATP levels decrease significantly. By contrast, normal human white blood cells are not affected by L1AD3, nor is heart cell function affected by it. If L1AD3 kills by interacting with targets that are different from those of currently applied agents, this peptide, or a derivative of it, could become a useful adjunct for cancer chemotherapy. 相似文献
20.
Withanolide induces apoptosis in HL-60 leukemia cells via mitochondria mediated cytochrome c release and caspase activation 总被引:1,自引:0,他引:1
Senthil V Ramadevi S Venkatakrishnan V Giridharan P Lakshmi BS Vishwakarma RA Balakrishnan A 《Chemico-biological interactions》2007,167(1):19-30
The present study is on the growth inhibitory effect of Withania somnifera methanolic leaf extract and its active component, withanolide on HL-60 promyelocytic leukemia cells. The decrease in survival rate of HL-60 cells was noted to be associated with a time dependent decrease in the Bcl-2/Bax ratio, leading to up regulation of Bax. Both the crude leaf extract and the active component activated the apoptotic cascade through the cytochrome c release from mitochondria. The activation of caspase 9, caspase 8 and caspase 3 revealed that caspase was a key mediator in the apoptotic pathway. DNA fragmentation analysis revealed typical ladders as early as 12h indicative of caspase 3 role in the apoptotic pathway. Flow cytometry data demonstrated an increase of sub-G1 peak upon treatment by 51% at 24h, suggesting the induction of apoptotic cell death in HL-60 cells. 相似文献