首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insect parasitoids search for their hosts using a method that may be broken into three parts. First, they locate plants which may harbor their hosts, then they assess the quality of these plants to decide whether to search them further for hosts and, finally, if they decide to accept a plant for further search, they exploit the plant by searching for hosts and attacking them when they are found. We study the way that parasitoids assess plant quality by developing a mathematical model based on behavioral observations of foraging parasitoids that attack aphids which infest crucifers. Assessment of plants is based on the concentration of cues produced by hosts that inhabit them. Parasitoids are more likely to exploit plants on which more host cues are detected, and the willingness of a parasitoid to exploit a given plant depends on the quality of other plants that have been visited recently. Plants whose quality exceeds a certain threshold will be accepted for exploitation. The threshold for plant acceptance will change with the experience of the parasitoid, increasing when plants heavily infested with hosts are encountered, decreasing when uninfested plants are encountered. We analyze several rules that might describe how the acceptance threshold changes with parasitoid experience, and for each rule we show how the number of parasitoids willing to accept plants with various levels of infestation depends on the number of plants with various levels of infestation. We then consider different rules for exploitation of hosts on plants and find how the proportion of hosts attacked depends on host density. Received: 21 April 1998 / Accepted: 8 May 1998  相似文献   

2.
1. To maximise their reproductive success, the females of most parasitoids must not only forage for hosts but must also find suitable food sources. These may be nectar and pollen from plants, heamolymph from hosts and/or honeydew from homopterous insects such as aphids. 2. Under laboratory conditions, females of Cotesia vestalis, a larval parasitoid of the diamondback moth (Plutella xylostella) which does not feed on host blood, survived significantly longer when held with cruciferous plants infested with non‐host green peach aphids (Myzus persicae) than when held with only uninfested plants. 3. Naïve parasitoids exhibited no preference between aphid‐infested and uninfested plants in a dual‐choice test, but those that had been previously fed aphid honeydew significantly preferred aphid‐infested plants to uninfested ones. 4. These results suggest that parasitoids that do not use aphids as hosts have the potential ability to learn cues from aphid‐infested plants when foraging for food. This flexible foraging behaviour could allow them to increase their lifetime reproductive success.  相似文献   

3.
1. In a tritrophic interaction system consisting of plants, herbivores, and their parasitoids, chemicals released from plants after herbivory are known to play important roles for many female parasitoids to find their hosts efficiently. On the plant side, chemical information associated with herbivory can act as an indirect defence by attracting the natural enemies of the host herbivores. 2. However, mated and virgin females of haplodiploid parasitoids might not necessarily respond to such chemical cues in the same way. Since virgin females can produce only sons, they might refrain from searching for hosts to invest eggs until copulation, in order to produce both sexes. 3. Here, we investigated differential host‐searching behaviours shown by mated and virgin females in the solitary parasitoid wasp, Cotesia vestalis, in response to herbivory‐associated chemical information from cruciferous plants infested by their host larvae, Plutella xylostella. 4. Mated females showed a significantly higher flight preference for host‐infested plants over intact plants, while no preference was observed with virgin females. Mated females also showed more intensive antennal searching and ovipositor probing behaviours to leaf squares with wounds caused by hosts than did virgin females. Furthermore, mated females stayed longer in host patches with higher parasitism rates than virgin females. 5. These results indicate that mating status of C. vestalis females clearly influences their host‐searching behaviour in response to herbivory‐associated chemical information and patch exploitation. Female parasitoids seem to forage for hosts depending on their own physiological condition in a tritrophic system.  相似文献   

4.
1. In natural ecosystems, plants containing hosts for parasitoids are often embedded within heterogeneous plant communities. These plant communities surrounding host‐infested plants may influence the host‐finding ability of parasitoids. 2. A release‐recapture‐approach was used to examine whether the diversity and structural complexity of the community surrounding a host‐infested plant influences the aggregation behaviour of the leaf‐miner parasitoid Dacnusa sibirica Telenga and naturally occurring local leaf‐miner parasitoids. Released and locally present parasitoids were collected on potted Jacobaea vulgaris Gaertn.plants infested with the generalist leaf‐miner Chromatomyia syngenesiae Hardy. The plants were placed in experimentally established plant communities differing in plant diversity (1–9 species) and habitat complexity (bare ground, mown vegetation, and tall vegetation). Additionally, parasitoids were reared out from host mines on the trap plants. 3. Plant diversity did not influence the mean number of recaptured D. sibirica or captures of other locally present parasitoids but the number of recaptured parasitoids was influenced by habitat complexity. No D. sibirica parasitoids were recaptured in the bare ground plots or plots with mown vegetation. The mean number of recaptured D. sibirica generally increased with increasing complexity of the plant community, whereas locally present parasitoids were captured more frequently in communities with more bare ground. There was a unimodal relationship between the number of reared out parasitoids and diversity of the surrounding vegetation with the highest density of emerged parasitoids at intermediate diversity levels. 4. The present study adds to the thus far limited body of literature examining the aggregation behaviour of parasitoids in the field and suggests that the preference of parasitoids to aggregate in complex versus simple vegetation is association specific and thus depends on the parasitoid species as well as the identity of the plant community.  相似文献   

5.
Cotton produces insecticidal terpenoids that are induced by tissue-feeding herbivores. Damage by Heliothis virescens caterpillars increases the terpenoid content, which reduces the abundance of aphids. This effect is not evident in Bt-transgenic cotton, which is resistant to H. virescens. We determined whether induction of terpenoids by caterpillars influences the host quality of Aphis gossypii for the parasitoid Lysiphlebus testaceipes and whether this interaction is influenced by Bt cotton. The exposure of parasitoids to terpenoids was determined by quantifying terpenoids in the aphids. We detected several terpenoids in aphids and found a positive relationship between their concentrations in plants and aphids. When L. testaceipes was allowed to parasitize aphids on Bt and non-Bt cotton that was infested or uninfested with H. virescens, fewer parasitoid mummies were found on infested non-Bt than on Bt cotton. Important parasitoid life-table parameters, however, were not influenced by induced resistance following H. virescens infestation, or the Bt trait. Our study provides an example of a tritrophic indirect interaction web, where organisms are indirectly linked through changes in plant metabolites.  相似文献   

6.
Dispersal cages were used to investigate the effects of aphids and treatment with artificial honeydew on the leaving rate of searching females of the parasitoid Aphidius rhopalosiphi from groups of wheat plants. Parasitoids which flew away from groups of plants placed in the centre of a cage were trapped on the sides and roof of the cage and thus were prevented from returning to the plants. The positions of trapped parasitoids suggested their direction of flight when dispersing from the plants. Parasitoids increased their residence times on groups of plants in the presence of aphids and of artificial honeydew, but the rate of parasitism of the host Sitobion avenae was not raised by the presence of artificial honeydew under the experimental conditions used. The direction of flight taken by the majority of parasitoids suggested that they were leaving the plants in order to locate further plants nearby to continue searching rather than to terminate searching and disperse away from the area. The need to consider plant patch size in studies of parasitoid searching behaviour is stressed.  相似文献   

7.
The influence of plant architecture, host colony size, and host colony structure on the foraging behaviour of the aphid parasitoidAphidius funebris Mackauer (Hymenoptera: Aphidiidae) was investigated using a factorial experimental design. The factorial design involved releasing individual parasitoid females in aphid colonies consisting of either 10 or 20 individuals ofUroleucon jaceae L. (Homoptera: Aphididae) of either only larval instar L3 or a mixture of host instars, both on unmanipulated plants and on plants that had all leaves adjacent to the colony removed. Interactions between the parasitoid and its host were recorded until the parasitoid had left the plant. The time females spent on the host plant and the number of eggs laid varied greatly among females. Host colony size significantly affected patch residence time and the number of contacts between parasitoids and aphids. Plant architecture influenced the time-budget of the parasitoids which used leaves adjacent to the aphid colony for attacking aphids. Female oviposition rate was higher on unmanipulated plants than on manipulated plants. No further significant treatment effects on patch residence time, the number of contacts, attacks or ovipositions were found. Oviposition success ofA. funebris was influenced by instar-specific host behaviour. Several rules-of-thumb proposed by foraging theory did not account for parasitoid patch-leaving behaviour.  相似文献   

8.
In studies of foraging behaviour in a multitrophic context, the fourth trophic level has generally been ignored. We used four aphid hyperparasitoid species: Dendrocerus carpenteri (Curtis) (Hymenoptera: Megaspilidae), Asaphes suspensus Walker (Hymenoptera: Pteromalidae), Alloxysta victrix (Westwood) (Hymenoptera: Alloxystidae) and Syrphophagus aphidivorus (Mayr) (Hymenoptera: Encyrtidae), to correlate their response to different cues with their ecological attributes such as host range and host stage. In addition, we compared our results with studies of primary parasitoids on the same plant–herbivore system. First, the olfactory response of females was tested in a Y‐tube olfactometer (single choice: plant, aphid, honeydew, parasitised aphid, aphid mummy, or virgin female parasitoid; dual choice: clean plant, plant with aphids, or plant–host complex). Second, their foraging behaviour was described on plants with different stimuli (honeydew, aphids, parasitised aphids, and aphid mummies). The results indicated that olfactory cues are probably not essential cues for hyperparasitoid females. In foraging behaviour on the plant, all species prolonged their total visit time and search time as compared to the control treatment (clean plant). Only A. victrix did not react to the honeydew. Oviposition in mummies prolonged the total visit time because of the long handling time, but the effect of this behaviour on search time could not be determined. No clear correlation between foraging behaviour and host stage or host range was found. In contrast to specialised primary aphid parasitoids that have strong fixed responses to specific kairomones and herbivore‐induced synomones, more generalist aphid hyperparasitoids seem to depend less on volatile olfactory stimuli, but show similarities with primary parasitoids in their use of contact cues while searching on a plant.  相似文献   

9.
Evolutionary ecological theory predicts that among insect herbivores ‘mothers know best’ when selecting a plant to deposit their eggs. Host‐plant selection is usually studied for the adult stage exclusively, although mothers have not always been reported to know best. Here, we investigate the host‐plant selection behaviour of caterpillars, which are considered to be completely dependent on their mothers’ choices. We use a system that offers a biologically relevant framework to compare the degree of participation of adults and juveniles in host‐plant selection. Our results show that neonate Pieris brassicae caterpillars can actively discriminate between conspecific Brassica oleracea plants with or without aphid (Brevicoryne brassicae) infestation. The caterpillars prefer aphid‐infested plants on which their performance is significantly better, while their mothers, the female butterflies, did not discriminate. We compared caterpillar preferences of individuals released individually or in groups, because P. brassicae is a gregarious species. We found that the strength of the preference for aphid‐infested plants was not affected by the degree of grouping. Caterpillar choices were made before contact with the plants, indicating that plant odours were used for orientation. However, the composition of the volatile blends emitted by plants with and without aphids did not show strong differences. Similarly, like with aphid‐infested plants, plants treated with salicylic acid (SA) were also preferred by neonates over untreated control, indicating that the infestation by aphids may have rendered the plants more attractive to the neonates via changes related to interference with JA‐signaling. The main parasitoid of the caterpillars did not discriminate between plants with hosts in the presence or absence of aphids, showing that top–down forces do not influence the relative suitability of the different food sources for the caterpillars. These data are discussed in the context of mothers and offspring having both important, but different roles in the process of host‐plant selection. Butterflies may select the plant species patch, while their offspring adjust and/or update the choices of their mothers at the local scale, within the micro‐habitat selected by the adult.  相似文献   

10.
1. Foraging decisions of parasitoids are influenced by host density via density‐mediated indirect interactions. However, in the parasitoid's environment, non‐suitable herbivores are also present. These non‐hosts also occur in different densities, which can affect a parasitoid's foraging behaviour. 2. The influence of non‐host densities can be expressed during the first phase of the foraging process, when parasitoids use plant volatiles to locate plants infested by their host. They may also play a role during the second phase, when parasitoids use infochemicals from the host and plant to locate, recognise and accept the host. 3. By using laboratory and field setups, it was studied whether the density of non‐host herbivores influences these two phases of the foraging behaviour of the parasitoid Cotesia glomerata as well as the parasitoid's efficiency to find its host, Pieris brassicae caterpillars. 4. The findings show that a high non‐host density, regardless of the species used, negatively affected parasitoid preference for host‐infested plants, but that the behaviour on the plant and the total host‐finding efficiency of the parasitoids were not influenced by non‐host density. 5. These results are discussed in the context of density‐mediated indirect interactions.  相似文献   

11.
Aphidius colemani Viereck, emerging from Myzus persicae (Sulzer) mummies on the Brussels sprout cultivar ‘Bedford Winter Harvest’ (BWH), responds positively in the olfactometer to the odour of that cultivar in comparison with air. Responses to the odours of other sprout cultivars, cabbage and broad bean could be explained by the humidity from plant leaves. In a choice between BWH and other sprout cultivars, the BWH odour is preferred, or that of cv. ‘Red Delicious’ (RD) if the parasitoids are reared on RD. This confirms previous work showing that the secondary chemistry of a cultivar is learnt from the mummy cuticle during emergence. Adults emerging from pupae excised from the mummy show a similar but less pronounced preference. Parasitoids developing in aphids on an artificial diet do not discriminate between the odours of BWH and RD, unless allowed contact with a mummy from the same cultivar that the mother develops on. This suggests a cultivar‐specific maternal cue. This cue is speculated to consist of a small amount of the secondary chemistry (probably glucosinolates in the present study) that are left in or on the egg at oviposition, which subsequently induces enzymes that detoxify plant‐derived toxins in the aphid host. Indeed, when parasitoids emerging from diet‐reared aphids are released on aphid‐infested sprout plants, fewer mummies are produced than by parasitoids emerging from mummies of plant‐reared aphids or from excised pupae. Only parasitoids that emerge from mummies of plant‐reared aphids prefer the cultivar of origin as shown by the number of mummified hosts.  相似文献   

12.
Extensive research has been conducted to reveal how species diversity affects ecosystem functions and services. Yet, consequences of diversity loss for ecosystems as a whole as well as for single community members are still difficult to predict. Arthropod communities typically are species‐rich, and their species interactions, such as those between herbivores and their predators or parasitoids, may be particularly sensitive to changes in community composition. Parasitoids forage for herbivorous hosts by using herbivore‐induced plant volatiles (indirect cues) and cues produced by their host (direct cues). However, in addition to hosts, non‐suitable herbivores are present in a parasitoid's environment which may complicate the foraging process for the parasitoid. Therefore, ecosystem changes in the diversity of herbivores may affect the foraging efficiency of parasitoids. The effect of herbivore diversity may be mediated by either species numbers per se, by specific species traits, or by both. To investigate how diversity and identity of non‐host herbivores influence the behaviour of parasitoids, we created environments with different levels of non‐host diversity. On individual plants in these environments, we complemented host herbivores with 1–4 non‐host herbivore species. We subsequently studied the behaviour of the gregarious endoparasitoid Cotesia glomerata L. (Hymenoptera: Braconidae) while foraging for its gregarious host Pieris brassicae L. (Lepidoptera: Pieridae). Neither non‐host species diversity nor non‐host identity influenced the preference of the parasitoid for herbivore‐infested plants. However, after landing on the plant, non‐host species identity did affect parasitoid behaviour, whereas non‐host diversity did not. One of the non‐host species, Trichoplusia ni Hübner (Lepidoptera: Noctuidae), reduced the time the parasitoid spent on the plant as well as the number of hosts it parasitized. We conclude that non‐host herbivore species identity has a larger influence on C. glomerata foraging behaviour than non‐host species diversity. Our study shows the importance of species identity over species diversity in a multitrophic interaction of plants, herbivores, and parasitoids.  相似文献   

13.
1. Changing plant composition in a community can have profound consequences for herbivore and parasitoid population dynamics. To understand such effects, studies are needed that unravel the underlying behavioural decisions determining the responses of parasitoids to complex habitats. 2. The searching behaviour of the parasitoid Diadegma semiclausum was followed in environments with different plant species composition. In the middle of these environments, two Brassica oleracea plants infested by the host Plutella xylostella were placed. The control set-up contained B. oleracea plants only. In the more complex set-ups, B. oleracea plants were interspersed by either Sinapis alba or Hordeum vulgare. 3. Parasitoids did not find the first host-infested plant with the same speed in the different environments. Sinapis alba plants were preferentially searched by parasitoids, resulting in fewer initial host encounters, possibly creating a dynamic enemy-free space for the host on adjacent B. oleracea plants. In set-ups with H. vulgare, also, fewer initial host encounters were found, but in this case plant structure was more likely than infochemicals to interfere with the searching behaviour of parasitoids. 4. On discovering a host-infested plant, parasitoids located the second host-infested plant with equal speed, demonstrating the effect of experience on time allocation. Further encounters with host-infested plants that had already been visited decreased residence times and increased the tendency to leave the environment. 5. Due to the intensive search of S. alba plants, hosts were encountered at lower rates here than in the other set-ups. However, because parasitoids left the set-up with S. alba last, the same number of hosts were encountered as in the other treatments. 6. Plant composition of a community influences the distribution of parasitoid attacks via its effects on arrival and leaving tendencies. Foraging experiences can reduce or increase the importance of enemy-free space for hosts on less attractive plants.  相似文献   

14.
When attacked by herbivores, plants emit volatiles to attract parasitoids and predators of herbivores. However, our understanding of the effect of plant volatiles on the subsequent behaviour of conspecific parasitoids when herbivores on plants are parasitized is limited. In this study, rice plants were infested with gravid females of the brown planthopper (BPH) Nilaparvata lugens for 24 hr followed by another 24 hr in which the BPH eggs on plants were permitted to be parasitized by their egg parasitoid, Anagrus nilaparvatae; volatiles from rice plants that underwent such treatment were less attractive to subsequent conspecific parasitoids compared to the volatiles from plants infested with gravid BPH females alone. Chemical analysis revealed that levels of JA and JA-Ile as well as of four volatile compounds—linalool, MeSA, α-zingiberene and an unknown compound—from plants infested with BPH and parasitized by wasps were significantly higher than levels of these compounds from BPH-infested plants. Laboratory and field bioassays revealed that one of the four increased chemicals—α-zingiberene—reduced the plant's attractiveness to the parasitoid. These results suggest that host plants can fine-tune their volatiles to help egg parasitoids distinguish host habitats with parasitized hosts from those without.  相似文献   

15.
Abstract:  Aphid parasitoids have to cope with a range of different life-history features of their hosts in terms of size at maturity, abundance, ant-attendance, host specificity, host alternation and many more. Their hosts often show large fluctuations in numbers during a season or in different habitats and the plants they live on strongly shape their performance. Plant characteristics (i.e. life form, ecological strategy, light exposure , nutrient provision, habitat type) also affects the environment of aphids and their associated parasitoids. Using data restricted to Central European aphids and their primary parasitoids, effort is directed to identifying significant ecological variables, which might influence the diversity of parasitoid assemblages in aphids. Most parasitoid species were reported from the Aphidini and Macrosiphini. Aphids, which are very abundant, host-alternating, polyphagous and live on grasses appear to support larger parasitoid assemblages than those which are less abundant, non-host-alternating, mono- or oligophagous and feed on trees or herbs. Obligate myrmecophiles support fewer parasitoids than facultative myrmecophiles. Different degrees of mobility, the production of wax wool and alate adults did not have significant effects on parasitoid numbers. Discriminant function analysis using different degrees of ant attendance as dependant variable indicated that aphid specific characters and the number of primary parasitoids contributed most to the separation of the groups. Plant specific characters seem to contribute little to the development of different degrees of myrmecophily and parasitization patterns.  相似文献   

16.
The opposing effects of attraction to host-derived kairomones and repellency from the pyrethroid insecticide deltamethrin were investigated with aphid parasitoids from the genus Aphidius (Hymenoptera: Aphidiinae). The spatial distribution of female parasitoids was recorded in a series of experiments conducted in a small glasshouse containing wheat plants either infested with cereal aphids, Sitobion avenae (F.) (Homoptera: Aphididae), uninfested or treated with the recommended field concentration of deltamethrin. The number of parasitoids per plant were counted at 0.5 h, 1 h and then at one hourly intervals up to 8 h after release. Parasitoids showed a strong aggregation response to aphid-infested plants compared to adjacent uninfested plants. With the introduction of insecticidetreated plants around the aphid-infested plants, parasitoids showed a greater tendency to disperse away, resulting in fewer parasitoids on plants and significantly lower rates of aphid parasitism. The degree of aphid fall-off from plants was a good indicator of parasitoid foraging activity. In field studies, using sticky traps to measure the activity of parasitoids in plots sprayed with water, deltamethrin and/or an artificial honeydew solution, repellent properties were evident for up to 2 days after application. The attraction/arrestment stimuli associated with the honeydew solution were sufficient for parasitoids to continue searching insecticide-treated areas. The implications of these findings for parasitoids searching crops contaminated with aphid-derived kairomones and insecticides are discussed.  相似文献   

17.
1. Two field experiments were carried out to examine the role of patch size, host density, and complexity of the surrounding habitat, on the foraging behaviour of the parasitoid wasp Cotesia glomerata in the field. 2. First, released parasitoids were recaptured on patches of one or four Brassica nigra plants, each containing 10 hosts that were placed in a mown grassland area. Recaptures of females were higher than males, and males and females aggregated at patches with four plants. 3. In experiment 2, plants containing 0, 5 or 10 hosts were placed in unmown grassland plots that differed in plant species composition, on bare soil, and on mown grassland. Very low numbers of parasitoids were recaptured in the vegetated plots, while high numbers of parasitoids were recaptured on plants placed on bare soil or in mown grassland. Recaptures were higher on plants on bare soil than on mown grassland, and highest on plants containing 10 hosts. The host density effect was significantly more apparent in mown grassland than on bare soil. 4. Cotesia glomerata responds in an aggregative way to host density in the field. However, host location success is determined mostly by habitat characteristics, and stronger host or host‐plant cues are required when habitat complexity increases.  相似文献   

18.
Delpuech JM  Leger L 《EcoHealth》2011,8(2):190-198
Parasitoid species are key species because they regulate numerous insect species, including pests. An efficient infestation of hosts is critical to the development of parasitoid populations. In this article, we investigate the effects of the widely used insecticide chlorpyrifos on the exploitation of a patch of host by a parasitoid, Trichogramma brassicae. We show that chlorpyrifos increased the efficiency of parasitoid females in the infestation of the first host egg by decreasing its super-parasitization. Except for the first egg, all infested eggs were infested only once by both control and treated females; therefore, the insecticide did not impede the detection of a host that had already been infested. We did find that the insecticide affected the mode of rejection of infested eggs. At the beginning of the exploitation of the patch, females exposed to the insecticide made more antennal rejections than controls but eventually made more ovipositor rejections. These results suggest that the insecticide initially stimulated the antennal perception of the infested host but finally led to the saturation of this perception. Parasitoids compensated for this loss of antennal perception via ovipositor perception of infested eggs. This switch of behavior corresponds to a decrease in efficiency, as it is much more time consuming; therefore, females exposed to the insecticide had to stay longer on the patch for an equal rate of exploitation relative to controls. The infestation of host eggs is a crucial behavior for parasitoids, enabling their reproduction and the development of their species. By decreasing the antennal recognition of infested eggs, chlorpyrifos continues to be detrimental even when parasitoids survive exposure.  相似文献   

19.
Multiple strategies are being developed for pest management of the soybean aphid, Aphis glycines Matsumura; however, there has been little published research thus far to determine how such strategies may influence each other, thereby complicating their potential effectiveness. A susceptible soybean (Glycine max L.) variety without the Rag1 gene and a near isogenic resistant soybean variety with the Rag1 gene were evaluated in the laboratory for their effects on the fitness of the soybean aphid parasitoid, Binodoxys communis (Gahan). The presence or absence of the Rag1 gene was verified by quantifying soybean aphid growth. To test for fitness effects, parasitoids were allowed to attack soybean aphids on either a susceptible or resistant plant for 24 h and then aphids were kept on the same plant throughout parasitoid development. Parasitoid fitness was measured by mummy and adult parasitoid production, adult parasitoid emergence, development time, and adult size. Parasitoids that attacked soybean aphids on susceptible plants produced more mummies, more adult parasitoids, and had a higher emergence rate compared with those on resistant plants. Adult parasitoids that emerged from resistant plants took 1 d longer and were smaller compared with those from susceptible plants. This study suggests that biological control by B. communis may be compromised when host plant resistance is widely used for pest management of soybean aphids.  相似文献   

20.
Chemical information influences the behaviour of many animals, thus affecting species interactions. Many animals forage for resources that are heterogeneously distributed in space and time, and have evolved foraging behaviour that utilizes information related to these resources. Herbivore‐induced plant volatiles (HIPVs), emitted by plants upon herbivore attack, provide information on herbivory to various animal species, including parasitoids. Little is known about the spatial scale at which plants attract parasitoids via HIPVs under field conditions and how intraspecific variation in HIPV emission affects this spatial scale. Here, we investigated the spatial scale of parasitoid attraction to two cabbage accessions that differ in relative preference of the parasitoid Cotesia glomerata when plants were damaged by Pieris brassicae caterpillars. Parasitoids were released in a field experiment with plants at distances of up to 60 m from the release site using intervals between plants of 10 or 20 m to assess parasitism rates over time and distance. Additionally, we observed host‐location behaviour of parasitoids in detail in a semi‐field tent experiment with plant spacing up to 8 m. Plant accession strongly affected successful host location in field set‐ups with 10 or 20 m intervals between plants. In the semi‐field set‐up, plant finding success by parasitoids decreased with increasing plant spacing, differed between plant accessions, and was higher for host‐infested plants than for uninfested plants. We demonstrate that parasitoids can be attracted to herbivore‐infested plants over large distances (10 m or 20 m) in the field, and that stronger plant attractiveness via HIPVs increases this distance (up to at least 20 m). Our study indicates that variation in plant traits can affect attraction distance, movement patterns of parasitoids, and ultimately spatial patterns of plant–insect interactions. It is therefore important to consider plant‐trait variation in HIPVs when studying animal foraging behaviour and multi‐trophic interactions in a spatial context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号