首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 699 毫秒
1.
Quadruplex structures that result from stacking of guanine quartets in nucleic acids possess such thermodynamic stability that their resolution in vivo is likely to require specific recognition by specialized enzymes. We previously identified the major tetramolecular quadruplex DNA resolving activity in HeLa cell lysates as the gene product of DHX36 (Vaughn, J. P., Creacy, S. D., Routh, E. D., Joyner-Butt, C., Jenkins, G. S., Pauli, S., Nagamine, Y., and Akman, S. A. (2005) J. Biol Chem. 280, 38117-38120), naming the enzyme G4 Resolvase 1 (G4R1). G4R1 is also known as RHAU, an RNA helicase associated with the AU-rich sequence of mRNAs. We now show that G4R1/RHAU binds to and resolves tetramolecular RNA quadruplex as well as tetramolecular DNA quadruplex structures. The apparent K(d) values of G4R1/RHAU for tetramolecular RNA quadruplex and tetramolecular DNA quadruplex were exceptionally low: 39 +/- 6 and 77 +/- 6 Pm, respectively, as measured by gel mobility shift assay. In competition studies tetramolecular RNA quadruplex structures inhibited tetramolecular DNA quadruplex structure resolution by G4R1/RHAU more efficiently than tetramolecular DNA quadruplex structures inhibited tetramolecular RNA quadruplex structure resolution. Down-regulation of G4R1/RHAU in HeLa T-REx cells by doxycycline-inducible short hairpin RNA caused an 8-fold loss of RNA and DNA tetramolecular quadruplex resolution, consistent with G4R1/RHAU representing the major tetramolecular quadruplex helicase activity for both RNA and DNA structures in HeLa cells. This study demonstrates for the first time the RNA quadruplex resolving enzymatic activity associated with G4R1/RHAU and its exceptional binding affinity, suggesting a potential novel role for G4R1/RHAU in targeting in vivo RNA quadruplex structures.  相似文献   

2.
It has been previously shown that the DHX36 gene product, G4R1/RHAU, tightly binds tetramolecular G4-DNA with high affinity and resolves these structures into single strands. Here, we test the ability of G4R1/RHAU to bind and unwind unimolecular G4-DNA. Gel mobility shift assays were used to measure the binding affinity of G4R1/RHAU for unimolecular G4-DNA-formed sequences from the Zic1 gene and the c-Myc promoter. Extremely tight binding produced apparent Kd’s of 6, 3 and 4 pM for two Zic1 G4-DNAs and a c-Myc G4-DNA, respectively. The low enzyme concentrations required for measuring these Kd’s limit the precision of their determination to upper boundary estimates. Similar tight binding was not observed in control non-G4 forming DNA sequences or in single-stranded DNA having guanine-rich runs capable of forming tetramolecular G4-DNA. Using a peptide nucleic acid (PNA) trap assay, we show that G4R1/RHAU catalyzes unwinding of unimolecular Zic1 G4-DNA into an unstructured state capable of hybridizing to a complementary PNA. Binding was independent of adenosine triphosphate (ATP), but the PNA trap assay showed that unwinding of G4-DNA was ATP dependent. Competition studies indicated that unimolecular Zic1 and c-Myc G4-DNA structures inhibit G4R1/RHAU-catalyzed resolution of tetramolecular G4-DNA. This report provides evidence that G4R1/RHAU tightly binds and unwinds unimolecular G4-DNA structures.  相似文献   

3.
DNA methylase from HeLa cell nuclei.   总被引:10,自引:10,他引:0       下载免费PDF全文
A DNA methylase has been purified 270-fold from HeLa cell nuclei by chromatography on DEAE-cellulose, phosphocellulose, and hydroxyapatite. The enzyme transfers methyl groups from S-adenosyl-L-methionine to cytosine residues in DNA. The sole product of the reaction has been identified as 5-methylcytosine. The enzyme is able to methylate homologous (HeLa) DNA, although to a lesser extent than heterologous DNA. This may be due to incomplete methylation of HeLa DNA synthesized in vivo. The HeLa enzyme can methylate single-stranded DNA, and does so to an extent three times greater than that of the corresponding double-stranded DNA. In single-stranded M. luteus DNA, at least 2.4% of the cytosine residues can be methylated in vitro by the enzyme. The enzyme also can methylate poly (dG-dC-dG-dC) and poly (dG, dC). Bilateral nearest neighbors to the 5-methylcytosine have been determined with M. luteus DNA in vitro and HeLa DNA in vivo. The 5' neighbor can be either G or C while the 3' neighbor is always G and this sequence is, thus, p(G/C)pmCpG.  相似文献   

4.
When circular recombinant plasmids containing adeno-associated virus (AAV) DNA sequences are transfected into human cells, the AAV provirus is rescued. Using these circular AAV plasmids as substrates, we isolated an enzyme fraction from HeLa cell nuclear extracts that excises intact AAV DNA in vitro from vector DNA and produces linear DNA products. The recognition signal for the enzyme is a polypurine-polypyrimidine sequence which is at least 9 residues long and rich in G.C base pairs. Such sequences are present in AAV recombinant plasmids as part of the first 15 base pairs of the AAV terminal repeat and in some cases as the result of cloning the AAV genome by G.C tailing. The isolated enzyme fraction does not have significant endonucleolytic activity on single-stranded or double-stranded DNA. Plasmid DNA that is transfected into tissue culture cells is cleaved in vivo to produce a pattern of DNA fragments similar to that seen with purified enzyme in vitro. The activity has been called endo R for rescue, and its behavior suggests that it may have a role in recombination of cellular chromosomes.  相似文献   

5.
Deoxycytidine deaminase enzyme activity was reduced in lysates of human leukemic THP1 cells 24 h after transfection with siRNA designed to inhibit cell synthesis of heat shock protein 70 (Hsp70)1a and Hsp701b. The cytidine deaminase enzyme activity from the cell lysates was purified from an affinity column which contained bound single-stranded oligodeoxycytidylic acid. Deficient enzyme activity in certain elution fractions from the siRNA-transfected cells was restored by including recombinant HSP 70 in the assays. Enzyme activity in some other fractions was increased after siRNA transfection. Activation-induced cytidine deaminase (AID) is a central factor in the immune response. A more specific assay for AID was used to study the influence of Hsp70 on AID activity. Unlike Hsp70's ability to stimulate certain enzymes of DNA base excision repair and other cytidine deaminases, it had little effect on AID activity in vitro, or was weakly inhibitory.  相似文献   

6.
DHX36解旋酶(DEAH-box helicase 36)在生物体内广泛存在,可作为外源核酸传感器广泛参与机体免疫反应,因其对G-四链体具有高度亲和性和解旋活性而备受关注。目前已报道了3个物种DHX36解旋酶的三维结构,但其酶学活性的保守性研究鲜见报道。本文以哺乳动物野猪(Sus scrofa)DHX36解旋酶(SsDHX36)为研究对象,通过生物化学与生物物理研究技术系统研究了其酶学性质,并对比其与低等无脊椎动物黑腹果蝇(Drosophila melanogaster)DHX36解旋酶(DmDHX36)的活性,探究DHX36在物种间的功能保守性。本研究通过原核表达系统,分离纯化得到了纯度大于95%的SsDHX36解旋酶;利用荧光偏振和快速停留技术得到SsDHX36的最佳酶学反应条件,发现SsDHX36对G4 DNA具有平行构型的亲和选择性,对富含鸟嘌呤的ssDNA具有结合和解旋的底物偏好性;结合单分子荧光共振能量转移技术对SsDHX36和DmDHX36进行活性比较,发现两者与G4 DNA结合的构型选择性和对富含鸟嘌呤DNA的底物偏好性是保守的。但两者对不同序列长度ssDNA的亲和性...  相似文献   

7.
The herpes simplex virus 1 (HSV-1) UL42 protein, one of seven herpes-encoded polypeptides that are required for the replication of the HSV-1 genome, is found in a 1:1 complex with the HSV-1 DNA polymerase (Crute, J. J., and Lehman, I. R. (1989) J. Biol. Chem. 264, 19266-19270). To obtain herpes DNA polymerase free of UL42 protein, we have cloned and overexpressed the Pol gene in a recombinant baculovirus vector and purified the recombinant DNA polymerase to near homogeneity. Replication of singly primed M13mp18 single-stranded DNA by the recombinant enzyme in the presence of the herpes encoded single-stranded DNA-binding protein ICP8 yields in addition to some full-length product a distribution of intermediate length products by a quasi-processive mode of deoxynucleotide polymerization. Addition of the purified UL42 protein results in completely processive polymerization and the generation of full-length products. Similar processivity is observed with the HSV-1 DNA polymerase purified from herpes-infected Vero cells. Processive DNA replication by the DNA polymerase isolated from HSV-1-infected Vero cells or the recombinant DNA polymerase-UL42 protein complex requires that the single-stranded DNA be coated with saturating levels of ICP8. ICP8 which binds single-stranded DNA in a highly cooperative manner is presumably required to melt out regions of secondary structure in the single-stranded DNA template, thereby potentiating the processivity enhancing action of the UL42 protein.  相似文献   

8.
Although much is known about the multiple mechanisms which induce apoptosis, comparatively little is understood concerning the execution phase of apoptosis and the mechanism(s) of cell killing. Several reports have demonstrated that cellular translation is shut off during apoptosis; however, details of the mechanism of translation inhibition are lacking. Translation initiation factor 4G (eIF4G) is a crucial protein required for binding cellular mRNA to ribosomes and is known to be cleaved as the central part of the mechanism of host translation shutoff exerted by several animal viruses. Treatment of HeLa cells with the apoptosis inducers cisplatin and etoposide resulted in cleavage of eIF4G, and the extent of its cleavage correlated with the onset and extent of observed inhibition of cellular translation. The eIF4G-specific cleavage activity could be measured in cell lysates in vitro and was inhibited by the caspase inhibitor Ac-DEVD-CHO at nanomolar concentrations. A combination of in vivo and in vitro inhibitor studies suggest the involvement of one or more caspases in the activation and execution of eIF4G cleavage. Furthermore recombinant human caspase 3 was expressed in bacteria, and when incubated with HeLa cell lysates, was shown to produce the same eIF4G cleavage products as those observed in apoptotic cells. In addition, purified caspase 3 caused cleavage of purified eIF4G, demonstrating that eIF4G could serve as a substrate for caspase 3. Taken together, these data suggest that cellular translation is specifically inhibited during apoptosis by a mechanism involving cleavage of eIF4G, an event dependent on caspase activity.  相似文献   

9.
Sung JS  Mosbaugh DW 《Biochemistry》2000,39(33):10224-10235
Escherichia coli double-strand uracil-DNA glycosylase (Dug) was purified to apparent homogeneity as both a native and recombinant protein. The molecular weight of recombinant Dug was 18 670, as determined by matrix-assisted laser desorption-ionization mass spectrometry. Dug was active on duplex oligonucleotides (34-mers) that contained site-specific U.G, U.A, ethenoC.G, and ethenoC.A targets; however, activity was not detected on DNA containing a T.G mispair or single-stranded DNA containing either a site-specific uracil or ethenoC residue. One of the distinctive characteristics of Dug was that the purified enzyme excised a near stoichiometric amount of uracil from U.G-containing oligonucleotide substrate. Electrophoretic mobility shift assays revealed that the lack of turnover was the result of strong binding by Dug to the reaction product apyrimidinic-site (AP) DNA. Addition of E. coli endonuclease IV stimulated Dug activity by enhancing the rate and extent of uracil excision by promoting dissociation of Dug from the AP. G-containing 34-mer. Catalytically active endonuclease IV was apparently required to mediate Dug turnover, since the addition of 5 mM EDTA mitigated the effect. Further support for this interpretation came from the observations that Dug preferentially bound 34-mer containing an AP.G target, while binding was not observed on a substrate incised 5' to the AP-site. We also investigated whether Dug could initiate a uracil-mediated base excision repair pathway in E. coli NR8052 cell extracts using M13mp2op14 DNA (form I) containing a site-specific U.G mispair. Analysis of reaction products revealed a time dependent appearance of repaired form I DNA; addition of purified Dug to the cell extract stimulated the rate of repair.  相似文献   

10.
11.
A mismatch-binding protein has been purified an estimated 4500-fold from HeLa nuclear extracts using four different chromatographic steps. Two polypeptides of apparent molecular weight of 160,000 and 100,000 were present in the final affinity-purified fraction as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Partial proteolytic clipping of the protein-DNA complexes visualized after UV treatment indicated that the 100-kDa polypeptide is most likely a degradation product of the 160-kDa polypeptide. UV cross-linking experiments have shown that both these polypeptides bind specifically to oligonucleotide duplexes containing G/T mismatches. Direct DNA binding studies and band-shift competition assays showed that although the mismatch-binding protein binds with highest affinity to oligonucleotides containing G/T mismatches, it is also capable of binding to oligonucleotides containing other mispairs. The purified protein has an associated Mg(2+)-dependent ATPase activity, which is markedly enhanced in the presence of single-stranded DNA. A helicase capable of unwinding a 34-mer oligonucleotide, annealed to a complementary sequence in single-stranded M13, also copurified with the mismatch-binding protein. This reaction occurs in an ATP- and magnesium-dependent manner.  相似文献   

12.
The TOP3 gene of the yeast Saccharomyces cerevisiae was postulated to encode a DNA topoisomerase, based on its sequence homology to Escherichia coli DNA topoisomerase I and the suppression of the poor growth phenotype of top3 mutants by the expression of the E. coli enzyme (Wallis, J.W., Chrebet, G., Brodsky, G., Golfe, M., and Rothstein, R. (1989) Cell 58, 409-419). We have purified the yeast TOP3 gene product to near homogeneity as a 74-kDA protein from yeast cells lacking DNA topoisomerase I and overexpressing a plasmid-borne TOP3 gene linked to a phosphate-regulated yeast PHO5 gene promoter. The purified protein possesses a distinct DNA topoisomerase activity: similar to E. coli DNA topoisomerases I and III, it partially relaxes negatively but not positively supercoiled DNA. Several experiments, including the use of a negatively supercoiled heteroduplex DNA containing a 29-nucleotide single-stranded loop, indicate that the activity has a strong preference for single-stranded DNA. A protein-DNA covalent complex in which the 74-kDa protein is linked to a 5' DNA phosphoryl group has been identified, and the nucleotide sequences of 30 sites of DNA-protein covalent complex formation have been determined. These sequences differ from those recognized by E. coli DNA topoisomerase I but resemble those recognized by E. coli DNA topoisomerase III. Based on these results, the yeast TOP3 gene product can formally be termed S. cerevisiae DNA topoisomerase III. Analysis of supercoiling of intracellular yeast plasmids in various DNA topoisomerase mutants indicates that yeast DNA topoisomerase III has at most a weak activity in relaxing negatively supercoiled double-stranded DNA in vivo, in accordance with the characteristics of the purified enzyme.  相似文献   

13.
14.
15.
A single-stranded DNA (ssDNA)-binding protein (SSB) that binds to specific upstream sequences of alcohol oxidase (AOX1) promoter of the methylotrophic yeast Pichia pastoris has been isolated and identified as zeta crystallin (ZTA1). The cDNA encoding P.pastoris ZTA1 (PpZTA1) was cloned into an Escherichia coli expression vector, the recombinant PpZTA1 was expressed and purified from E.coli cell lysates. The DNA-binding properties of recombinant PpZTA1 are identical to those of the SSB present in P.pastoris cell lysates. PpZTA1 binds to ssDNA sequences >24 nt and its DNA-binding activity is abolished by NADPH. This is the first report on the characterization of DNA-binding properties of a yeast ZTA1.  相似文献   

16.
以内生多粘类芽胞杆菌EJS-3基因组DNA为模板,PCR扩增PPFE-I基因,并克隆到pMD19-T载体上,构建克隆载体pMD-PPFE-I,经测序正确后,将PPFE-I基因克隆至表达载体pET-DsbA上构建重组表达质粒pET-DsbA/PPFE-I,将其转化至E. coli BL21(DE3),在IPTG诱导下实现了融合蛋白DsbA-PPFE-I的表达,表达产物酶活性达228 IU/mL。表达产物用SDS-PAGE和Western blotting进行鉴定。SDS-PAGE电泳检测表明融合蛋白主要以可溶形式表达,占菌体总蛋白的18.4%。Western blotting结果表明在相应分子量处有一条特异性条带,证实该蛋白为DsbA-PPFE-I融合蛋白。表达产物通过Ni亲和柱、凝血酶酶切及Sephadex G-100等步骤进行分离纯化,并用 MALDI-TOF 质谱对重组酶进行了鉴定。纯化后的表达产物在纤维蛋白平板上表现出明显的纤溶活性。  相似文献   

17.
A protein complex which specifically complements defects of XP-C cell extracts in vitro was previously purified to near homogeneity from HeLa cells. The complex consists of two tightly associated proteins: the XPC gene product and HHR23B, one of two human homologs of the Saccharomyces cerevisiae repair gene product Rad23 (Masutani et al., EMBO J. 13:1831-1843, 1994). To elucidate the roles of these proteins in "genome-overall" repair, we expressed the XPC protein in a baculovirus system and purified it to near homogeneity. The recombinant human XPC (rhXPC) protein exhibited a high level of affinity for single-stranded DNA and corrected the repair defect in XP-C whole-cell extracts without extra addition of recombinant HHR23B (rHHR23B) protein. However, Western blot (immunoblot) experiments revealed that XP-C cell extracts contained excess endogenous HHR23B protein, which might be able to form a complex upon addition of the rhXPC protein. To investigate the role of HHR23B, we fractionated the XP-C cell extracts and constructed a reconstituted system in which neither endogenous XPC nor HHR23B proteins were present. In this assay system, rhXPC alone weakly corrected the repair defect, while significant enhancement of the correcting activity was observed upon coaddition of rHHR23B protein. Stimulation of XPC by HHR23B was found with simian virus 40 minichromosomes as well as with naked plasmid DNA and with UV- as well as N-acetoxy-2- acetylfluorene-induced DNA lesions, indicating a general role of HHR23B in XPC functioning in the genome-overall nucleotide excision repair subpathway.  相似文献   

18.
19.
重组人MBD4蛋白在大肠杆菌中的表达、纯化及活性分析   总被引:1,自引:0,他引:1  
为获得重组人MBD4蛋白,将编码MBD4的开放式阅读框(ORF)插入原核表达载体pGEX6P1 GST基因下游的多克隆位点(MCS).将获得的表达质粒转化入大肠杆菌BL21(DE3) 菌株扩大培养并用IPTG诱导融合蛋白的表达.用谷胱甘肽琼脂糖凝胶 4B亲和介质从菌体裂解液中纯化了GST-MBD4融合蛋白.经过Prescision protease专一性裂解成功去除了融合蛋白上的GST标签.通过Mono Q阴离子交换层析获得了纯度达94%以上的MBD4蛋白,该蛋白具有甲基化DNA结合和糖苷酶生物活性.  相似文献   

20.
Mutations in the human ChlR1 gene are associated with a unique genetic disorder known as Warsaw breakage syndrome characterized by cellular defects in sister chromatid cohesion and hypersensitivity to agents that induce replication stress. A role of ChlR1 helicase in sister chromatid cohesion was first evidenced by studies of the yeast homolog Chl1p; however, its cellular functions in DNA metabolism are not well understood. We carefully examined the DNA substrate specificity of purified recombinant human ChlR1 protein and the biochemical effect of a patient-derived mutation, a deletion of a single lysine (K897del) in the extreme C terminus of ChlR1. The K897del clinical mutation abrogated ChlR1 helicase activity on forked duplex or D-loop DNA substrates by perturbing its DNA binding and DNA-dependent ATPase activity. Wild-type ChlR1 required a minimal 5' single-stranded DNA tail of 15 nucleotides to efficiently unwind a simple duplex DNA substrate. The additional presence of a 3' single-stranded DNA tail as short as five nucleotides dramatically increased ChlR1 helicase activity, demonstrating the preference of the enzyme for forked duplex structures. ChlR1 unwound G-quadruplex (G4) DNA with a strong preference for a two-stranded antiparallel G4 (G2') substrate and was only marginally active on a four-stranded parallel G4 structure. The marked difference in ChlR1 helicase activity on the G4 substrates, reflected by increased binding to the G2' substrate, distinguishes ChlR1 from the sequence-related FANCJ helicase mutated in Fanconi anemia. The biochemical results are discussed in light of the known cellular defects associated with ChlR1 deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号