首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Profilin-1 (Pfn-1) is an actin-regulatory protein that has a role in modulating smooth muscle contraction. However, the mechanisms that regulate Pfn-1 in smooth muscle are not fully understood. Here, stimulation with acetylcholine induced an increase in the association of the adapter protein cortactin with Pfn-1 in smooth muscle cells/tissues. Furthermore, disruption of the protein/protein interaction by a cell-permeable peptide (CTTN-I peptide) attenuated actin polymerization and smooth muscle contraction without affecting myosin light chain phosphorylation at Ser-19. Knockdown of cortactin by lentivirus-mediated RNAi also diminished actin polymerization and smooth muscle force development. However, cortactin knockdown did not affect myosin activation. In addition, cortactin phosphorylation has been implicated in nonmuscle cell migration. In this study, acetylcholine stimulation induced cortactin phosphorylation at Tyr-421 in smooth muscle cells. Phenylalanine substitution at this position impaired cortactin/Pfn-1 interaction in response to contractile activation. c-Abl is a tyrosine kinase that is necessary for actin dynamics and contraction in smooth muscle. Here, c-Abl silencing inhibited the agonist-induced cortactin phosphorylation and the association of cortactin with Pfn-1. Finally, treatment with CTTN-I peptide reduced airway resistance and smooth muscle hyperreactivity in a murine model of asthma. These results suggest that the interaction of cortactin with Pfn-1 plays a pivotal role in regulating actin dynamics, smooth muscle contraction, and airway hyperresponsiveness in asthma. The association of cortactin with Pfn-1 is regulated by c-Abl-mediated cortactin phosphorylation.  相似文献   

2.
Cortactin is an F-actin binding protein that activates actin-related protein 2/3 complex and is localized within lamellipodia. Cortactin is a substrate for Src and other protein tyrosine kinases involved in cell motility, where its phosphorylation on tyrosines 421, 466, and 482 in the carboxy terminus is required for cell movement and metastasis. In spite of the importance of cortactin tyrosine phosphorylation in cell motility, little is known regarding the structural, spatial, or signaling requirements regulating cortactin tyrosine phosphorylation. Herein, we report that phosphorylation of cortactin tyrosine residues in the carboxy terminus requires the aminoterminal domain and Rac1-mediated localization to the cell periphery. Phosphorylation-specific antibodies directed against tyrosine 421 and 466 were produced to study the regulation and localization of tyrosine phosphorylated cortactin. Phosphorylation of cortactin tyrosine 421 and 466 was elevated in response to Src, epidermal growth factor receptor and Rac1 activation, and tyrosine 421 phosphorylated cortactin localized with F-actin in lamellipodia and podosomes. Cortactin tyrosine phosphorylation is progressive, with tyrosine 421 phosphorylation required for phosphorylation of tyrosine 466. These results indicate that cortactin tyrosine phosphorylation requires Rac1-induced cortactin targeting to cortical actin networks, where it is tyrosine phosphorylated in hierarchical manner that is closely coordinated with its ability to regulate actin dynamics.  相似文献   

3.
Cortactin is an actin-binding protein that is overexpressed in many cancers and is a substrate for both tyrosine and serine/threonine kinases. Tyrosine phosphorylation of cortactin has been observed to increase cell motility and invasion in vivo, although it has been reported to have both positive and negative effects on actin polymerization in vitro. In contrast, serine phosphorylation of cortactin has been shown to stimulate actin assembly in vitro. Currently, the effects of cortactin serine phosphorylation on cell migration are unclear, and furthermore, how the distinct phospho-forms of cortactin may differentially contribute to cell migration has not been directly compared. Therefore, we tested the effects of different tyrosine and serine phospho-mutants of cortactin on lamellipodial protrusion, actin assembly within cells, and focal adhesion dynamics. Interestingly, while expression of either tyrosine or serine phospho-mimetic cortactin mutants resulted in increased lamellipodial protrusion and cell migration, these effects appeared to be via distinct processes. Cortactin mutants mimicking serine phosphorylation appeared to predominantly affect actin polymerization, whereas mutation of cortactin tyrosine residues resulted in alterations in focal adhesion turnover. Thus these findings provide novel insights into how distinct phospho-forms of cortactin may differentially contribute to actin and focal adhesion dynamics to control cell migration.  相似文献   

4.
Cortactin, a predominant substrate of Src family kinases, plays an important role in Arp2/3-dependent actin polymerization in lamellipodia and membrane ruffles and was recently shown to be enriched in podosomes induced by either c-Src or phorbol ester. However, the mechanisms by which cortactin regulates podosome formation have not been determined. In this study, we showed that cortactin is required for podosome formation, using siRNA knockdown of cortactin expression in smooth muscle A7r5 cells. Treatment with phorbol ester or expression of constitutively active c-Src induced genesis of cortactin-containing podosomes as well as increase in phosphorylation of cortactin at Y421 and Y466, the Src phosphorylation sites on cortactin. The Src kinase inhibitor SU-6656 significantly inhibited formation of podosomes induced by phorbol ester and phosphorylation of cortactin, whereas PKC inhibitor did not affect podosome formation in c-Src-transfected cells. Unexpectedly, expression of cortactin mutants containing Y421F, Y421D, Y466F, or Y466D mutated sites did not affect podosome formation or cortactin translocation to podosomes, although endogenous tyrosine-phosphorylated cortactin at Y421 and Y466 was present in podosomes. Our data indicate that 1) PKC acts upstream of Src in phosphorylation of cortactin and podosome formation in smooth muscle cells; 2) expression of cortactin is essential for genesis of podosomes; 3) phosphorylation at Y421 and Y466 is not required for translocation of cortactin to podosomes, although phosphorylation at these sites appears to be enriched in podosomes; and 4) tyrosine phosphorylation of cortactin may be involved in regulation of stability and turnover of podosomes, rather than targeting this protein to the site of podosome formation. actin cytoskeleton; Src; protein kinase C  相似文献   

5.
Cortactin is a filamentous actin (F-actin)-binding protein that regulates cytoskeletal dynamics by activating the Arp2/3 complex; it binds to F-actin by means of six N-terminal "cortactin repeats". Gene amplification of 11q13 and consequent overexpression of cortactin in several human cancers is associated with lymph node metastasis. Overexpression as well as tyrosine phosphorylation of cortactin has been reported to enhance cell migration, invasion, and metastasis. Here we report the identification of two alternative splice variants (SV1 and SV2) that affect the cortactin repeats: SV1-cortactin lacks the 6th repeat (exon 11), whereas SV2-cortactin lacks the 5th and 6th repeats (exons 10 and 11). SV-1 cortactin is found co-expressed with wild type (wt)-cortactin in all tissues and cell lines examined, whereas the SV2 isoform is much less abundant. SV1-cortactin binds F-actin and promotes Arp2/3-mediated actin polymerization equally well as wt-cortactin, whereas SV2-cortactin shows reduced F-actin binding and polymerization. Alternative splicing of cortactin does not affect its subcellular localization or growth factor-induced tyrosine phosphorylation. However, cells that overexpress SV1- or SV2-cortactin show significantly reduced cell migration when compared with wt-cortactin-overexpressing cells. Thus, in addition to overexpression and tyrosine phosphorylation, alternative splicing of the F-actin binding domain of cortactin is a new mechanism by which cortactin influences cell migration.  相似文献   

6.
Efficient internalization of cell surface receptors requires actin polymerization mediated by Arp2/3 complex and cortactin, a prominent substrate of the protein-tyrosine kinase Src. However, the significance of cortactin tyrosine phosphorylation in endocytosis is unknown. We found that overexpression of a cortactin mutant deficient in tyrosine phosphorylation decreased transferrin uptake. Suppression of cortactin expression by RNA interference also reduced transferrin internalization. Such inhibition was effectively rescued by overexpressing wild-type cortactin but not a cortactin mutant deficient in tyrosine phosphorylation or a mutant with deletion of the Src homology 3 domain. Likewise, purified phosphorylation-null cortactin failed to restore the formation of clathrin-coated vesicles in a cortactin-depleted cell extract. In vitro analysis revealed that Src-mediated phosphorylation enhanced the association of cortactin with dynamin-2 in a tyrosine phosphorylation-dependent manner. Quantitative analysis demonstrated that Src enhances the affinity of cortactin for dynamin-2 by more than 3-fold. On the other hand, Src-treated dynamin-2 had no effect on its interaction with cortactin. These data indicate that Src kinase is implicated in clathrin-mediated endocytosis by phosphorylation of cortactin.  相似文献   

7.
Although the actin cytoskeleton has been implicated in the control of NADPH oxidase in phagocytosis, very little is known about the cytoskeletal regulation of endothelial NADPH oxidase assembly and activation. Here, we report a role for cortactin and the tyrosine phosphorylation of cortactin in hyperoxia-induced NADPH oxidase activation and ROS production in human pulmonary artery ECs (HPAECs). Exposure of HPAECs to hyperoxia for 3 h induced NADPH oxidase activation, as demonstrated by enhanced superoxide production. Hyperoxia also caused a thickening of the subcortical dense peripheral F-actin band and increased the localization of cortactin in the cortical regions and lamellipodia at cell-cell borders that protruded under neighboring cells. Pretreatment of HPAECs with the actin-stabilizing agent phallacidin attenuated hyperoxia-induced cortical actin thickening and ROS production, whereas cytochalasin D and latrunculin A enhanced basal and hyperoxia-induced ROS formation. In HPAECs, a 3-h hyperoxic exposure enhanced the tyrosine phosphorylation of cortactin and interaction between cortactin and p47(phox), a subcomponent of the EC NADPH oxidase, when compared with normoxic cells. Furthermore, transfection of HPAECs with cortactin small interfering RNA or myristoylated cortactin Src homology domain 3 blocking peptide attenuated ROS production and the hyperoxia-induced translocation of p47(phox) to the cell periphery. Similarly, down-regulation of Src with Src small interfering RNA attenuated the hyperoxia-mediated phosphorylation of cortactin tyrosines and blocked the association of cortactin with actin and p47(phox). In addition, the hyperoxia-induced generation of ROS was significantly lower in ECs expressing a tyrosine-deficient mutant of cortactin than in vector control or wild-type cells. These data demonstrate a novel function for cortactin and actin in hyperoxia-induced activation of NADPH oxidase and ROS generation in human lung endothelial cells.  相似文献   

8.
In a previous study, we showed that isoproterenol induced actin depolymerization in human airway smooth muscle cells by both protein kinase A (PKA)-dependent and -independent signaling pathways. We now investigate the signaling pathway of PKA-independent actin depolymerization induced by isoproterenol in these cells. Cells were briefly exposed to isoproterenol or PGE(1) in the presence and absence of specific inhibitors of Src-family tyrosine kinases, phosphatidylinositol-3-kinase (PI3 kinase), or MAP kinase, and actin depolymerization was measured by concomitant staining of filamentous actin with FITC-phalloidin and globular actin with Texas red DNase I. Isoproterenol, cholera toxin, and PGE(1) induced actin depolymerization, indicated by a decrease in the intensity of filamentous/globular fluorescent staining. Pretreatment with the Src kinase inhibitors 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyriimidine (PP2) or geldanamycin or the PKA inhibitor Rp-cAMPS only partly inhibited isoproterenol- or PGE(1)-induced actin depolymerization. In contrast, PP2 and geldanamycin did not inhibit forskolin-induced actin depolymerization, and AG-213 (an EGF receptor tyrosine kinase inhibitor) did not inhibit isoproterenol- or PGE(1)-induced actin depolymerization. PI3 kinase or MAP kinase inhibition did not inhibit isoproterenol-induced actin depolymerization. Moreover, isoproterenol but not forskolin induced tyrosine phosphorylation of an Src family member at position 416. These results further confirm that both PKA-dependent and PKA-independent pathways mediate actin depolymerization in human airway smooth muscle cells and that the PKA-independent pathway by which isoproterenol induces actin depolymerization in human airway smooth muscle cells involves Src protein tyrosine kinases and the G(s) protein.  相似文献   

9.
Diperoxovanadate (DPV), a potent inhibitor of protein tyrosine phosphatases and activator of tyrosine kinases, alters endothelial barrier function via signaling pathways that are incompletely understood. One potential pathway is Src kinase-mediated tyrosine phosphorylation of proteins such as cortactin that regulate endothelial cell (EC) cytoskeleton assembly. As DPV modulates endothelial cell signaling via protein tyrosine phosphorylation, we determined the role of DPV-induced intracellular free calcium concentration ([Ca2+]i) in activation of Src kinase, cytoskeletal remodeling, and barrier function in bovine pulmonary artery endothelial cells (BPAECs). DPV in a dose- and time-dependent fashion increased [Ca2+]i, which was partially blocked by the calcium channel blockers nifedipine and Gd3+. Treatment of cells with thapsigargin released Ca2+ from the endoplasmic reticulum, and subsequent addition of DPV caused no further change in [Ca2+]i. These data suggest that DPV-induced [Ca2+]i includes Ca release from the endoplasmic reticulum and Ca influx through store-operated calcium entry. Furthermore, DPV induced an increase in protein tyrosine phosphorylation, phosphorylation of Src and cortactin, actin remodeling, and altered transendothelial electrical resistance in BPAECs. These DPV-mediated effects were significantly attenuated by BAPTA (25 microM), a chelator of [Ca2+]i. Immunofluorescence studies reveal that the DPV-mediated colocalization of cortactin with peripheral actin was also prevented by BAPTA. Chelation of extracellular Ca2+ by EGTA had marginal effects on DPV-induced phosphorylation of Src and cortactin; actin stress fibers formation, however, affected EC barrier function. These data suggest that DPV-induced changes in [Ca2+]i regulate endothelial barrier function using signaling pathways that involve Src and cytoskeleton remodeling.  相似文献   

10.
Alpha-1-syntrophin (SNTA1) and Rac1 are part of a signaling pathway via the dystrophin glycoprotein complex (DGC). Both SNTA1 and Rac1 proteins are over-expressed in various carcinomas. It is through the DGC signaling pathway that SNTA1 has been shown to act as a link between the extra cellular matrix, the internal cell signaling apparatus and the actin cytoskeleton. SNTA1 is involved in the modulation of the actin cytoskeleton and actin reorganization. Rac1 also controls actin cytoskeletal organization in the cell. In this study, we present the interplay between f-actin, SNTA1 and Rac1. We analyzed the effect of actin depolymerization on SNTA1 tyrosine phosphorylation and Rac1 activity using actin depolymerizing drugs, cytochalasin D and latrunculin A. Our results indicate a marked decrease in the tyrosine phosphorylation of SNTA1 upon actin depolymerization. Results suggest that actin depolymerization mediated loss of SNTA1 phosphorylation leads to loss of interaction between SNTA1 and Rac1, with a concomitant loss of Rac1 activation. The loss of SNTA1tyrosine phosphorylation and Rac1 activity by actin depolymerization results in increased apoptosis, decreased cell migration and decreased reactive oxygen species (ROS) levels in breast carcinoma cells. Collectively, our results present a possible role of f-actin in the SNTA1-Rac1 signaling pathway and implications of actin depolymerization on cell migration, ROS production and apoptosis.  相似文献   

11.

Background

Cortactin is a classical Src kinase substrate that participates in actin cytoskeletal dynamics by activating the Arp2/3 complex and interacting with other regulatory proteins, including FAK. Cortactin has various domains that may contribute to the assembly of different protein platforms to achieve process specificity. Though the protein is known to be regulated by post-translational modifications such as phosphorylation and acetylation, how tyrosine phosphorylation regulates cortactin activity is poorly understood. Since the basal level of tyrosine phosphorylation is low, this question must be studied using stimulated cell cultures, which are physiologically relevant but unreliable and difficult to work with. In fact, their unreliability may be the cause of some contradictory findings about the dynamics of tyrosine phosphorylation of cortactin in different processes.

Methodology/Principal Findings

In the present study, we try to overcome these problems by using a Functional Interaction Trap (FIT) system, which involves cotransfecting cells with a kinase (Src) and a target protein (cortactin), both of which are fused to complementary leucine-zipper domains. The FIT system allowed us to control precisely the tyrosine phosphorylation of cortactin and explore its relationship with cortactin acetylation.

Conclusions/Significance

Using this system, we provide definitive evidence that a competition exists between acetylation and tyrosine phosphorylation of cortactin and that phosphorylation inhibits cell spreading. We confirmed the results from the FIT system by examining endogenous cortactin in different cell types. Furthermore, we demonstrate that cell spreading promotes the association of cortactin and FAK and that tyrosine phosphorylation of cortactin disrupts this interaction, which may explain how it inhibits cell spreading.  相似文献   

12.
Suprastimulation of pancreatic acini is a well-known model for pancreatitis, and it is characterized by actin reorganization and cell blebbing. Currently, however, the mechanisms underlying regulation of these aberrant cytoskeletal and membrane dynamics and how they contribute to cell injury are unclear. We observed that suprastimulation results in a rapid activation of Src and relocalization of the actin-binding protein cortactin from the apical to the basolateral domain at the necks of membrane blebs. Furthermore, Src-mediated cortactin tyrosine phosphorylation was markedly increased after suprastimulation. Pretreatment of acini with Src inhibitors or expression of a cortactin tyrosine phospho-inhibitory mutant reduced actin redistribution and bleb formation induced by suprastimulation in vitro. Importantly, inhibition of Src activity in rat models of suprastimulation-induced pancreatitis substantially reduced disease severity, as indicated by a reduction in serum amylase and pancreatic edema and a striking improvement in tissue histology. These findings indicate a novel, disease-relevant role for Src-mediated cortactin phosphorylation in aberrant reorganization of the actin cytoskeleton, a mechanism that is likely to have implications in other types of cell injury. In addition, they suggest a potential use for Src inhibitors as an approach to reduce cell injury.  相似文献   

13.
Endothelial cell ICAM-1 interacts with leukocyte beta(2) integrins to mediate adhesion and transmit outside-in signals that facilitate leukocyte transmigration. ICAM-1 redistribution and clustering appear necessary for leukocyte transmigration, but the mechanisms controlling ICAM-1 redistribution and clustering have not been identified. We recently reported that Src kinase phosphorylation of endothelial cortactin regulates polymorphonuclear cell (PMN) transmigration. In this study, we tested the hypotheses that the Src family kinase-cortactin pathway mediates association of ICAM-1 with the actin cytoskeleton and that this association is required for ICAM-1 clustering and leukocyte transmigration. Cross-linking ICAM-1 induced cytoskeletal remodeling and a decrease in ICAM-1 lateral mobility, as assessed by fluorescence recovery after photobleaching. Cytoskeletal remodeling after ICAM-1 cross-linking was reduced by knockdown of cortactin by small interfering RNA, by expression of a cortactin mutant deficient in Src phosphorylation sites (cortactin3F), and by the Src kinase inhibitor PP2. Pretreatment of cytokine-activated human endothelial monolayers with cortactin small interfering RNA significantly decreased both actin and ICAM-1 clustering around adherent PMN and the formation of actin-ICAM-1 clusters required for PMN transmigration. Our data suggest a model in which tyrosine phosphorylation of cortactin dynamically links ICAM-1 to the actin cytoskeleton, enabling ICAM-1 to form clusters and facilitate leukocyte transmigration.  相似文献   

14.
Cortactin is an SH3 domain-containing protein that contributes to the formation of dynamic cortical actin-associated structures, such as lamellipodia and membrane ruffles. It was originally identified as a substrate for the protein kinase Src; however, the role of tyrosine phosphorylation in the translocation of cortactin to the cell periphery and in the subsequent actin polymerisation is still unclear. Recently, two serine/threonine kinases, Pak1 and Erk, have been implicated in the regulation of cortactin. Therefore, we systematically investigated whether phosphorylation on either tyrosine or serine/threonine residues is necessary for cortactin function. In COS7 cells over-expressing Vav2 or treated with EGF, we could not detect tyrosine phosphorylation, although cortactin was translocated to cell periphery and induced membrane ruffle formation. In addition, the selective MEK inhibitor, PD98059, did not influence in vivo the ability of cortactin to bind to and induce membrane ruffles upon Vav2 over-expression or short-term EGF treatment. Finally, using a constitutively active Pak1 mutant, Pak1 T423E, we showed that Pak1 is not capable of phosphorylating cortactin either in vitro or in COS7 cells. These results suggest that cortactin-mediated actin polymerisation at cell periphery requires only Rac activation but neither tyrosine nor serine/threonine phosphorylation.  相似文献   

15.
Protein Kinase D (PKD) has been implicated in the regulation of actin turnover at the leading edge, invasion and migration. In particular, a complex between cortactin, paxillin and PKD in the invadopodia of invasive breast cancer cells has been described earlier, but so far this complex remained ill defined. Here we have investigated the possible role of PKD as a cortactin kinase.Using a mass spectrometric approach, we found that PKD phosphorylates cortactin on Ser 298 in the 6th cortactin repeat region and on Ser 348, right before the helical-proline rich domain of cortactin. We developed phosphospecific antibodies against these phosphorylated sequences, and used them as tools to follow the in vivo phosphorylation of cortactin by PKD. Examination of cortactin phosphorylation kinetics revealed that Ser 298 serves as a priming site for subsequent phosphorylation of Ser 348. Src, a well-known cortactin kinase, strongly potentiated the in vivo PKD mediated cortactin phosphorylation. This Src effect is neither mediated by pre-phosphorylation of cortactin nor by activation of PKD by Src. Phosphorylation of cortactin by PKD does not affect its subcellular localization, nor does it affect its translocation to podosomes or membrane ruffles. Moreover, there was no effect of PKD mediated cortactin phosphorylation on EGF receptor degradation and LPA induced migration.Taken together, these data establish cortactin as a novel PKD substrate and reveal a novel connection between Src and PKD.  相似文献   

16.
Shigella, the causative agent of bacillary dysentery, invades epithelial cells in a process involving Src tyrosine kinase signaling. Cortactin, a ubiquitous actin-binding protein present in structures of dynamic actin assembly, is the major protein tyrosine phosphorylated during Shigella invasion. Here, we report that RNA interference silencing of cortactin expression, as does Src inhibition in cells expressing kinase-inactive Src, interferes with actin polymerization required for the formation of cellular extensions engulfing the bacteria. Shigella invasion induced the recruitment of cortactin at plasma membranes in a tyrosine phosphorylation-dependent manner. Overexpression of wild-type forms of cortactin or the adaptor protein Crk favored Shigella uptake, and Arp2/3 binding-deficient cortactin derivatives or an Src homology 2 domain Crk mutant interfered with bacterial-induced actin foci formation. Crk was shown to directly interact with tyrosine-phosphorylated cortactin and to condition cortactin-dependent actin polymerization required for Shigella uptake. These results point at a major role for a Crk-cortactin complex in actin polymerization downstream of tyrosine kinase signaling.  相似文献   

17.
Keratinocyte growth factor (KGF/FGF7) and fibroblast growth factor 10 (FGF10/KGF2) regulate keratinocyte proliferation and differentiation by binding to the tyrosine kinase KGF receptor (KGFR). KGF induces keratinocyte motility and cytoskeletal rearrangement, whereas a direct role of FGF10 on keratinocyte migration is not clearly established. Here we analyzed the motogenic activity of FGF10 and KGF on human keratinocytes. Migration assays and immunofluorescence of actin cytoskeleton revealed that FGF10 is less efficient than KGF in promoting migration and exerts a delayed effect in inducing lamellipodia and ruffles formation. Both growth factors promoted phosphorylation and subsequent membrane translocation of cortactin, an F-actin binding protein involved in cell migration; however, FGF10-induced cortactin phosphorylation was reduced, more transient and delayed with respect to that promoted by KGF. Cortactin phosphorylation induced by both growth factors was Src-dependent, while its membrane translocation and cell migration were blocked by either Src and PI3K inhibitors, suggesting that both pathways are involved in KGF- and FGF10-dependent motility. Furthermore, siRNA-mediated downregulation of cortactin inhibited KGF- and FGF10-induced migration. These results indicate that cortactin is involved in keratinocyte migration promoted by both KGF and FGF10.  相似文献   

18.
BACKGROUND: The brief incubation of opossum kidney (OK) cells with low P(i) results in Na+/P(i) cotransport up-regulation and in substantial, but transient, cytoskeletal reorganization. In this study, we examined signaling events involved in the depolymerization of microfilaments. RESULTS: Confocal laser scanning microscopy, immunoblot and immunoprecipitation experiments revealed villin co-localization with mainly actin short filaments and monomers, indicating that under the conditions used, villin acted as an actin-severing protein. Further analysis revealed that low concentrations of extracellular phosphate resulted in phospholipase Cgammal (PLC-gammal) translocation to the actin cytoskeleton, without increases in its tyrosine phosphorylation. Additionally, tyrosine phosphorylation of a portion of insoluble villin was increased; whereas, only tyrosine phosphorylated villin associated with PLC-gammal. Although, tyrosine phosphorylation of PLC-gammal was not observed during Na+/P(i) cotransport up-regulation, genistein treatment abolished the enzyme's translocation to the actin cytoskeleton, as well as its association with villin. In addition, villin was found to associate with the 85-KDa subunit (p85) of phosphatidylinositol (PI)-3 kinase, concomitant with PLC-gammal, in the cytoskeletal fraction of Na+/P(i) cotransport up-regulated cells. CONCLUSIONS: Our observations suggest a signaling mechanism linking low ambient P(i) levels to the acute up-regulation of its cotransport with sodium and the depolymerization of the subcortical actin cytoskeleton.  相似文献   

19.

Background

Postsynaptic enrichment of acetylcholine receptors (AChRs) at the vertebrate neuromuscular junction (NMJ) depends on the activation of the muscle receptor tyrosine MuSK by neural agrin. Agrin-stimulation of MuSK is known to initiate an intracellular signaling cascade that leads to the clustering of AChRs in an actin polymerization-dependent manner, but the molecular steps which link MuSK activation to AChR aggregation remain incompletely defined.

Methodology/Principal Findings

In this study we used biochemical, cell biological and molecular assays to investigate a possible role in AChR clustering of cortactin, a protein which is a tyrosine kinase substrate and a regulator of F-actin assembly and which has also been previously localized at AChR clustering sites. We report that cortactin was co-enriched at AChR clusters in situ with its target the Arp2/3 complex, which is a key stimulator of actin polymerization in cells. Cortactin was further preferentially tyrosine phosphorylated at AChR clustering sites and treatment of myotubes with agrin significantly enhanced the tyrosine phosphorylation of cortactin. Importantly, forced expression in myotubes of a tyrosine phosphorylation-defective cortactin mutant (but not wild-type cortactin) suppressed agrin-dependent AChR clustering, as did the reduction of endogenous cortactin levels using RNA interference, and introduction of the mutant cortactin into muscle cells potently inhibited synaptic AChR aggregation in response to innervation.

Conclusion

Our results suggest a novel function of phosphorylation-dependent cortactin signaling downstream from agrin/MuSK in facilitating AChR clustering at the developing NMJ.  相似文献   

20.
The Arp2/3 complex can be independently activated to initiate actin polymerization by the VCA domain of WASP family members and by the acidic N-terminal and F-actin-binding repeat region of cortactin, which possesses a C-terminal SH3 domain. Cortactin is a target for phosphorylation by Src tyrosine kinases and by serine/threonine kinases that include Erk. Here we demonstrate that cortactin binds N-WASP and WASP via its SH3 domain, induces in vitro N-WASP-mediated actin polymerization, and colocalizes with N-WASP and WASP at sites of active actin polymerization. Erk phosphorylation and a mimicking S405,418D double mutation enhanced cortactin binding and activation of N-WASP. In contrast, Src phosphorylation inhibited the ability of cortactin previously phosphorylated by Erk, and that of S405,418D double mutant cortactin, to bind and activate N-WASP. Furthermore, Y-->D mutation of three tyrosine residues targeted by Src (Y421, Y466, and Y482) inhibited the ability of S405,418D cortactin to activate N-WASP. We propose that Erk phosphorylation liberates the SH3 domain of cortactin from intramolecular interactions with proline-rich regions, causing it to synergize with WASP and N-WASP in activating the Arp2/3 complex, and that Src phosphorylation terminates cortactin activation of N-WASP and WASP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号