首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Angiogenesis is indispensable to guide a regeneration of good periodontal tissue in the wound healing after periodontal surgery. Hepatocyte growth factor is well known for a strong angiogenic factor and it may play important roles in the periodontal tissue during periodontal wound healing. In exploring the promotion of angiogenesis in the periodontal ligament, proliferative and tubulogenic responses of endothelial cells to hepatocyte growth factor and to soluble factors secreted by fibroblasts were investigated. Pavement-shaped cells isolated from a human periodontal ligament were identified as the endothelial cell by their granular immunoreactivity for factor VIII. The proliferation of the endothelial cells was accelerated by the addition of hepatocyte growth factor or fibroblast-conditioned medium, and far more by adding both than either. The endothelial cells seeded on the agar containing both hepatocyte growth factor and fibroblast products formed a dense network in a shorter time than on the agar containing either. The endothelial cells in the dense network took a tube-like structure with lumen and were covered with laminin. These results suggest that hepatocyte growth factor administered into the regenerating periodontal tissue may promote, synergistically with local factors produced by the activated fibroblast, the proliferation and tubulogenesis of the remaining endothelial cells.  相似文献   

2.
Growth factors are the key elements in wound healing signaling for cell migration, differentiation and proliferation. Platelet-rich plasma (PRP), one of the most studied sources of growth factors, has demonstrated to promote wound healing in vitro and in vivo. Adipose tissue is an alternative source of growth factors. Through a simple lipoaspirate method, adipose derived growth factor-rich preparation (adipose tissue extract; ATE) can be obtained. The authors set out to compare the effects of these two growth factor sources in cell proliferation and migration (scratch) assays of keratinocyte, fibroblast, endothelial and adipose derived stem cells. Growth factors involved in wound healing were measured: keratinocyte growth factor, epidermal growth factor, insulin-like growth factor, interleukin 6, platelet-derived growth factor beta, tumor necrosis factor alfa, transforming growth factor beta and vascular endothelial growth factor. PRP showed higher growth factor concentrations, except for keratinocyte growth factor, that was present in adipose tissue in greater quantities. This was reflected in vitro, where ATE significantly induced proliferation of keratinocytes at day 6 (p < 0.001), compared to plasma and control. Similarly, ATE-treated fibroblast and adipose stem cell cultures showed accelerated migration in scratch assays. Moreover, both sources showed accelerated keratinocyte migration. Adipose tissue preparation has an inductive effect in wound healing by proliferation and migration of cells involved in wound closure. Adipose tissue preparation appears to offer the distinct advantage of containing the adequate quantities of growth factors that induce cell activation, proliferation and migration, particularly in the early phase of wound healing.  相似文献   

3.
Hemoderivative materials are used to treat different diseases. These derivatives include platelet-rich plasma, serum, platelet gel, and platelet lysate (PL). Among them, PL contains more growth factors than the others and its production is inexpensive and easy. PL is one of the proper sources of platelet release factors. It is used in cells growth and proliferation and is a good alternative to fetal bovine serum. In recent years, the clinical use of PL has gained more appeal by scientists. PL is a solution saturated by growth factors, proteins, cytokines, and chemokines and is administered to treat different diseases such as wound healing, bone regeneration, alopecia, oral mucositis, radicular pain, osteoarthritis, and ocular diseases. In addition, it can be used in cell culture for cell therapy and tissue transplantation purposes. Platelet-derived growth factor, fibroblast growth factor, insulin-like growth factor, transforming growth factor β, and vascular endothelial growth factor are key PL growth factors playing a major role in cell proliferation, wound healing, and angiogenesis. In this paper, we scrutinized recent advances in using PL and PL-derived growth factors to treat diseases and in regenerative medicine, and the ability to replace PL with other hemoderivative materials.  相似文献   

4.
Administration of exogenous growth factors (GFs) to a damaged site has been investigated for skin tissue regeneration. Among the many types of GFs and cytokines, epidermal growth factor, vascular endothelial growth factor, platelet-derived growth factor, fibroblast growth factor, and hepatocyte growth factor could be specifically used for stimulating molecules in wound healing as well as for recovery of damaged skin tissues. It is speculated that delivered GFs could stimulate various cellular functions, including proliferation, migration, deposition of extracellular matrix molecules, and remodeling of collagen synthesis. Although the physiological wound healing process is complex, engineering strategies for proper delivery of multiple therapeutic GFs could enhance the quality and quantity of regenerated skin tissues. As compared to single delivery of a GF, recent studies have proven that any combination of multiple GFs and/or therapeutic chemical factors synergistically facilitates the regeneration of damaged skin tissues. In order to maximize the stability, bioactivity, intrinsic therapeutic functionality, and efficiency of internal delivery of cargo GFs, it is essential to utilize tissueengineered biomaterials and related composites as implantable platforms. Successful fabrication and development of skin tissue engineering applications as well as subsequent surgical implantation of these platforms might provide clinical treatment for superior skin regeneration. Therefore, the present review summarizes the biological functions, related signaling mechanisms, and recent developments of tissue engineering applications for multiple GF delivery.  相似文献   

5.
Growth factors and cytokines play an important role in tissue development and repair. However, it remains unknown how they act on proliferation and differentiation of periodontal ligament cells. In this study, we investigated the effects of several growth factors and cytokines on the synthesis of DNA, alkaline phosphatase (ALPase), fibronectin, and secreted protein acidic and rich in cysteine (SPARC) in human periodontal ligament (HPL) cells. Transforming growth factor-beta (TGF-beta) increased the synthesis of DNA, fibronectin and SPARC, whereas it decreased ALPase activity. Basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF) and tumor necrosis factor-alpha (TNF-alpha) decreased SPARC and ALPase levels, whereas these peptides increased DNA synthesis and did not affect fibronectin synthesis. Epidermal growth factor (EGF) up-regulated the synthesis of DNA and fibronectin and inhibited SPARC and ALPase levels. Interleukin-1beta (IL-1beta) decreased the synthesis of DNA, ALPase, fibronectin and SPARC. These findings demonstrate that TGF-beta, bFGF, EGF, PDGF, TNF-alpha and IL-1beta have characteristically different patterns of action on DNA, SPARC, fibronectin and ALPase synthesis by HPL cells. The differences in regulation of function of periodontal ligament cells by these peptides may be involved in the regeneration and repair of periodontal tissue.  相似文献   

6.
人结缔组织生长因子(CTGF)的原核表达研究   总被引:2,自引:0,他引:2  
随着对细胞前早期基因认识的深入,一组在多个种群中具有较高同源性的前早期基因家族——CCN(CTGF,Cyr61/Cef10,Nxov)得到了人们的注意[1]。其产物在细胞受到创伤刺激时产生,并具有促进和调节创伤修复的功能.其中的人结缔组织生长因子(CTGF)由于对成纤维细胞、结缔组织基质...  相似文献   

7.
One important action of growth factors is their participation in tissue repair; however, the signaling pathways involved are poorly understood. In a model of corneal wound healing, we found that two paracrine growth factors, hepatocyte growth factor (HGF) and keratinocyte growth factor (KGF), induced rapid and marked activation and prompt nuclear accumulation of phospho-p38 (p-p38) and -ERK1/2 (p-ERK1/2), but not of JNK (p-JNK1/2), in corneal epithelial cells. Interruption of p38 and ERK1/2 signaling pathways by pretreatment with inhibitors SB203580 and PD98059 and subsequent stimulation with HGF or KGF abolished the activation and nuclear localization. Inhibition of either one of these mitogen-activated protein kinases, p38 or ERK1/2, induced a robust cross-activation of the other. In immunofluorescence studies of wounded cornea, p-p38, unlike p-ERK1/2, was immediately detectable in epithelium after injury. Inhibition of p38 by SB203580 blocked migration of epithelial cells almost completely. In contrast, PD98059 seemed to slightly increase the migration, through concomitant activation of p38. Unlike ERK1/2, p38 did not significantly contribute to proliferation of epithelial cells. Inhibition of either the ERK1/2 or p38 pathway resulted in delayed corneal epithelial wound healing. Interruption of both signaling cascades additively inhibited the wound-healing process. These findings demonstrate that both p38 and ERK1/2 coordinate the dynamics of wound healing: while growth factor-stimulated p38 induces epithelial migration, ERK1/2 activation induces proliferation. The cross-talk between these two signal cascades and the selective action of p38 in migration appear to be important to corneal wound healing, and possibly wound healing in general, and may offer novel drug targets for tissue repair.  相似文献   

8.
In order to understand the relationship between specific growth factors and matrix synthesis by periodontal cells, we have investigated the effects of platelet-derived growth factor BB (PDGF-BB), insulin-like growth factor-I (IGF-1), and growth hormone on DNA and proteoglycan synthesis by cultured human gingival and periodontal ligament fibroblasts in vitro. PDGF-BB and IGF-1, but not growth hormone, were mitogenic for both periodontal ligament fibroblasts and gingival fibroblasts, although the periodontal ligament cells responded more strongly. The mitogenic response was accompanied by alterations in expression of matrix proteoglycan mRNA. For both the gingival and periodontal ligament cells, there was a decrease in mRNA for decorin and an increase in mRNA for versican following exposure to IGF-1 and PDGF-BB. Although no change was seen in response to PDGF, biglycan mRNA level was increased by IGF-1 in periodontal ligament fibroblasts. With the gingival fibroblats, biglycan mRNA levels were unaffected by IGF-1, PDGF-BB, or growth hormone. These findings suggest variable responses of fibroblasts to growth factors depending upon anatomical site within the periodontium. Moreover, there appears to be a correlation between cell proliferation and the types of proteoglycan synthesised with decorin expression being suppressed, and versican being increased during fibroblast proliferation. J. Cell. Physiol. 174:353–361, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
10.
The graft of omental pedicle is known to be clinically effective for wound healing and revascularization of ischemic organs. We found that bovine greater omentum contained growth factor that was capable of stimulating the proliferation of bovine aortic endothelial cells. Gel filtration of the tissue extract showed at least two activity peaks corresponding to molecular weights of 96,000 and 21,000. The major Mr 21,000 growth factor was partially purified approx 120-fold from the omental extract. The purified factor was not mitogenic to BALB/c 3T3 cells and, importantly, had no affinity for immobilized heparin. This factor is thus clearly distinct from fibroblast growth factors and related mitogens. The pI of the factor was estimated to be 5.6-6.0. This factor may be involved in the potent angiogenic activity expressed by the implanted omentum. The omental fat, which was previously shown to cause neovascularization in the assay in vivo, did not promote the growth of endothelial cells in vitro.  相似文献   

11.
12.
Han J  Meng HX  Tang JM  Li SL  Tang Y  Chen ZB 《Cell proliferation》2007,40(2):241-252
OBJECTIVES: The use of platelets and platelet products has become increasingly popular clinically as a means of accelerating endosseous wound healing. It is likely that growth factors released by activated platelets at the site of injury play a role in periodontal regeneration by regulating cellular activity. The purpose of this study was to evaluate the biological effects of platelet-rich plasma (PRP) on human periodontal ligament cells (hPDLCs) in vitro. MATERIALS AND METHODS: Primary cultures of hPDLCs were obtained from healthy premolars. PRP was isolated by two-step centrifugation. Two main growth factors present in the thrombin-activated PRP (platelet-derived growth factor [PDGF-AB] and transforming growth factor-beta1 [TGF-beta1]) were evaluated using ELISA assay. Activated PRP or the combination of recombined human TGF-beta1 (rhTGF-beta1) and PDGF-AB (rhPDGF-AB) were added to hPDLCs in different concentrations to assess cell proliferation and osteogenic differentiation. RESULTS: PRP contained high levels of TGF-beta1 and PDGF-AB. Cell attachment, proliferation and ALP activity were enhanced by addition of PRP or rhTGF-beta1 and rhPDGF-AB combination to the cell cultures, while the stimulatory potency of PRP was much greater than the latter. These stimulatory effects presented in a dose-dependant manner, it seemed that PRP with 50~100 ng/ml TGF-beta1 was an ideal concentration. CONCLUSIONS: PRP can enhance hPDLC adhesion, proliferation and induce the differentiation of hPDLC into mineralized tissue formation cell; thereby contribute to the main processes of periodontal tissue regeneration. For economical and biological reasons, PRP has more clinical beneficial than analogous growth factors.  相似文献   

13.
Increasing evidence points to a central link between inflammation and activation of the stroma, especially of fibroblasts therein. However, the mechanisms leading to such activation mostly remain undescribed. We have previously characterized a novel type of fibroblast activation (nemosis) where clustered fibroblasts upregulated the production of cyclooxygenase-2, secretion of prostaglandins, proteinases, chemotactic cytokines, and hepatocyte growth factor (HGF), and displayed activated nuclear factor-κB. Now we show that nemosis drives angiogenic responses of endothelial cells. In addition to HGF, nemotic fibroblasts secreted vascular endothelial growth factor (VEGF), and conditioned medium from spheroids promoted sprouting and networking of human umbilical venous endothelial cells (HUVEC). The response was partly inhibited by function-blocking antibodies against HGF and VEGF. Conditioned nemotic fibroblast medium promoted closure of HUVEC and human dermal microvascular endothelial cell monolayer wounds, by increasing the motility of the endothelial cells. Wound closure in HUVEC cells was partly inhibited by the antibodies against HGF. The stromal microenvironment regulates wound healing responses and often promotes tumorigenesis. Nemosis offers clues to the activation process of stromal fibroblasts and provides a model to study the part they play in angiogenesis-related conditions, as well as possibilities for therapeutical approaches desiring angiogenesis in tissue.  相似文献   

14.
The growth of capillary endothelial cells (BCE) is an important regulatory step in the formation of capillary blood vessels. In vivo, the proliferation of these cells is stringently controlled. In vitro they can be stimulated by polypeptide growth factors, such as acidic fibroblast growth factor (aFGF) and basic fibroblast growth factor (bFGF). Since bFGF is synthesized and stored by vascular endothelial cells, this mitogen may play an important role in an autocrine growth regulation during angiogenesis. Here, evidence is presented for induction of the mRNA of bFGF by bFGF itself. A similar increase of bFGF mRNA was observed in response to thrombin and after treatment with phorbol ester. These results suggest that an autocrine loop may exist that may serve to modulate the mitogenic response in BCE under various physiological conditions, (e.g., wound healing and new capillary formation).  相似文献   

15.
Recently, we demonstrated that a specific combination of growth factors enhances the survival, adhesion and angiogenic potential of mononuclear cells (MNCs). In this study, we sought to investigate the changes of the angiogenic potential of MNCs after short‐time priming with a specific combination of growth factors. MNCs were isolated using density gradient centrifugation and incubated with a priming cocktail containing epidermal growth factor (EGF), insulin‐like growth factor (IGF)‐1, fibroblast growth factor (FGF)‐2, FMS‐like tyrosine kinase (Flt)‐3L , Angiopoietin (Ang)‐1, granulocyte chemotactic protein (GCP)‐2 and thrombopoietin (TPO) (all 400 ng/ml) for 15, 30 and 60 min. Wounds in nonobese diabetic‐severe combined immune deficiency (NOD‐SCID) mice were created by skin excision followed by cell transplantation. We performed a qRT‐PCR analysis on the growth factor–primed cells. The angiogenic factors vascular endothelial growth factor (VEGF)‐A, FGF‐2, hepatocyte growth factor (HGF), platelet‐derived growth factor (PDGF) and interleukin (IL)‐8 and the anti‐apoptotic factors IGF‐1 and transforming growth factor‐β1 were significantly elevated in the MNCs primed for 30 min. (T30) compared with the non‐primed MNCs (T0). The scratch wound assay revealed that T30‐ conditioned media (CM) significantly increased the rate of fibroblast‐mediated wound closure compared with the rates from T0‐CM and human umbilical vein endothelial cells (HUVEC)‐CM at 20 hrs. In vivo wound healing results revealed that the T30‐treated wounds demonstrated accelerated wound healing at days 7 and 14 compared with those treated with T0. The histological analyses demonstrated that the number of engrafted cells and transdifferentiated keratinocytes in the wounds were significantly higher in the T30‐transplanted group than in the T0‐transplanted group. In conclusion, this study suggests that short‐term priming of MNCs with growth factors might be alternative therapeutic option for cell‐based therapies.  相似文献   

16.
Denervation degrades normal ligament properties and impairs ligament healing. This suggests that secreted neuromediators, such as neuropeptides, could be modulating cell metabolism in ligament and scar tissue. To test this hypothesis we investigated the effect of exogenous substance P (SP), neuropeptide Y (NPY) or calcitonin gene-related peptide (CGRP) on the mRNA levels for proteins associated with inflammation, angiogenesis, and matrix production in tissue-cultured specimens of normal and injured medial collateral ligament. SP and NPY induced increased mRNA levels for several inflammatory mediators in the 2-week post-injury specimens. All three neuropeptides induced decreases in mRNA levels for healing-associated growth factors and matrix molecules, including basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF) and collagen types I and III. The results indicate that neuropeptides strongly influence the metabolic activity of cells in healing ligament, particularly at early time points after injury.  相似文献   

17.
Gamma-aminobutyric acid (GABA) is a non-protein amino acid. It is well known for its role as an inhibitory neurotransmitter of developing and operating nervous systems in brains. In this study, a novel function of GABA in the healing process of cutaneous wounds was presented regarding anti-inflammation and fibroblast cell proliferation. The cell proliferation activity of GABA was verified through an MTT assay using murine fibroblast NIH3T3 cells. It was observed that GABA significantly inhibited the mRNA expression of iNOS, IL-1beta, and TNF-alpha, in LPS-stimulated RAW 264.7 cells. To evaluate in vivo activity of GABA in wound healing, excisional open wounds were made on the dorsal sides of Sprague-Dawley rats under anesthesia, and the healing of the wounds was apparently assessed. The molecular aspects of the healing process were also investigated by hematoxylineosin staining of the healed skin, displaying the degrees of reepithelialization and linear alignment of the granulation tissue, and immunostaining and RT-PCR analyses of fibroblast growth factor and platelet-derived growth factor, implying extracellular matrix synthesis and remodeling of the skin. The GABA treatment was effective to accelerate the healing process by suppressing inflammation and stimulating reepithelialization, compared with the epidermal growth factor treatment. The healing effect of GABA was remarkable at the early stage of wound healing, which resulted in significant reduction of the whole healing period.  相似文献   

18.
We investigated whether low-level light irradiation prior to transplantation of adipose-derived stromal cell (ASC) spheroids in an animal skin wound model stimulated angiogenesis and tissue regeneration to improve functional recovery of skin tissue. The spheroid, composed of hASCs, was irradiated with low-level light and expressed angiogenic factors, including vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF), and hepatocyte growth factor (HGF). Immunochemical staining analysis revealed that the spheroid of the hASCs was CD31+, KDR+, and CD34+. On the other hand, monolayer-cultured hASCs were negative for these markers. PBS, human adipose tissue-derived stromal cells, and the ASC spheroid were transplanted into a wound bed in athymic mice to evaluate the therapeutic effects of the ASC spheroid in vivo. The ASC spheroid transplanted into the wound bed differentiated into endothelial cells and remained differentiated. The density of vascular formations increased as a result of the angiogenic factors released by the wound bed and enhanced tissue regeneration at the lesion site. These results indicate that the transplantation of the ASC spheroid significantly improved functional recovery relative to both ASC transplantation and PBS treatment. These findings suggest that transplantation of an ASC spheroid treated with low-level light may be an effective form of stem cell therapy for treatment of a wound bed.  相似文献   

19.
The thienopyridine, ticlopidine, a potent platelet antiaggregating agent and SR 25989, an esterified derivative of ticlopidine, devoid of antiplatelet activity, were tested in an in vitro model of healing of a mechanical wound in confluent endothelium. This model allows exploration of substances involved in wound healing and angiogenesis. These two compounds inhibited both cell proliferation and cell migration during lesion repair in a dose-dependent manner (18–150 μM), SR 25989 being twice as active as ticlopidine. Its effect was not inhibited by acidic or basic fibroblast growth factor or by platelet derived growth factor. In contrast, it exerted a conjugated inhibition with standard heparin and was able to totally reverse the healing increase induced by a mixture of acidic fibroblast growth factor and heparin. The mechanism of action of SR 25989 is not yet elucidated, but it does not seem to involve competition with fibroblast growth factors since these substances were not able to alter their binding to receptors on the endothelial cell surface. SR 25989 therefore appears as a promising new candidate for inhibition of angiogenesis. © 1994 Wiley-Liss, Inc.  相似文献   

20.
牙周膜细胞作为牙周组织工程中的重要种子细胞,在一定因素的诱导下,能够分化形成牙周组织的各种细胞,比如成纤维细胞,成骨细胞等,这些细胞能够分泌纤维蛋白,骨钙素等,进而钙化形成骨组织等与牙周组织相似或者相同的成分。胰岛素样生长因子作为重要的细胞因子,很多研究表明它在细胞迁移、增殖、分化、促进分泌等方面发挥作用,所以胰岛素样生长因子一直受到研究者的青睐。本文将对胰岛素样生长因子在牙周组织工程中的种子细胞的不同作用的研究进展进行综述,同时对牙周组织工程中的未来进行展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号