首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of muscarinic cholinergic stimulation on beta-adrenergic induced increases in phospholamban phosphorylation and Ca2+ transport were studied in intact myocardium. Isolated guinea pig ventricles were perfused via the coronary arteries with 32Pi, after which membrane vesicles were isolated from individual hearts. Isoproterenol produced reversible increases in 32P incorporation into phospholamban. Associated with the increases in 32P incorporation were increases in the initial rate of phosphate-facilitated Ca2+ uptake measured in aliquots of the same membrane vesicles isolated from the perfused hearts. The increases in 32P incorporation and calcium transport were significantly attenuated by the simultaneous administration of acetylcholine. Acetylcholine also attenuated increases in phospholamban phosphorylation and Ca2+ uptake produced by the phosphodiesterase inhibitor isobutylmethylxanthine and forskolin. The contractile effects of all agents which increased cAMP levels (increased contractility and a reduction in the t1/2 of relaxation) were also attenuated by acetylcholine. The inhibitory effects of acetylcholine were associated with attenuation of the increases in cAMP levels produced by isoproterenol and isobutylmethylxanthine but not by forskolin. Acetylcholine also increased the rate of reversal of the functional and biochemical effects of isoproterenol by propranolol without affecting cAMP levels. These results suggest that cholinergic agonists inhibit the functional effects of beta-adrenergic stimulation in part by inhibition of phospholamban phosphorylation. This inhibition may be mediated by two potential mechanisms: inhibition of beta-adrenergic activation of adenylate cyclase and stimulation of dephosphorylation.  相似文献   

2.
Isoprenaline stimulation of perfused rabbit hearts was associated with simultaneous phosphorylation of proteins in the myofilaments and phospholamban in the sarcoplasmic reticulum (SR). Hearts were perfused with Krebs-Henseleit buffer containing [32P]Pi, freeze-clamped in a control condition or at the peak of the inotropic response to isoprenaline, and myofibrils and SR were prepared from the same hearts. Stimulation of 32P incorporation in troponin I (TnI) and C-protein by isoprenaline was associated with a decrease in Ca2+-sensitivity of the myofibrillar Mg2+-dependent ATPase activity. Stimulation of 32P incorporation in SR by isoprenaline was associated with an increase in the initial rates of oxalate-facilitated Ca2+ transport, assayed with SR vesicles in either microsomal fractions or homogenates from the perfused hearts. These findings provide evidence that phosphorylation of TnI, C-protein and phospholamban in the intact cell is associated with functional alterations of the myofibrils and SR which may be responsible in part for the effects of catecholamines on the mammalian myocardium.  相似文献   

3.
The effects of alpha- and beta-adrenergic stimulation on sarcolemmal protein phosphorylation and contractile slow responses were studied in intact myocardium. Isolated rat ventricles were perfused via the coronary arteries with 32Pi after which membrane vesicles partially enriched in sarcolemma were isolated from individual hearts. Alterations in the sarcolemmal slow inward Ca2+ current were assessed in the 32P-perfused hearts using a contractile slow response model. In this model, Na+ channels were first inactivated by partial depolarization of the hearts in 25 mM K+ after which alterations in Ca2+ channel activity produced by either alpha- or beta-adrenergic agonists could be assessed as restoration of contractions. alpha-Adrenergic stimulation (phenylephrine + propranolol) of the perfused hearts resulted in increased 32P incorporation into a 15-kDa sarcolemmal protein. This protein co-migrated with the 15-kDa sarcolemmal protein phosphorylated in hearts exposed to beta-adrenergic stimulation produced by isoproterenol. beta-Adrenergic stimulation, but not alpha-adrenergic stimulation, also resulted in phosphorylation of the sarcoplasmic reticulum protein, phospholamban. Phosphorylation of the 15-kDa protein in perfused hearts in response to either alpha- or beta-adrenergic stimulation was associated with restoration of contractions, indicative of increases in the slow inward Ca2+ current. Increases in 32P incorporation into the 15-kDa protein preceded restoration of contractions by phenylephrine. Nifedipine abolished the contractile responses to alpha-adrenergic stimulation while having no effect on increases in 15-kDa protein phosphorylation. The effects of alpha-adrenergic stimulation occurred in the absence of increases in cAMP levels. These results suggest that phosphorylation of the 15-kDa protein may be involved in increases in the slow inward current produced by stimulation of either alpha- or beta-adrenergic receptors.  相似文献   

4.
Canine cardiac sarcoplasmic reticulum is phosphorylated by cyclic AMP-dependent and by Ca2+-calmodulin-dependent protein kinases on a 22 kDa protein, called phospholamban. Both types of phosphorylation have been shown to stimulate the initial rates of Ca2+ transport. To establish the interrelationship of the cAMP-dependent and Ca2+-calmodulin-dependent phosphorylation on Ca2+ transport, cardiac sarcoplasmic reticulum vesicles were preincubated under optimum conditions for: (a) cAMP-dependent phosphorylation, (b) Ca2+-calmodulin-dependent phosphorylation, and (c) combined cAMP-dependent and Ca2+-calmodulin-dependent phosphorylation. Control vesicles were treated under identical conditions, but in the absence of ATP, to avoid phosphorylation. Control and phosphorylated sarcoplasmic reticulum vesicles were subsequently centrifuged and assayed for Ca2+ transport in the presence of 2.5 mM Tris-oxalate. Our results indicate that cAMP-dependent and Ca2+-calmodulin-dependent phosphorylation can each stimulate calcium transport in an independent manner and when both are operating, they appear to have an additive effect. Stimulation of Ca2+ transport was associated with a statistically significant increase in the apparent affinity for calcium by each type of phosphorylation. The degree of stimulation of the calcium affinity was relatively proportional to the degree of phospholamban phosphorylation. These findings suggest the presence of a dual control system which may operate in independent and combined manners for regulating cardiac sarcoplasmic reticulum function.  相似文献   

5.
The effect of beta-adrenergic stimulation on sarcolemmal protein phosphorylation was examined in intact ventricular myocardium. Isolated guinea pig ventricles were perfused via the coronary arteries with 32Pi after which membrane vesicles enriched 3-5-fold in sarcolemma were isolated by differential centrifugation followed by sucrose gradient centrifugation. Perfusion of hearts with isoproterenol stimulated 32P incorporation into a protein of apparent molecular weight of 15,000, which copurified with sarcolemmal vesicles. The increase in 32P incorporation was rapid in onset and elevated 2.5-3.0-fold after 30-45 s exposure of hearts to 100 nM isoproterenol. A positive correlation was found between stimulation of phosphorylation of the 15-kDa protein and the increase in the maximal rate of developed tension in intact ventricles after administration of isoproterenol. Phosphorylated phospholamban (most likely present as a contaminant) was also identified in the same sarcolemmal preparations. However, phospholamban and the 15-kDa sarcolemmal substrate were different proteins. Boiling of the membrane samples in sodium dodecyl sulfate prior to electrophoresis dissociated the high Mr form of phospholamban into the form of lower Mr but did not alter the mobility of the 15-kDa protein in sodium dodecyl sulfate-polyacrylamide gels. The 15-kDa protein did not undergo the electrophoretic mobility shift that is characteristic of phospholamban after cAMP-dependent phosphorylation nor did it cross-react with a highly specific phospholamban antibody. In vitro phosphorylation experiments conducted with the unmasking agent Triton X-100 suggested that the 15-kDa protein was localized to the cytoplasmic surfaces of sarcolemmal vesicles. These results demonstrate phosphorylation of a sarcolemmal protein, distinct from phospholamban, in response to beta-adrenergic stimulation of the heart. Phosphorylation of the sarcolemmal 15-kDa protein may play a role in mediating the effects of beta-adrenergic agonists on cardiac contractile force.  相似文献   

6.
Calcium fluxes across the sarcoplasmic reticulum membrane are regulated by phosphorylation of a 27,000-dalton membrane-bound protein termed phospholamban. Phospholamban is phosphorylated by three different protein kinases (cAMP-dependent, Ca2+.CAM-dependent and Ca2+.phospholipid dependent) at apparently distinct sites. Phosphorylation by each of the protein kinases increases the rates of active calcium transport by sarcoplasmic reticulum vesicles. The stimulatory effects of protein kinases on the calcium pump may be reversed by an endogenous protein phosphatase activity. The phosphoprotein phosphatase can dephosphorylate both the cAMP-dependent and the Ca2+.CAM-dependent sites of phospholamban. Phosphorylation of phospholamban also occurs in situ, in perfused beating hearts, during the peak of the inotropic response to beta-adrenergic stimulation. Reversal of the stimulatory effects is associated with dephosphorylation of phospholamban. Thus, in vivo and in vitro studies suggest that phospholamban is a regulator for the calcium pump in cardiac sarcoplasmic reticulum. The degree of phospholamban phosphorylation determined by the interaction of specific protein kinases and phosphatases may represent an important control for sarcoplasmic reticulum function and, thus, for the contraction-relaxation cycle in the myocardium. In this review, we summarize recent evidence on physical and structural properties of phospholamban, the proposed structural molecular models for this protein, and the significance of its regulatory role both in vitro and in situ.  相似文献   

7.
The calcium transport mechanism of cardiac sarcoplasmic reticulum (SR) is regulated by a phosphoregulatory mechanism involving the phosphorylation-dephosphorylation of an integral membrane component, termed phospholamban. Phospholamban, a 27,000 Da proteolipid, contains phosphorylation sites for three independent protein kinases: 1) cAMP-dependent, 2) Ca2+-calmodulin-dependent, and 3) Ca2+-phospholipid-dependent. Phosphorylation of phospholamban by any one of these kinases is associated with stimulation of the calcium transport rates in isolated SR vesicles. Dephosphorylation of phosphorylated phospholamban results in the reversal of the stimulatory effects produced by the protein kinases. Studies conducted on perfused hearts have shown that during exposure to beta-adrenergic agents, a good correlation exists between the in situ phosphorylation of phospholamban and the relaxation of the left ventricle. Phosphorylation of phospholamban in situ is also associated with stimulation of calcium transport rates by cardiac SR, similar to in vitro findings. Removal of beta-adrenergic agents results in the reversal of the inotropic response and this is associated with dephosphorylation of phospholamban. These findings indicate that a phospho-regulatory mechanism involving phospholamban may provide at least one of the controls for regulation of the contractile properties of the myocardium.  相似文献   

8.
Adrenergic stimulation alters functional dynamics of the heart by mechanisms most likely involving cyclic AMP (cAMP)-dependent protein phosphorylation. In vitro studies indicate that the myofibrils and sarcoplasmic reticulum (SR) may act as effectors of the adrenergic stimulation. cAMP-dependent phosphorylation of troponin I (TnI), one of the regulatory proteins of cardiac myofibrils, results in a decreased steady-state affinity of troponin C (TnC) for calcium, an increase in the off-rate for Ca2+ exchange with TnC, and a rightward shift of the relation between free Ca2+ and myofibrillar force or ATPase. Phosphorylation of phospholamban, a regulatory protein of cardiac SR, results in an increased velocity of Ca2+ transport by SR vesicles, an increased affinity of the transport protein for Ca2+, and an increased turnover of elementary steps of the ATPase reaction. These in vitro findings support the hypothesis that the inotropic response of the heart to catecholamine stimulation involves phosphorylation of TnI and phospholamban. Our in vivo studies with perfused rabbit hearts show that during the peak of the inotropic response to isoproterenol there is a simultaneous phosphorylation of TnI and an 11,000-dalton protein in the SR, most likely the monomeric form of phospholamban.  相似文献   

9.
Subunit structure and multiple phosphorylation sites of phospholamban   总被引:1,自引:0,他引:1  
The phosphorylation-induced mobility shift of the high molecular weight form of phospholamban (24,500 daltons) in the cardiac sarcoplasmic reticulum produced on 3',5'-cyclic AMP (cAMP)-dependent phosphorylation with 5 mM ATP was resolved into five clear steps on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and on Ca2+-calmodulin-dependent phosphorylation into ten steps. The mobility shift of the low molecular weight form of phospholamban (less than 14,400 daltons) in these reactions occurred in one step and two steps, respectively. With the two protein kinase activities, the electrophoretic pattern of the mobility shifts of the high and low molecular weight forms of phospholamban was similar to that obtained with Ca2+-calmodulin-dependent protein kinase alone. The results of pulse-chase experiments involving the centrifuge column method suggested that the site(s) of phosphorylation by cAMP- and Ca2+-calmodulin-dependent protein kinase activities are on the same phospholamban molecule. Two-dimensional tryptic peptide maps of phosphorylated phospholamban indicated that cAMP-dependent protein kinase phosphorylates at a single site, A, and Ca2+-calmodulin-dependent protein kinase phosphorylates at sites C1 and C2 in the low molecular weight form, where A is different from C1 but may be the same as C2. The high molecular weight form of phospholamban is suggested to be a pentamer of identical monomers (low molecular weight form) having one phosphorylation site for cAMP-dependent protein kinase and two for Ca2+-calmodulin-dependent protein kinase.  相似文献   

10.
Phospholamban is the major membrane protein of the heart phosphorylated in response to beta-adrenergic stimulation. In cell-free systems, cAMP-dependent protein kinase catalyzes exclusive phosphorylation of serine 16 of phospholamban, whereas Ca2+/calmodulin-dependent protein kinase gives exclusive phosphorylation of threonine 17 (Simmerman, H. K. B., Collins, J. H., Theibert, J. L., Wegener, A. D., and Jones, L. R. (1986) J. Biol. Chem. 261, 13333-13341). In this work we have localized the sites of phospholamban phosphorylation in intact ventricles treated with the beta-adrenergic agonist isoproterenol. Isolation of phosphorylated phospholamban from 32P-perfused guinea pig ventricles, followed by partial acid hydrolysis and phosphoamino acid analysis, revealed phosphorylation of both serine and threonine residues. At steady state after isoproterenol exposure, phospholamban contained approximately equimolar amounts of these two phosphoamino acids. Two major tryptic phosphopeptides containing greater than 90% of the incorporated radioactivity were obtained from phospholamban labeled in intact ventricles. The amino acid sequences of these two tryptic peptides corresponded exactly to residues 14-25 and 15-25 of canine cardiac phospholamban, thus localizing the sites of in situ phosphorylation to serine 16 and threonine 17. Phosphorylation of phospholamban at two sites in heart perfused with isoproterenol was supported by detection of 11 distinct mobility forms of the pentameric protein by use of the Western blotting method, consistent with each phospholamban monomer containing two phosphorylation sites, and with each pentamer containing from 0 to 10 incorporated phosphates. Our results localize the sites of in situ phospholamban phosphorylation to serine 16 and threonine 17 and, furthermore, are consistent with the phosphorylations of these 2 residues being catalyzed by cAMP- and Ca2+/calmodulin-dependent protein kinases, respectively.  相似文献   

11.
A severalfold activation of calcium transport and (Ca2+ + Mg2+)-activated ATPase activity by micromolar concentrations of calmodulin was observed in sarcoplasmic reticulum vesicles obtained from canine ventricles. This activation was seen in the presence of 120 mM KCl. The ratio of moles of calcium transported per mol of ATP hydrolyzed remained at about 0.75 when calcium transport and (Ca2+ + Mg2+)-activated ATPase activity were measured in the presence and absence of calmodulin. Thus, the efficiency of the calcium transport process did not change. Stimulation of calcium transport by calmodulin involves the phosphorylation of one or more proteins. The major 32P-labeled protein, as determined by sodium dodecyl sulfate slab gel electrophoresis, was the 22,000-dalton protein called phospholamban. The Ca2+ concentration dependency of calmodulin-stimulated microsomal phosphorylation corresponded to that of calmodulin-stimulated (Ca2+ + Mg2+)-activated ATPase activity. Proteins of 11,000 and 6,000 daltons and other proteins were labeled to a lesser extent. A similar phosphorylation pattern was obtained when microsomes were incubated with cAMP-dependent protein kinase and ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. Phosphorylation produced by added cAMP-dependent protein kinase and calmodulin was additive. These studies provided further evidence for Ca2+-dependent regulation of calcium transport by calmodulin in sarcoplasmic reticulum that could play a role in the beat-to-beat regulation of cardiac relaxation in the intact heart.  相似文献   

12.
Cardiac sarcoplasmic reticulum plays a critical role in the excitation-contraction cycle and hormonal regulation of heart cells. Catecholamines exert their ionotropic action through the regulation of calcium transport into the sarcoplasmic reticulum. Cyclic 3'-5'-adenosine monophosphate (cAMP) causes the cAMP-dependent protein kinase to phosphorylate the regulatory protein phospholamban, which results in the stimulation of calcium transport. Calmodulin also phosphorylates phospholamban by a calcium-dependent mechanism. We have reported the isolation and purification of phospholamban with low deoxycholate (DOC) concentrations (5 X 10(-6) M). We have also reported the isolation and purification of Ca2+ + Mg2+-ATPase with a similar procedure. Both phospholamban and Ca2+ + Mg2+-ATPase retained their native properties associated with sarcoplasmic reticulum vesicles. Further, we have shown that the removal of phospholamban from membranes of sarcoplasmic reticulum vesicles uncouples Ca2+-uptake from ATPase without any effect on Ca2+ + Mg2+-ATPase activity or Ca2+ efflux. Phospholamban appears to be the substrate for both the Ca2+-calmodulin system and the cAMP-dependent protein kinase system. It is found that the phosphorylation of phospholamban by the Ca2+-calmodulin system is required for the normal basal level of Ca2+ transport, and that the phosphorylation of phospholamban at another site by the cAMP-dependent protein kinase system causes the stimulation of Ca2+-transport above the basal level. The functional effects of the phosphorylation of phospholamban by cAMP-dependent protein kinase system are expressed only after the phosphorylation of phospholamban with Ca2+-calmodulin system. We propose a model for the cardiac Ca2+ + Mg2+-ATPase, whereby the enzyme is normally uncoupled from Ca2+ uptake. The enzyme becomes coupled to Ca2+ transport after the first site of phospholamban is phosphorylated with the Ca2+-calmodulin system. When the second site of phospholamban is phosphorylated with cAMP-dependent protein kinase both Ca2+ transport and ATPase are stimulated and phospholamban becomes inaccessible to DOC solubilization and trypsin.  相似文献   

13.
The sarcoplasmic reticulum (SR) plays a critical role in mediating cardiac contractility and its function is abnormal in the diabetic heart. However, the mechanisms underlying SR dysfunction in the diabetic heart are not clear. Because protein phosphorylation regulates SR function, this study examined the phosphorylation state of phospholamban, a key SR protein that regulates SR calcium (Ca2+) uptake in the heart. Diabetes was induced in male Sprague-Dawley rats by an injection of streptozotocin (STZ; 65 mg kg(-1) i.v.), and the animals were humanely killed after 6 weeks and cardiac SR function was examined. Depressed cardiac performance was associated with reduced SR Ca2+-uptake activity in diabetic animals. The reduction in SR Ca2+-uptake was consistent with a significant decrease in the level of SR Ca2+-pump ATPase (SERCA2a) protein. The level of phospholamban (PLB) protein was also decreased, however, the ratio of PLB to SERCA2a was increased in the diabetic heart. Depressed SR Ca2+-uptake was also due to a reduction in the phosphorylation of PLB by the Ca2+-calmodulin-dependent protein kinase (CaMK) and cAMP-dependent protein kinase (PKA). Although the activities of the SR-associated Ca2+-calmodulin-dependent protein kinase (CaMK), cAMP-dependent protein kinase (PKA) were increased in the diabetic heart, depressed phosphorylation of PLB could partly be attributed to an increase in the SR-associated protein phosphatase activities. These results suggest that there is increased inhibition of SERCA2a by PLB and this appears to be a major defect underlying SR dysfunction in the diabetic heart.  相似文献   

14.
Transgenic (TG) mice expressing a Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitory peptide targeted to the cardiac myocyte longitudinal sarcoplasmic reticulum (LSR) display reduced phospholamban phosphorylation at Thr17 and develop dilated myopathy when stressed by gestation and parturition (Ji Y, Li B, Reed TD, Lorenz JN, Kaetzel MA, and Dedman JR. J Biol Chem 278: 25063-25071, 2003). In the present study, these animals (TG) are evaluated for the effect of inhibition of sarcoplasmic reticulum (SR) CaMKII activity on the contractile characteristics and Ca2+ cycling of myocytes. Analysis of isolated work-performing hearts demonstrated moderate decreases in the maximal rates of contraction and relaxation (+/-dP/dt) in TG mice. The response of the TG hearts to increases in load is reduced. The TG hearts respond to isoproterenol (Iso) in a dose-dependent manner; the contractile properties were reduced in parallel to wild-type hearts. Assessment of isolated cardiomyocytes from TG mice revealed 40-47% decrease in the maximal rates of myocyte shortening and relengthening under both basal and Iso-stimulated conditions. Although twitch Ca2+ transient amplitudes were not significantly altered, the rate of twitch intracellular Ca2+ concentration decline was reduced by approximately 47% in TG myocytes, indicating decreased SR Ca2+ uptake function. Caffeine-induced Ca2+ transients indicated unaltered SR Ca2+ content and Na+/Ca2+ exchange function. Phosphorylation assays revealed an approximately 30% decrease in the phosphorylation of ryanodine receptor Ser2809. Iso stimulation increased the phosphorylation of both phospholamban Ser16 and the ryanodine receptor Ser2809 but not phospholamban Thr17 in TG mice. This study demonstrates that inhibition of SR CaMKII activity at the LSR results in alterations in cardiac contractility and Ca2+ handling in TG hearts.  相似文献   

15.
Quantitative immunoassays to discriminate and quantitate phospholamban and its phosphorylation states in heart homogenates were developed using known amounts of protein determined by amino acid analysis. Synthetic 1-52 phospholamban, the hydrophilic 1-25 peptide, and 1-25 phosphopeptides containing P-Ser(16), P-Thr(17), and dually phosphorylated (P-Ser(16), P-Thr(17)) were used to calibrate immunoblot systems. In addition, synthetic 1-52 peptide was phosphorylated using cAMP-dependent protein kinase (P-Ser(16)) or Ca(2+)-calmodulin protein kinase (P-Thr(17)) and then separated from unphosphorylated 1-52 by HPLC prior to quantitation. Further, canine cardiac sarcoplasmic reticulum was phosphorylated in vitro using [gamma-(32)P]-ATP with cAMP-dependent protein kinase and/or Ca(2+)-calmodulin-dependent protein kinase as well as sequential phosphorylation in both orders to assess the veracity of antibody recognition of phosphorylated forms. Western blots proved useful in characterizing the reactivity of the different antibodies to phospholamban and phosphorylated phospholamban, but were inefficient for accurate quantitation and problems with antibody recognition of dually phosphorylated phospholamban were found. mAb 1D11 recognized all forms of phospholamban, polyclonal antibodies 285 and PS-16 were highly selective for P-Ser(16) phospholamban but had diminished reactivity to diphosphorylated (P-Ser(16), P-Thr(17)) phospholamban, and polyclonal antibody PT-17, although selective for P-Thr(17) phospholamban, generated very weak signals on Western blots and reacted poorly with diphosphorylated phospholamban. Results in quantitative immunodot blot experiments were even more compelling. None of the phosphorylation specific antibodies reacted with the diphospho 1-25 phospholamban peptide. Transgenic mouse hearts expressing varying levels of PLB and ferret heart biopsy samples taken before and after isoproterenol perfusion were analyzed. In all samples containing phospholamban, a basal level of Ser(16) phosphorylation (about 4% of the total PLB population) and a lesser amount of Thr(17) phosphorylation was observed. Upon isoproterenol perfusion, Ser(16) phosphorylation increased only to 17% of the total phospholamban population with a similar change in Thr(17) phosphorylation. This suggests that phospholamban phosphorylation may serve as an electrostatic switch that dissociates inactive calcium pump complexes into catalytically active units. Thus, direct correlations between phospholamban phosphorylation state and contractile parameters may not be valid.  相似文献   

16.
Canine cardiac sarcoplasmic reticulum is phosphorylated by adenosine 3',5'-monophosphate (cAMP)-dependent and by Ca2+-calmodulin-dependent protein kinases on an Mr 22 000 protein called phospholamban. Both types of phosphorylation are associated with an increase in the initial rate of Ca2+ transport. Thus, phospholamban appears to be a regulator for the calcium pump in cardiac sarcoplasmic reticulum. However, there is conflicting evidence as to the degree of association of the Ca2+-ATPase with its regulator, phospholamban. In this study, we report that phospholamban does not copurify with a Ca2+-ATPase preparation of high specific activity. Although 32P-labeled phospholamban is solubilized in the same fraction as the Ca2+-ATPase from cardiac sarcoplasmic reticulum, it dissociates from the Ca2+ pump during subsequent purification steps. Our isolation procedure results in an increase of over 4-fold in the specific activity of the Ca2+-ATPase, but a decrease of 2.5-fold in the specific activity of 32Pi-phosphoester bonds (pmol Pi/mg). Furthermore, the purified Ca2+-ATPase enzyme preparation is not a substrate for protein kinase in vitro to any significant extent. These data indicate that phospholamban does not copurify with the Ca2+-ATPase from cardiac sarcoplasmic reticulum. Isolation of a Ca2+-ATPase preparation essentially free of phospholamban will aid in future kinetic studies designed to elucidate similarities and differences in the Ca2+-ATPase parameters from cardiac and skeletal muscle (which is known not to contain phospholamban).  相似文献   

17.
H W Kim  Y S Ch  H R Lee  S Y Park  Y H Kim 《Life sciences》2001,70(4):367-379
Diabetic cardiomyopathy has been suggested to be caused by abnormal intracellular Ca2+ homeostasis in the myocardium, which is partly due to a defect in calcium transport by the cardiac sarcoplasmic reticulum (SR). In the present study, the underlying mechanism for this functional derangement was investigated with respect to SR Ca2+-ATPase and phospholamban (the inhibitor of SR Ca2+-ATPase). The maximal Ca2+ uptake and the affinity of Ca2+-ATPase for Ca2+ were decreased, and exogenous phosphorylation level of phospholamban was higher in streptozotocin-induced diabetic rat SR. Levels of both mRNA and protein of phospholamban were significantly increased in the diabetic hearts, whereas those of SR Ca2+-ATPase were significantly decreased. Consequently, the relative phospholamban/Ca2+-ATPase ratio was 1.88 in the diabetic hearts, and these changes were correlated with changes in the rates of SR Ca2+ uptake. However, phosphatase pretreatment of phospholamban for dephosphorylation of the sites phosphorylated in vivo did not change the levels of subsequent phospholamban phosphorylation in either control or diabetic rat hearts. The above data indicated that the increased phospholamban phosphorylation was not due to autonomic dysfunction but possibly due to increased phospholamban expression. These findings suggest that reduction of the SR Ca2+-ATPase level would contribute to decreased rates of SR Ca2+ uptake and that this function is further impaired by the enhanced inhibition by phospholamban due to its increased expression in the diabetic heart.  相似文献   

18.
Purified phospholamban isolated from canine cardiac sarcoplasmic reticulum vesicles was subjected to proteolysis and peptide mapping to localize the different sites of phosphorylation on the protein and to gain further information on its subunit structure. Five different proteases (trypsin, papain, chymotrypsin, elastase, and Pronase) degraded the oligomeric 27-kDa phosphoprotein into a major 21-22-kDa protease-resistant fragment. No 32P was retained by this protease-resistant fragment, regardless of whether phospholamban had been phosphorylated by cAMP-dependent protein kinase, Ca2+/calmodulin-dependent protein kinase, or protein kinase C. Phosphoamino acid analysis and thin-layer electrophoresis of liberated phosphopeptides revealed that 1 threonine and 2 serine residues were phosphorylated in phospholamban and that 1 of these serine residues and the threonine residue were in close proximity. Only serine was phosphorylated by cAMP-dependent protein kinase, whereas Ca2+-calmodulin-dependent protein kinase phosphorylated exclusively threonine. The results demonstrate that phospholamban has a large protease-resistant domain and a smaller protease-sensitive domain, the latter of which contains all of the sites of phosphorylation. The 21-22-kDa protease-resistant domain, although devoid of incorporated 32P, was completely dissociated into identical lower molecular weight subunits by boiling in sodium dodecyl sulfate, suggesting that this region of the molecule promotes the relatively strong interactions that hold the subunits together. The data presented lend further support for a model of phospholamban structure in which several identical low molecular weight subunits are noncovalently bound to one another, each containing one site of phosphorylation for cAMP-dependent protein kinase and another site of phosphorylation for Ca2+/calmodulin-dependent protein kinase.  相似文献   

19.
Phosphorylation of cardiac sarcoplasmic reticulum membrane vesicles by exogenous c-AMP and c-AMP-dependent protein kinase stimulates calcium uptake and Ca2+-dependent ATP hydrolysis by 40-50% and results in the incorporation of 32P into a 22-KDa protein, phospholamban. Treatment of the membrane with DOC (0.0002% or 5 X 10(-6) M) solubilizes phospholamban from the membrane and induces a 90% inhibition of basal calcium uptake. This inhibition cannot be attributed to an alteration in vesicle integrity or membrane permeability. The (Ca2+ + Mg2+)-ATPase remains associated with the membrane fraction and exhibits optimal levels of Ca2+-stimulated ATP hydrolysis. Phosphorylation prior to DOC treatment allows retention of the phospholamban in the membrane, concomitant with maintenance of the calcium transport activity. The results presented suggest that phospholamban is involved in the maintenance of basal calcium transport function in cardiac sarcoplasmic reticulum and that its phosphorylation stimulates Ca2+ transport.  相似文献   

20.
The effects of beta-adrenergic stimulation on the relaxation rate and the Ca2+-transport rate in sarcoplasmic reticulum of hypothyroid, euthyroid and hyperthyroid rat hearts were studied. Administration of isoproterenol (0.1 microM) to perfused, electrically stimulated hearts (5 Hz) caused a decrease in the half-time of relaxation (RT 1/2) the extent of which depended on the thyroid status, i.e. hypothyroid (-24%), euthyroid (-19%) or hyperthyroid (-8%). A similar decreasing effect was found for the stimulation of Ca2+ transport in isolated SR by cyclic AMP and protein kinase, i.e. hypothyroid (75%), euthyroid (37%) and hyperthyroid (20%). These alterations were not due to differences in endogenous protein kinase activity or cyclic AMP production. Estimations of Ca2+-ATPase and phospholamban (PL) content of the sarcoplasmic reticulum were obtained by measurement of the phosphorylated forms of Ca2+-ATPase (E-P) and phospholamban (PL-P) followed by electrophoresis and autoradiography. A 3-fold decrease of PL-P, accompanied by a 2-fold increase of E-P per mg of protein was observed in sarcoplasmic reticulum preparations in the direction hypothyroid----hyperthyroid. Consequently the E-P/PL-P ratio increased from 0.32 (hypothyroid), through 0.81 (euthyroid) to 1.69 (hyperthyroid). In spite of certain limitations inherent to quantification of Ca2+-ATPase and phospholamban by their phosphorylated products, these data provide strong evidence that during thyroid-hormone mediated cardiac hypertrophy, with concomitant proliferation of the sarcoplasmic reticulum, the relative amount of phospholamban decreases with respect to Ca2+-ATPase. This could provide an explanation for the observed gradual diminishment of the beta-adrenergic effect on the relaxation rate when cardiac tissue is exposed to increasing amounts of thyroid hormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号