首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Differences in hepatitis C virus (HCV) variants of the highly conserved 5' untranslated region (UTR) have been observed between plasma and peripheral blood mononuclear cells (PBMC). The prevalence and the mechanisms of this compartmentalization are unknown. Plasma and PBMC HCV variants were compared by single-strand conformation polymorphism (SSCP) and by cloning or by genotyping with a line probe assay (LiPA) in 116 chronically infected patients, including 44 liver transplant recipients. SSCP patterns differed between compartments in 43/109 analyzable patients (39%). Differences were significantly more frequent in patients with transplants (21/38 [55%] versus 22/71 [31%]; P < 0.01) and in those who acquired HCV through multiple transfusions before 1991 (15/20; 75%) or through drug injection (16/31; 52%) than in those infected through an unknown route (7/29; 24%) or through a single transfusion (5/29; 17%; P < 0.001). Cloning of the 5' UTR, LiPA analysis, and nonstructural region 5B sequencing revealed different genotypes in the two compartments from 10 patients (9%). In nine patients, the genotype detected in PBMC was not detected in plasma and was weak or undetectable in the liver in three cases. This genotypic compartmentalization persisted for years in three patients and after liver transplantation in two. The present study shows that a significant proportion of HCV-infected subjects harbor in their PBMC highly divergent variants which were likely acquired through superinfections.  相似文献   

4.
Cellular and humoral autoreactivity in idiopathic pulmonary fibrosis   总被引:1,自引:0,他引:1  
Idiopathic pulmonary fibrosis (IPF) is a morbid, refractory lung disorder with an unknown pathogenesis. To investigate potential adaptive immune mechanisms in IPF, we compared phenotypes and effector functions of peripheral CD4 T cells, autoantibody production, and proliferative responses of pulmonary hilar lymph node CD4 T cells to autologous lung extracts from afflicted patients and normals. Our results show that greater proportions of peripheral CD4 T lymphocytes in IPF subjects expressed MHC class II and CD154 (CD40L), and they more frequently elaborated TGF-beta1, IL-10, and TNF-alpha. Abnormal CD4 T cell clonal expansions were found in all IPF patients, and 82% of these subjects also had IgG autoantibodies against cellular Ags. IPF lung extracts stimulated proliferations of autologous CD4 T cells, unlike preparations from normals or those with other lung diseases, and the IPF proliferative responses were enhanced by repeated cycles of stimulation. Thus, CD4 T cells from IPF patients have characteristics typical of cell-mediated pathologic responses, including augmented effector functions, provision of facultative help for autoantibody production, oligoclonal expansions, and proliferations driven by an Ag present in diseased tissues. Recognition that an autoreactive immune process is present in IPF can productively focus efforts toward identifying the responsible Ag, and implementing more effective therapies.  相似文献   

5.
Changes in endothelial nitric oxide synthase (eNOS) expression may be involved in the endothelium-dependent vasorelaxation dysfunction associated with several vascular diseases. In the present work, we demonstrate that eNOS mRNA contains a previously undescribed cis element in the 3' untranslated region (3' UTR). A U+C-rich segment in the 3' UTR is critical in complex formation with bovine aortic endothelial cell cytosolic proteins. Tumor necrosis factor alpha (TNF-alpha), which destabilizes eNOS mRNA, increased the binding activity of the cytosolic proteins in a time-dependent manner. These data suggest that endothelial cytosolic proteins bind to the 3' UTR of eNOS mRNA. These proteins may play a role in TNF-alpha-induced eNOS mRNA destabilization.  相似文献   

6.
Many cytokine mRNAs exhibit a conserved, AU-rich motif in the 3'-untranslated region (UTR) of the molecule. Such sequence elements have been implicated in the regulation of mRNA turnover and as potential translational regulators. We report on the identification of a 3 base pair insertion which disrupts the AU motif of the TNF-alpha gene in the NZW, B10.KPA44, SM/J and Mus spretus mice and an insertion of an 8 base pair sequence into the 3' AU motif of the IL-10 gene in the Mus Spretus mouse. The mutation in the AU motif of the TNF-alpha gene correlates with reduced production of this cytokine by peritoneal macrophages from these mouse strains.  相似文献   

7.
8.
The aim of this study was to investigate the possible influence of a 3' untranslated region (3' UTR) polymorphism of the IL12B gene in susceptibility to Trypanosoma cruzi infection or in the development to cardiomyopathy in Chagas' disease (CD). We determined the IL12B 3' UTR genotypes in a sample of 200 seronegative individuals and 260 serologically positive patients (130 with Chagasic cardiomyopathy and 130 asymptomatic). All individuals are from a Colombian region where T. cruzi infection is endemic. Genotyping was performed by the PCR-restriction fragment length polymorphism (RFLP) method. The overall distribution of the IL12B 3' UTR alleles and genotypes in seronegative compared with seropositive individuals was not statistically significant. Interestingly, we found that the IL12B 3' UTR CC genotype was significantly increased among cardiomyopathic patients when compared to asymptomatic individuals (16% versus 5%; P=0.005; P(c)=0.015; OR=3.39; 95% CI 1.3-9.15). In addition, we observed that the IL12B 3' UTR C allele was present at significantly higher frequency in cardiomyopathic (33% versus 22%; P=0.008; P(c)=0.016; OR=1.69; 95% CI 1.12-2.55) as compared to asymptomatic. Our results suggest that IL12B 3' UTR gene polymorphisms may influence the susceptibility to develop Chagasic cardiomyopathy.  相似文献   

9.

Background

Genes encoding cytokine mediators are prime candidates for genetic analysis in conditions with T-helper (Th) cell disease driven imbalance. Idiopathic Pulmonary Fibrosis (IPF) is a predominantly Th2 mediated disease associated with a paucity of interferon-gamma (IFN-γ). The paucity of IFN-γ may favor the development of progressive fibrosis in IPF. Interleukin-12 (IL-12) plays a key role in inducing IFN-γ production. The aim of the current study was to assess whether the 1188 (A/C) 3'UTR single nucleotide polymorphism (SNP) in the IL-12 p40 subunit gene which was recently found to be functional and the 5644 (G/A) 3' UTR SNP of the IFN-γ gene were associated with susceptibility to IPF.

Methods

We investigated the allelic distribution in these loci in UK white Caucasoid subjects comprising 73 patients with IPF and 157 healthy controls. The SNPs were determined using the polymerase chain reaction in association with sequence-specific primers incorporating mismatches at the 3'-end.

Results

Our results showed that these polymorphisms were distributed similarly in the IPF and control groups

Conclusion

We conclude that these two potentially important candidate gene single nucleotide polymorphisms are not associated with susceptibility to IPF.  相似文献   

10.
The instability of the fushi tarazu (ftz) mRNA is essential for the proper development of the Drosophila embryo. Previously, we identified a 201-nucleotide instability element (FIE3) in the 3' untranslated region (UTR) of the ftz mRNA. Here we report on the identification of two additional elements in the protein-coding region of the message: the 63-nucleotide-long FIE5-1 and the 69-nucleotide-long FIE5-2. The function of both elements was position-dependent; the same elements destabilized RNAs when present within the coding region but did not when embedded in the 3' UTR of the hybrid mRNAs. We conclude that ftz mRNA has three redundant instability elements, two in the protein-coding region and one in the 3' UTR. Although each instability element is sufficient to destabilize a heterologous mRNA, the destabilizing activity of the two 5'-elements depended on their position within the message.  相似文献   

11.
12.
The 3' cis-acting element for mouse hepatitis virus (MHV) RNA synthesis resides entirely within the 301-nucleotide 3' untranslated region (3' UTR) of the viral genome and consists of three regions. Encompassing the upstream end of the 3' UTR are a bulged stem-loop and an overlapping RNA pseudoknot, both of which are essential to MHV and common to all group 2 coronaviruses. At the downstream end of the genome is the minimal signal for initiation of negative-strand RNA synthesis. Between these two ends is a hypervariable region (HVR) that is only poorly conserved between MHV and other group 2 coronaviruses. Paradoxically, buried within the HVR is an octanucleotide motif (oct), 5'-GGAAGAGC-3', which is almost universally conserved in coronaviruses and is therefore assumed to have a critical biological function. We conducted an extensive mutational analysis of the HVR. Surprisingly, this region tolerated numerous deletions, rearrangements, and point mutations. Most striking, a mutant deleted of the entire HVR was only minimally impaired in tissue culture relative to the wild type. By contrast, the HVR deletion mutant was highly attenuated in mice, causing no signs of clinical disease and minimal weight loss compared to wild-type virus. Correspondingly, replication of the HVR deletion mutant in the brains of mice was greatly reduced compared to that of the wild type. Our results show that neither the HVR nor oct is essential for the basic mechanism of MHV RNA synthesis in tissue culture. However, the HVR appears to play a significant role in viral pathogenesis.  相似文献   

13.
14.
15.
16.
17.
Song R  Kafaie J  Laughrea M 《Biochemistry》2008,47(10):3283-3293
The HIV-1 genome consists of two identical RNAs that are linked together through noncovalent interactions involving nucleotides from the 5' untranslated region (5' UTR) of each RNA strand. The 5' UTR is the most conserved part of the HIV-1 RNA genome, and its 335 nucleotide residues form regulatory motifs that mediate multiple essential steps in the viral replication cycle. Here, studying the effect of selected mutations both singly and together with mutations disabling SL1 (SL1 is a 5' UTR stem-loop containing a palindrome called the dimerization initiation site), we have done a rather systematic survey of the 5' UTR requirements for full genomic RNA dimerization in grown-up (i.e., predominantly >/=10 h old) HIV-1 viruses produced by transfected human and simian cells. We have identified a role for the 5' transactivation response element (5' TAR) and a contribution of a long-distance base pairing between a sequence located at the beginning of the U5 region and nucleotides surrounding the AUG Gag initiation codon. The resulting intra- or intermolecular duplex is called the U5-AUG duplex. The other regions of the 5' UTR have been shown to play no systematic role in genomic RNA dimerization, except for a sequence located around the 3' end of a large stem-loop enclosing the primer binding site, and the well-documented SL1. Our data are consistent with a direct role for the 5' TAR in genomic RNA dimerization (possibly via a palindrome encompassing the apical loop of the 5' TAR).  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号