首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The phosphotriesterase produced from the opd cistron of Pseudomonas diminuta was purified 1500-fold to homogeneity using a combination of gel filtration, ion exchange, hydrophobic, and dye matrix chromatographic steps. This is the first organophosphate triesterase or organophosphofluoridate hydrolyzing enzyme to be purified to homogeneity. The enzyme is a monomeric, spherical protein having a molecular weight of 39,000. A single zinc atom is bound to the enzyme and is required for catalytic activity. Incubation with metal chelating compounds, o-phenanthroline, EDTA, or 2,6-pyridine dicarboxylate inactivate the enzyme. The kinetic rate constants, kcat and kcat/Km, for the hydrolysis of paraoxon are 2100 s-1 and 4 x 10(7) M-1 s-1, respectively. The enzyme is inhibited competitively by dithiothreitol, dithioerithritol, and beta-mercaptoethanol. In addition to paraoxon the phosphotriesterase was found to hydrolyze the commonly used organophosphorus insecticides, dursban, parathion, coumaphos, diazinon, fensulfothion, methyl parathion, and cyanophos.  相似文献   

3.
Six chlorpyrifos-degrading bacteria were isolated from an Australian soil and compared by biochemical and molecular methods. The isolates were indistinguishable, and one (strain B-14) was selected for further analysis. This strain showed greatest similarity to members of the order Enterobacteriales and was closest to members of the Enterobacter asburiae group. The ability of the strain to mineralize chlorpyrifos was investigated under different culture conditions, and the strain utilized chlorpyrifos as the sole source of carbon and phosphorus. Studies with ring or uniformly labeled [(14)C]chlorpyrifos in liquid culture demonstrated that the isolate hydrolyzed chlorpyrifos to diethylthiophospshate (DETP) and 3, 5, 6-trichloro-2-pyridinol, and utilized DETP for growth and energy. The isolate was found to possess mono- and diphosphatase activities along with a phosphotriesterase activity. Addition of other sources of carbon (glucose and succinate) resulted in slowing down of the initial rate of degradation of chlorpyrifos. The isolate degraded the DETP-containing organophosphates parathion, diazinon, coumaphos, and isazofos when provided as the sole source of carbon and phosphorus, but not fenamiphos, fonofos, ethoprop, and cadusafos, which have different side chains. Studies of the molecular basis of degradation suggested that the degrading ability could be polygenic and chromosome based. Further studies revealed that the strain possessed a novel phosphotriesterase enzyme system, as the gene coding for this enzyme had a different sequence from the widely studied organophosphate-degrading gene (opd). The addition of strain B-14 (10(6) cells g(-1)) to soil with a low indigenous population of chlorpyrifos-degrading bacteria treated with 35 mg of chlorpyrifos kg(-1) resulted in a higher degradation rate than was observed in noninoculated soils. These results highlight the potential of this bacterium to be used in the cleanup of contaminated pesticide waste in the environment.  相似文献   

4.
Monocrotophos (dimethyl (E)-1-methyl-2-(methylcarbamoyl) vinyl phosphate, or MCP), an organophosphorus insecticide, was used as a sole phosphorus source by the microorganisms isolated from the soil. None of the isolates could utilize MCP as a sole source of carbon. Two of the potential microbial isolates, Pseudomonas aeruginosa F10B and Clavibacter michiganense subsp. insidiosum SBL 11, could utilize MCP as a sole source of phosphorus. Pseudomonas aeruginosa F10B showed a lag phase of 4 h, while in the case of C. michiganense subsp. insidiosum SBL 11, it was 8 h when cultured in the presence of MCP. The generation time for both strains was increased in the medium containing MCP. It was 2.15 h for P. aeruginosa F10B in MCP medium as compared with 1.29 h in basal medium, while in case of C. michiganense subsp. insidiosum SBL 11 it was increased to 3.4 h in MCP medium as compared with 1.28 h in basal medium. These two strains were able to degrade technical MCP in shake-flask culture up to 98.9 and 86.9%, respectively, and pure MCP up to 79 and 80%, respectively, within 24 h at 37 degrees C. The optimal concentration of MCP required for the normal growth was 500 ppm. In the substrate preference study, Tris-p-nitrophenyl phosphate was the most preferred substrate followed by paraoxon. The enzyme responsible for the break down of MCP was phosphotriesterase, which was localized on the membrane-bound fraction of the disrupted cells. The gene responsible for the production of phosphotriesterase (opd) in P. aeruginosa F10B was plasmid-borne.  相似文献   

5.
Phosphotyrosyl-protein phosphatase of TCRC-2 cells   总被引:16,自引:0,他引:16  
Homogenization of TCRC-2 cells yielded a phosphotyrosyl-protein phosphatase with a specific activity approximately 10-=fold higher in particulate than in soluble fractions. Over 90% of the phosphotyrosyl-protein phosphatase associated with the particles was solubilized with 1.0% Nonidet P-40. Chromatography of the detergent-solubilized particulate fraction on either wheat germ lectin-Sepharose or histone-Sepharose columns separated two major components of phosphatase activity. One peak (eluted with 200 mM NaCl from histone-Sepharose or with N-acetylglucosamine from the lectin column) contained both phosphotyrosyl- and phosphoseryl-protein phosphatase as well as p-nitrophenyl phosphatase activities. The other peak (eluted with 1.0 M NaCl from histone-Sepharose or not bound to the lectin column) contained essentially only phosphoseryl-protein phosphatase activity. Various agents (EDTA, p-nitrophenyl phosphate, fluoride) showed considerable differences in their ability to inhibit the two phosphatase fractions; of these, the most potent and selective inhibitor was orthovanadate. At micromolar concentrations, vanadate inhibited the fraction containing phosphotyrosyl-protein phosphatase and failed to inhibit the fraction containing only phosphoseryl-protein phosphatase activity. These data show that the particulate forms of phosphotyrosyl-protein phosphatase and p-nitrophenyl phosphatase represent the activities of very similar or identical proteins.  相似文献   

6.
Although alkaline phosphatase has been long associated with the mineralization process, its exact function remains to be elucidated. To clarify its possible role in matrix vesicle-mediated mineralization, we tested the effect of vanadate, a phosphate analogue and powerful competitive inhibitor of alkaline phosphatase activity, on calcium and phosphate uptakes by a matrix vesicle-enriched microsomal fraction. Vanadate was also tested in a hydroxyapatite-seeded ion uptake system to determine possible direct effects on mineral formation. The effect of vanadate on vesicle mineral ion uptake was complex; low dosages of vanadate (2-20 microM) were stimulatory to Ca2+ uptake, but were inhibitory to Pi. Higher dosages (greater than 67 microM) were inhibitory to both ions. The effect of vanadate on ion uptake was strongly influenced by the stage of vesicle loading; major effects were seen during the lag and early uptake phases, and minimal effects were seen in the terminal stages. Concentrations of vanadate highly inhibitory to vesicle ion uptake had minimal effects on ion accretion by a hydroxyapatite-seeded system. Inhibition of alkaline phosphatase activity by vanadate broadly paralleled inhibition of Pi and Ca2+ uptake; however, at low vanadate concentrations, inhibition of Pi uptake closely paralleled that of alkaline phosphatase. The data indicate that vanadate binds with high affinity to Pi-loading sites, blocking initial Pi uptake. Complexation between vanadate and Ca2+ may be responsible for the stimulation of Ca2+ uptake at early stages of vesicle ion loading with low levels of vanadate by enhancing binding of Ca2+ to the vesicles. It may also account for the selective inhibition of Ca2+ uptake during the rapid stage of vesicle ion loading with high levels of vanadate by reducing Ca2+ ion activity. The close parallelism between inhibition of early Pi uptake and of alkaline phosphatase activity supports the concept that alkaline phosphatase is involved in Pi transport during the early stages of matrix vesicle ion loading. However, the fact that only about half of the Pi uptake was affected by vanadate, despite the progressive inhibition of alkaline phosphatase activity, indicates that alkaline phosphatase is not solely responsible for Pi uptake by the matrix vesicle-enriched fraction.  相似文献   

7.
The effects of vanadate, molybdate, and azide on ATP phosphohydrolase (ATPase) and acid phosphatase activities of plasma membrane, mitochondrial, and soluble supernatant fractions from corn (Zea mays L. WF9 × MO17) roots were investigated. Azide (0.1-10 millimolar) was a selective inhibitor of pH 9.0-ATPase activity of the mitochondrial fraction, while molybdate (0.01-1.0 millimolar) was a relatively selective inhibitor of acid phosphatase activity in the supernatant fraction. The pH 6.4-ATPase activity of the plasma membrane fraction was inhibited by vanadate (10-500 micromolar), but vanadate, at similar concentrations, also inhibited acid phosphatase activity. This result was confirmed for oat (Avena sativa L.) root and coleoptile tissues. While vanadate does not appear to be a selective inhibitor, it can be used in combination with molybdate and azide to distinguish the plasma membrane ATPase from mitochondrial ATPase or supernatant acid phosphatase.

Vanadate appeared to be a noncompetitive inhibitor of the plasma membrane ATPase, and its effectiveness was increased by K+. K+-stimulated ATPase activity was inhibited by 50% at about 21 micromolar vanadate. The rate of K+ transport in excised corn root segments was inhibited by 66% by 500 micromolar vanadate.

  相似文献   

8.
Phosphotriesterase homology protein (PHP) is a member of a recently discovered family of proteins related to phosphotriesterase. Phosphotriesterase is a hydrolytic, bacterial enzyme with unusual substrate specificity for synthetic organophosphate triesters, common constituents of chemical warfare agents and agricultural pesticides. PHP may belong to the family of proteins from which phosphotriesterase evolved. The PHP gene from the thermophilic bacterium Geobacillus caldoxylosilyticus TK4 was cloned and overexpressed in Escherichia coli with 6×His tag in the N-terminal. The recombinant protein was purified with nickel affinity chromatography and characterized in detail. The enzyme did not have any activity against paraoxon. The highest activities were observed with p-nitrophenyl acetate (pNPA) and p-nitrophenyl butyrate. pH and temperature optima were determined as 8.0 and 50 °C, respectively, with pNPA. The enzyme activity was not largely affected by the incubation of the enzyme at 50 °C in the different buffer solutions (pHs between 3.0 and 9.0) for 7 days. After the incubation at 90 °C for 7 days, G. caldoxylosilyticus TK4 PHP retained 62% of its original activity. The enzyme was also resistant to some metal ions and organic solvents. These results suggest that this is the first reported PHP having an extremely pH- and thermo-stable esterase activity.  相似文献   

9.
Phosphomonoesterase activity was determined for a 115,000g pellet and soluble fractions resulting from a subcellular fractioning of a homogenate of larval Boophilus microplus. Both fractions showed maximum phosphatase activity at pH 5.5 and 10. Acid phosphatase (EC 3.1.3.2) activity was found to be greatest in the soluble fraction. When the reaction rate was plotted against homogenate concentration, the soluble acid phosphatase deviated from the linear relationship. For both fractions different thermostability patterns were obtained, inactlvation beginning for the alkaline phosphatase (EC 3.1.3.1) at 45–55 C. When the effect of substrate concentration on activity was studied, deviations from the typical hyperbolic behavior were observed. Homogenization of larvae with 5 mm EDTA buffer failed to yield a low-speed pellet with high alkaline phosphatase activity, as it is expected if absorptive structures sediment. Moreover, total alkaline phosphatase activity recovered by this method is significantly lower than activity recovered when homogenization is carried out without EDTA. Alternately, homogenization with 10 mM Tris buffer and 0.25 M sucrose gave 27,000g and 115,000g fractions with high phosphatase activity when fractioned by centrifugation. Alkaline treatment of the 115,000g fraction with 10 mM Tris buffer, pH 7.8, failed to separate endoplasmic reticulum contaminants without loss of phosphatase activity. When the 115,000g fraction was centrifuged in a sucrose density gradient, two activity peaks, coincident for both acid and alkaline phosphatases, were obtained. Antigenic analysis showed the existence of similar antigenic determinants in both peaks “immunologically” presented in different ways.  相似文献   

10.
The results from purification and characterization studies of the hppA gene product of Helicobacter pylori confirm its identification as a class C acid phosphatase. The hppA gene of H. pylori ATCC strain 49503 was amplified and modified by PCR, cloned into pET21b, and overexpressed in Escherichia coli. The recombinant protein was liberated from membranes and purified (16x) to apparent homogeneity with cation exchange and Ni-chelate chromatography resulting in a recovery of 39% of total starting activity. The recombinant acid phosphatase exhibited a denatured molecular mass of 24 kDa by SDS-PAGE. Phosphatase activity in both crude and purified samples could be renatured and detected after SDS-PAGE. The native molecular mass of recombinant enzyme was approximately 72 kDa by gel filtration chromatography on Superdex 75. While phosphate and tartrate had little effect on phosphatase activity, molybdate, vanadate, and EDTA had significant inhibitory effects on enzymatic activity. Phosphomonoesterase activity for hydrolysis of p-nitrophenylphosphate (pNPP) as well as other substrates was enhanced in the presence of divalent cations including Cu(2+), Ni(2+), Co(2+), and Mg(2+). Recombinant HppA had narrow substrate specificity with highest activity for arylphosphates and significant activity for 5' nucleoside monophosphates. The pH optimum for enzyme activity was 4.6 and 5.2 for purine and pyrimidine 5' monophosphates, respectively. The affinity constants for the 5' nucleoside monophosphates were found to be 0.5-1 mM. Results from this study confirm HppA inclusion in the class C acid phosphatases and led to its identification as a 5' nucleotidase.  相似文献   

11.
The effect of selection pressure on the cholinesterase (AChE) activity of two strains of Boophilus microplus (Canestrini) resistant to coumaphos was monitored. Total AChE and protein was determined from three generations of resistant ticks and a susceptible strain. The effect of an AChE inhibitor, coroxon (the oxygen analog of coumaphos), was also determined. The resistance of the susceptible strain (Escondido) to coumaphos remained relatively unchanged throughout the study. The Tuxpan strain lost some of its resistance to coumaphos as the generations proceeded (AChE increased instead of decreased). The Tuxtla strain became more resistant to coumaphos as the generations proceeded (AChE increased).  相似文献   

12.
Phosphotriesterases catalyze the hydrolytic detoxification of phosphotriester pesticides and chemical warfare nerve agents with various efficiencies. The directed evolution of phosphotriesterases to enhance the breakdown of poor substrates is desirable for the purposes of bioremediation. A limiting factor in the identification of phosphotriesterase mutants with increased activity is the ability to effectively screen large mutant libraries. To this end, we have investigated the possibility of coupling phosphotriesterase activity to cell growth by using methyl paraoxon as the sole phosphorus source. The catabolism of paraoxon to phosphate would occur via the stepwise enzymatic hydrolysis of paraoxon to dimethyl phosphate, methyl phosphate, and then phosphate. The Escherichia coli strain DH10B expressing the phosphotriesterase from Agrobacterium radiobacter P230 (OpdA) is unable to grow when paraoxon is used as the sole phosphorus source. Enterobacter aerogenes is an organism capable of growing when dimethyl phosphate is the sole phosphorus source. The enzyme responsible for hydrolyzing dimethyl phosphate has been previously characterized as a nonspecific phosphohydrolase. We isolated and characterized the genes encoding the phosphohydrolase operon. The operon was identified from a shotgun clone that enabled E. coli to grow when dimethyl phosphate is the sole phosphorus source. E. coli coexpressing the phosphohydrolase and OpdA grew when paraoxon was the sole phosphorus source. By constructing a short degradative pathway, we have enabled E. coli to use phosphotriesters as a sole source of phosphorus.  相似文献   

13.
(1) An acid phosphatase from depressed cells of the yeast form of Yarrowia lipolytica has been characterized kinetically by studies on specificity, inhibition, rate equation forms and modelling of the enzyme mechanisms. (2) The study on specificity revealed that the acid phosphatase is a rather unspecific phosphohydrolase that has similar activity on several different phosphate esters. A very weak transphosphorylating activity was also detected. (3) Among the reversible inhibitors, phosphate and vanadate were outstanding, whereas EDTA behaved as an activator. (4) v vs. [S] studies with o-carboxyphenyl phosphate as substrate show that the acid phosphatase of Y. lipolytica exhibits non-Michaelian behaviour, a minimum degree of 2:2 being detected for the rate equation in [S]. (5) The inhibition by phosphate and vanadate seems to have the same pattern of partial inhibition with a certain non-competitive nature, 1:1 being the minimum degree of the rate equation detected in (I).  相似文献   

14.
Light-harvesting complex-II (LHC-II) phosphatase activity has generally been examined in the intact thylakoid membrane. A recent report of peptide-phosphatase activity associated with the chloroplast stromal fraction (Hammer, M.F. et al. (1995) Photosynth Res 44: 107–115) has led to the question of whether this activity is capable of dephosphorylating membrane-bound LHC-II. To this end, heat-treated thylakoid membranes were examined as a potential LHC-II phosphatase substrate. Following incubation of the thylakoid membrane at 60°C for 15 min, the endogenous protein phosphatase and kinase activities were almost eliminated. Heat-inactivated phosphomembranes exhibited minimal dephosphorylation of the light harvesting complex-II. Peptide-phosphatase activities isolated from the thylakoid and stromal fraction were able to dephosphorylate LHC-II in heat-inactivated phosphomembranes. The stromal phosphatase showed highest activity against LHC-II at pH 9. Dephosphorylation of the LHC-II by the stromal enzyme was not inhibited by molybdate, vanadate or tungstate ions, but was partially inhibited by EDTA and a synthetic phosphopeptide mimicking the LHC-II phosphorylation site. Thus, the previously identified stromal phosphatase does appear capable of dephosphorylating authentic LHC-II in vivo.Abbreviations CPP chymotryptic phosphopeptides - LHC-II light-harvesting complex of Photosystem II - MP protein phosphatase fractionated from the thylakoid membrane - P2Thr synthetic phosphopeptide MRK-SAT(p)TKKVW - SP protein phosphatase fractionated from the stromal compartment  相似文献   

15.
The inhibition of Helix pomatia arylsulfatase by the synergistic combination of N-acetyl-l-tyrosine ethyl ester and vanadate has been extended to affinity chromatography for purification. In the presence of vanadate, l-tyrosine ethyl ester (TEE), immobilized on CH-Sepharose 4B retained arylsulfatase from the digestive juice or lyophilized powder of H. pomatia. No enzyme was retained without vanadate or with arsenate or phosphate. Arylsulfatase was eluted from the column matrix by removing the vanadate to less than 50 microM with buffer containing EDTA to chelate the vanadate. Escherichia coli alkaline phosphatase and potato acid phosphatase, two enzymes which are inhibited by vanadate but not by the vanadate-TEE complex, were not retained by the immobilized TEE under any conditions used. The sulfatase activity was completely separated from contaminating glucuronidase activity present in the crude enzyme extracts. The Ki for the immobilized vanadate-TEE system was found to be 5.0 x 10(-7) M with a capacity of 25 mg/ml swollen gel. A purification of greater than 40-fold from the lyophilized powder of H. pomatia (Sigma Type H-5) was achieved using this technique. The Ki/Keq of other phenols with vanadate were determined in a 96-well plate format as an example of a rapid screening technique that could be extended to other phosphoryl and sulfuryl-transfer enzyme classes.  相似文献   

16.
Parathion hydrolases have been previously described for an American isolate of Pseudomonas diminuta and a Philippine isolate of Flavobacterium sp. (ATCC 27551). The gene which encodes the broad-spectrum organophosphate phosphotriesterase in P. diminuta has been shown by other investigators to be located on a 66-kilobase (kb) plasmid. The intact gene (opd, organophosphate-degrading gene) from this degradative plasmid was cloned into M13mp10 and found to express parathion hydrolase under control of the lac promoter in Escherichia coli. In Flavobacterium sp. strain ATCC 27551, a 43-kb plasmid was associated with the production of parathion hydrolase by curing experiments. The M13mp10-cloned fragment of the opd gene from P. diminuta was used to identify a homologous genetic region from Flavobacterium sp. strain ATCC 27551. Southern hybridization experiments demonstrated that a genetic region from the 43-kb Flavobacterium sp. plasmid possessed significant homology to the opd sequence. Similar hybridization did not occur with three other native Flavobacterium sp. plasmids (approximately 23, 27, and 51 kb) present within this strain or with genomic DNA from cured strains. Restriction mapping of various recombinant DNA molecules containing subcloned fragments of both opd plasmids revealed that the restriction maps of the two opd regions were similar, if not identical, for all restriction endonucleases tested thus far. In contrast, the restriction maps of the cloned plasmid sequences outside the opd regions were not similar. Thus, it appears that the two discrete bacterial plasmids from parathion-hydrolyzing soil bacteria possess a common but limited region of sequence homology within potentially nonhomologous plasmid structures.  相似文献   

17.
Dolichyl [beta-32P]pyrophosphate ([beta-32P]Dol-P-P) has been prepared chemically to study Dol-P-P phosphatase in calf brain. Calf brain microsomes catalyze the enzymatic release of 32Pi from exogenous [beta-32P]Dol-P-P by a bacitracin-sensitive reaction. [32P]Pyrophosphate was not detected with the water-soluble product even when 1 mM sodium pyrophosphate was added to impede pyrophosphatase activity. A substantial fraction of the Dol-P-P phosphatase activity can be solubilized by treating brain microsomes with 3% Triton X-100. The detergent extracts catalyze the enzymatic release of 32Pi from [beta-32P]Dol-P-P and the conversion of [14C]undecaprenyl pyrophosphate to [14C]undecaprenyl monophosphate. The solubilized Dol-P-P phosphatase activity: 1) is optimal at neutral pH; 2) is inhibited by Mn2+ and stimulated by EDTA; 3) exhibits an apparent Km = 20 microM for Dol-P-P; 4) is competitively inhibited by undecaprenyl pyrophosphate, and 5) is blocked by bacitracin. Solubilized Dol-P-P phosphatase activity differs from Dol-P phosphatase activity present in the same detergent extracts with respect to: 1) thermolability at 50 degrees C, 2) effect of 20 mM EDTA, and 3) sensitivity to phosphate and fluoride ions. These studies describe the chemical synthesis of [beta-32P]Dol-P-P for use in a convenient assay of Dol-P-P phosphatase activity. A procedure for the solubilization of Dol-P-P phosphatase activity from microsomes is presented, and an enzymological comparison indicates that Dol-P-P and Dol-P phosphatase are separate enzymes in calf brain.  相似文献   

18.
We studied recycling of phosphate by enzymatic hydrolysis in two temperate very eutrophic reservoirs. To assess the potential importance of phosphate regeneration by alkaline phosphatase, we determined the activity of this enzyme in lake water concomitantly with the determinations of the concentrations of phosphomonoesters, soluble reactive phosphate, total soluble phosphate and total phosphate. Contrary to our expectations for such productive waters where algal blooms are frequent, during the study period this process of phosphate regeneration was not significant, probably because the product of hydrolysis (contained in the soluble reactive phosphate fraction) was always abundant. We conclude that, in spite of what has been observed repeatedly in natural lakes with similar trophic characteristics, the readily available fraction of phosphate in these reservoirs is large and for that reason alkaline phosphatase production is low. Therefore hydrolysis by this enzyme is not significant for growth. What seems intriguing is the small amount of phosphomonoesters found in the water; with no phosphatase activity this phosphate fraction should always be high, unless hydrolysis takes place either during phosphomonoester release or later due to their instability.  相似文献   

19.
The acute regulation of estrogen synthetase (aromatase), the cytochrome P450 enzyme system responsible for estrogen production, is not well explored. We report here that aromatase, but not NADPH-cytochrome c (P450) reductase, activity from human term placental microsomes decreased when incubated in phosphate-free buffer at 37 degrees C. Aromatase activity was stabilized by phosphate buffer or by the phosphatase inhibitors tartaric acid or EDTA, but not NaF, in phosphate-free buffer. Alkaline phosphatase also inhibited aromatase in phosphate-free buffer relative to phosphate buffer, but the inactivation appears to be due primarily to proteolytic solubilization of NADPH-cytochrome c reductase from the microsomes by proteases within the alkaline phosphatase preparation. Based on these data, we suggest that the cytochrome P450 component of aromatase may be regulated acutely by phosphorylation-dependent processes.  相似文献   

20.
Phosphotriesterases catalyze the hydrolytic detoxification of phosphotriester pesticides and chemical warfare nerve agents with various efficiencies. The directed evolution of phosphotriesterases to enhance the breakdown of poor substrates is desirable for the purposes of bioremediation. A limiting factor in the identification of phosphotriesterase mutants with increased activity is the ability to effectively screen large mutant libraries. To this end, we have investigated the possibility of coupling phosphotriesterase activity to cell growth by using methyl paraoxon as the sole phosphorus source. The catabolism of paraoxon to phosphate would occur via the stepwise enzymatic hydrolysis of paraoxon to dimethyl phosphate, methyl phosphate, and then phosphate. The Escherichia coli strain DH10B expressing the phosphotriesterase from Agrobacterium radiobacter P230 (OpdA) is unable to grow when paraoxon is used as the sole phosphorus source. Enterobacter aerogenes is an organism capable of growing when dimethyl phosphate is the sole phosphorus source. The enzyme responsible for hydrolyzing dimethyl phosphate has been previously characterized as a nonspecific phosphohydrolase. We isolated and characterized the genes encoding the phosphohydrolase operon. The operon was identified from a shotgun clone that enabled E. coli to grow when dimethyl phosphate is the sole phosphorus source. E. coli coexpressing the phosphohydrolase and OpdA grew when paraoxon was the sole phosphorus source. By constructing a short degradative pathway, we have enabled E. coli to use phosphotriesters as a sole source of phosphorus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号